pkgsrc/math/fftw/PLIST

17 lines
414 B
Text
Raw Normal View History

@comment $NetBSD: PLIST,v 1.13 2017/11/23 20:24:13 wiz Exp $
Update to version 3.0. Major goals of this release: * Speed: often 20% or more faster than FFTW 2.x, even without SIMD (see below). * Complete rewrite, to make it easier to add new algorithms and transforms. * New API, to support more general semantics. Other enhancements: * SIMD acceleration on supporting CPUs (SSE, SSE2, 3DNow!, and AltiVec). (With special thanks to Franz Franchetti for many experimental prototypes and to Stefan Kral for the vectorizing generator from fftwgel.) * True in-place 1d transforms of large sizes (as well as compressed twiddle tables for additional memory/cache savings). * More arbitrary placement of real & imaginary data, e.g. including interleaved (as in FFTW 2.x) as well as separate real/imag arrays. * Efficient prime-size transforms of real data. * Multidimensional transforms can operate on a subset of a larger matrix, and/or transform selected dimensions of a multidimensional array. * By popular demand, simultaneous linking to double precision (fftw), single precision (fftwf), and long-double precision (fftwl) versions of FFTW is now supported. * Cycle counters (on all modern CPUs) are exploited to speed planning. * Efficient transforms of real even/odd arrays, a.k.a. discrete cosine/sine transforms (types I-IV). (Currently work via pre/post processing of real transforms, ala FFTPACK, so are not optimal.) * DHTs (Discrete Hartley Transforms), again via post-processing of real transforms (and thus suboptimal, for now). * Support for linking to just those parts of FFTW that you need, greatly reducing the size of statically linked programs when only a limited set of transform sizes/types are required. * Canonical global wisdom file (/etc/fftw/wisdom) on Unix, along with a command-line tool (fftw-wisdom) to generate/update it. * Fortran API can be used with both g77 and non-g77 compilers simultaneously. * Multi-threaded version has optional OpenMP support. * Authors' good looks have greatly improved with age.
2003-04-30 00:48:45 +02:00
bin/fftw-wisdom
bin/fftw-wisdom-to-conf
include/fftw3.f
Changes 3.3: * Compiling OpenMP support (--enable-openmp) now installs a fftw3_omp library, instead of fftw3_threads, so that OpenMP and POSIX threads (--enable-threads) libraries can be built and installed at the same time. * Various minor compilation fixes, corrections of manual typos, and improvements to the benchmark test program. * Add support for the AVX extensions to x86 and x86-64. The AVX code works with 16-byte alignment (as opposed to 32-byte alignment), so there is no ABI change compared to FFTW 3.2.2. * Added Fortran 2003 interface, which should be usable on most modern Fortran compilers (e.g. gfortran) and provides type-checked access to the the C FFTW interface. (The legacy Fortran-77 interface is still included also.) * Added MPI distributed-memory transforms. Compared to 3.3alpha, the major changes in the MPI transforms are: * Fixed some deadlock and crashing bugs. * Added Fortran 2003 interface. * Added new-array execute functions for MPI plans. * Eliminated use of large MPI tags, since Cray MPI requires tags < 224. * Expanded documentation. * make check now runs MPI tests * Some ABI changes — not binary-compatible with 3.3alpha MPI. * Add support for quad-precision __float128 in gcc 4.6 or later (on x86. x86-64, and Itanium). The new routines use the fftwq_ prefix. * Temporarily removed MIPS paired-single support due to lack of available hardware for testing. We hope to add it back before the final FFTW 3.3 release; meanwhile, users who want this functionality should continue using FFTW 3.2.x. * Removed support for the Cell Broadband Engine. Cell users should use FFTW 3.2.x. * New convenience functions fftw_alloc_real and fftw_alloc_complex to use fftw_malloc for real and complex arrays without typecasts or sizeof.
2011-07-28 08:23:41 +02:00
include/fftw3.f03
Update to version 3.0. Major goals of this release: * Speed: often 20% or more faster than FFTW 2.x, even without SIMD (see below). * Complete rewrite, to make it easier to add new algorithms and transforms. * New API, to support more general semantics. Other enhancements: * SIMD acceleration on supporting CPUs (SSE, SSE2, 3DNow!, and AltiVec). (With special thanks to Franz Franchetti for many experimental prototypes and to Stefan Kral for the vectorizing generator from fftwgel.) * True in-place 1d transforms of large sizes (as well as compressed twiddle tables for additional memory/cache savings). * More arbitrary placement of real & imaginary data, e.g. including interleaved (as in FFTW 2.x) as well as separate real/imag arrays. * Efficient prime-size transforms of real data. * Multidimensional transforms can operate on a subset of a larger matrix, and/or transform selected dimensions of a multidimensional array. * By popular demand, simultaneous linking to double precision (fftw), single precision (fftwf), and long-double precision (fftwl) versions of FFTW is now supported. * Cycle counters (on all modern CPUs) are exploited to speed planning. * Efficient transforms of real even/odd arrays, a.k.a. discrete cosine/sine transforms (types I-IV). (Currently work via pre/post processing of real transforms, ala FFTPACK, so are not optimal.) * DHTs (Discrete Hartley Transforms), again via post-processing of real transforms (and thus suboptimal, for now). * Support for linking to just those parts of FFTW that you need, greatly reducing the size of statically linked programs when only a limited set of transform sizes/types are required. * Canonical global wisdom file (/etc/fftw/wisdom) on Unix, along with a command-line tool (fftw-wisdom) to generate/update it. * Fortran API can be used with both g77 and non-g77 compilers simultaneously. * Multi-threaded version has optional OpenMP support. * Authors' good looks have greatly improved with age.
