FFTW 3.3.6-pl1:
* Bugfix: FFTW 3.3.6 had the wrong libtool version number, and generated
shared libraries of the form libfftw3.so.2.6.6 instead of
libfftw3.so.3.*.
FFTW 3.3.6:
* The fftw_make_planner_thread_safe() API introduced in 3.3.5 didn't
work, and this 3.3.6 fixes it. Sorry about that.
* compilation fixes for IBM XLC
* compilation fixes for threads on Windows
* fix SIMD autodetection on amd64 when (_MSC_VER > 1500)
MASTER_SITES= site1 \
site2
style continuation lines to be simple repeated
MASTER_SITES+= site1
MASTER_SITES+= site2
lines. As previewed on tech-pkg. With thanks to rillig for fixing pkglint
accordingly.
FFTW 3.3.5:
* New SIMD support:
- Power8 VSX instructions in single and double precision.
To use, add --enable-vsx to configure.
- Support for AVX2 (256-bit FMA instructions).
To use, add --enable-avx2 to configure.
- Experimental support for AVX512 and KCVI. (--enable-avx512, --enable-kcvi)
This code is expected to work but the FFTW maintainers do not have
hardware to test it.
- Support for AVX128/FMA (for some AMD machines) (--enable-avx128-fma)
- Double precision Neon SIMD for aarch64.
This code is expected to work but the FFTW maintainers do not have
hardware to test it.
- generic SIMD support using gcc vector intrinsics
* Add fftw_make_planner_thread_safe() API
* fix#18 (disable float128 for CUDACC)
* fix#19: missing Fortran interface for fftwq_alloc_real
* fix#21 (don't use float128 on Portland compilers, which pretend to be gcc)
* fix: Avoid segfaults due to double free in MPI transpose
* Special note for distribution maintainers: Although FFTW supports a
zillion SIMD instruction sets, enabling them all at the same time is
a bad idea, because it increases the planning time for minimal gain.
We recommend that general-purpose x86 distributions only enable SSE2
and perhaps AVX. Users who care about the last ounce of performance
should recompile FFTW themselves.
FFTW 3.3.4
* New functions fftw_alignment_of (to check whether two arrays are
equally aligned for the purposes of applying a plan) and fftw_sprint_plan
(to output a description of plan to a string).
* Bugfix in fftw-wisdom-to-conf; thanks to Florian Oppermann for the
bug report.
* Fixed manual to work with texinfo-5.
* Increased timing interval on x86_64 to reduce timing errors.
* Default to Win32 threads, not pthreads, if both are present.
* Various build-script fixes.
FFTW 3.3.3
* Fix deadlock bug in MPI transforms (thanks to Michael Pippig for the
bug report and patch, and to Graham Dennis for the bug report).
* Use 128-bit ARM NEON instructions instead of 64-bits. This change
appears to speed up even ARM processors with a 64-bit NEON pipe.
* Speed improvements for single-precision AVX.
* Speed up planner on machines without "official" cycle counters, such as ARM.
Do it for all packages that
* mention perl, or
* have a directory name starting with p5-*, or
* depend on a package starting with p5-
like last time, for 5.18, where this didn't lead to complaints.
Let me know if you have any this time.
a) refer 'perl' in their Makefile, or
b) have a directory name of p5-*, or
c) have any dependency on any p5-* package
Like last time, where this caused no complaints.
FFTW 3.3.2
* Removed an archaic stack-alignment hack that was failing with
gcc-4.7/i386.
* Added stack-alignment hack necessary for gcc on Windows/i386. We
will regret this in ten years (see previous change).
* Fix incompatibility with Intel icc which pretends to be gcc
but does not support quad precision.
* make libfftw{threads,mpi} depend upon libfftw when using libtool;
this is consistent with most other libraries and simplifies the life
of various distributors of GNU/Linux.
FFTW 3.3.1
* Changes since 3.3.1-beta1:
- Reduced planning time in estimate mode for sizes with large
prime factors.
- Added AVX autodetection under Visual Studio. Thanks Carsten
Steger for submitting the necessary code.
- Modern Fortran interface now uses a separate fftw3l.f03 interface
file for the long double interface, which is not supported by
some Fortran compilers. Provided new fftw3q.f03 interface file
to access the quadruple-precision FFTW routines with recent
versions of gcc/gfortran.
* Added support for the NEON extensions to the ARM ISA. (Note to beta
users: an ARM cycle counter is not yet implemented; please contact
fftw@fftw.org if you know how to do it right.)
* MPI code now compiles even if mpicc is a C++ compiler; thanks to
Kyle Spyksma for the bug report.
* Performance improvements for some multidimensional r2c/c2r transforms;
thanks to Eugene Miloslavsky for his benchmark reports.
* Compile with icc on MacOS X, use better icc compiler flags.
* Compilation fixes for systems where snprintf is defined as a macro;
thanks to Marcus Mae for the bug report.
* Fortran documentation now recommends not using dfftw_execute,
because of reports of problems with various Fortran compilers;
it is better to use dfftw_execute_dft etcetera.
* Some documentation clarifications, e.g. of fact that --enable-openmp
and --enable-threads are mutually exclusive (thanks to Long To),
and document slightly odd behavior of plan_guru_r2r in Fortran.
* FAQ was accidentally omitted from 3.2 tarball.
* Remove some extraneous (harmless) files accidentally included in
a subdirectory of the 3.2 tarball.
the version in math/fftw/.
Pkgsrc changes:
o Get rid of the powerpc-specific distfile, it's apparently not needed
anymore
o Add perl as a tool, so that "make test" can succeed
o Adjust dependency on math/fftw
since they always need a C compiler, even when the source code is
completely in C++.
For some other packages, stated in the comment that a C compiler is
really not needed.
developer is officially maintaining the package.
The rationale for changing this from "tech-pkg" to "pkgsrc-users" is
that it implies that any user can try to maintain the package (by
submitting patches to the mailing list). Since the folks most likely
to care about the package are the folks that want to use it or are
already using it, this would leverage the energy of users who aren't
developers.