2003-04-30 00:48:45 +02:00
include/fftw3.h
include/fftw3l.f03
include/fftw3q.f03
info/fftw3.info
lib/cmake/fftw3/FFTW3Config.cmake
lib/cmake/fftw3/FFTW3ConfigVersion.cmake
Update to version 3.0. Major goals of this release: * Speed: often 20% or more faster than FFTW 2.x, even without SIMD (see below). * Complete rewrite, to make it easier to add new algorithms and transforms. * New API, to support more general semantics. Other enhancements: * SIMD acceleration on supporting CPUs (SSE, SSE2, 3DNow!, and AltiVec). (With special thanks to Franz Franchetti for many experimental prototypes and to Stefan Kral for the vectorizing generator from fftwgel.) * True in-place 1d transforms of large sizes (as well as compressed twiddle tables for additional memory/cache savings). * More arbitrary placement of real & imaginary data, e.g. including interleaved (as in FFTW 2.x) as well as separate real/imag arrays. * Efficient prime-size transforms of real data. * Multidimensional transforms can operate on a subset of a larger matrix, and/or transform selected dimensions of a multidimensional array. * By popular demand, simultaneous linking to double precision (fftw), single precision (fftwf), and long-double precision (fftwl) versions of FFTW is now supported. * Cycle counters (on all modern CPUs) are exploited to speed planning. * Efficient transforms of real even/odd arrays, a.k.a. discrete cosine/sine transforms (types I-IV). (Currently work via pre/post processing of real transforms, ala FFTPACK, so are not optimal.) * DHTs (Discrete Hartley Transforms), again via post-processing of real transforms (and thus suboptimal, for now). * Support for linking to just those parts of FFTW that you need, greatly reducing the size of statically linked programs when only a limited set of transform sizes/types are required. * Canonical global wisdom file (/etc/fftw/wisdom) on Unix, along with a command-line tool (fftw-wisdom) to generate/update it. * Fortran API can be used with both g77 and non-g77 compilers simultaneously. * Multi-threaded version has optional OpenMP support. * Authors' good looks have greatly improved with age.
2003-04-30 00:48:45 +02:00
lib/libfftw3.la
${PLIST.pthreads}lib/libfftw3_threads.la
Update to version 3.0. Major goals of this release: * Speed: often 20% or more faster than FFTW 2.x, even without SIMD (see below). * Complete rewrite, to make it easier to add new algorithms and transforms. * New API, to support more general semantics. Other enhancements: * SIMD acceleration on supporting CPUs (SSE, SSE2, 3DNow!, and AltiVec). (With special thanks to Franz Franchetti for many experimental prototypes and to Stefan Kral for the vectorizing generator from fftwgel.) * True in-place 1d transforms of large sizes (as well as compressed twiddle tables for additional memory/cache savings). * More arbitrary placement of real & imaginary data, e.g. including interleaved (as in FFTW 2.x) as well as separate real/imag arrays. * Efficient prime-size transforms of real data. * Multidimensional transforms can operate on a subset of a larger matrix, and/or transform selected dimensions of a multidimensional array. * By popular demand, simultaneous linking to double precision (fftw), single precision (fftwf), and long-double precision (fftwl) versions of FFTW is now supported. * Cycle counters (on all modern CPUs) are exploited to speed planning. * Efficient transforms of real even/odd arrays, a.k.a. discrete cosine/sine transforms (types I-IV). (Currently work via pre/post processing of real transforms, ala FFTPACK, so are not optimal.) * DHTs (Discrete Hartley Transforms), again via post-processing of real transforms (and thus suboptimal, for now). * Support for linking to just those parts of FFTW that you need, greatly reducing the size of statically linked programs when only a limited set of transform sizes/types are required. * Canonical global wisdom file (/etc/fftw/wisdom) on Unix, along with a command-line tool (fftw-wisdom) to generate/update it. * Fortran API can be used with both g77 and non-g77 compilers simultaneously. * Multi-threaded version has optional OpenMP support. * Authors' good looks have greatly improved with age.
2003-04-30 00:48:45 +02:00
lib/pkgconfig/fftw3.pc
man/man1/fftw-wisdom-to-conf.1
man/man1/fftw-wisdom.1