Commit graph

8 commits

Author SHA1 Message Date
wen
56d2bbcccb Update to 0.43
Upstream changes please visit:
http://cpansearch.perl.org/src/DANAJ/Math-Prime-Util-0.43/Changes
2014-09-04 07:09:56 +00:00
wiz
7eeb51b534 Bump for perl-5.20.0.
Do it for all packages that
* mention perl, or
* have a directory name starting with p5-*, or
* depend on a package starting with p5-
like last time, for 5.18, where this didn't lead to complaints.
Let me know if you have any this time.
2014-05-29 23:35:13 +00:00
wen
776d82f140 Update to 0.31
Upstream changes:
0.31  2013-08-07

    - Change proof certificate documentation to reflect the new text format.

    - Some platforms were using __int128 when it wasn't supported.  Only
      x86_64 and Power64 use it now.

    - Small speedup for ranged totient internals.

    - Patch MPU::GMP 0.13 giving us not quite what we expected from a small
      certificate.  Fixed in MPU::GMP 0.14, worked around here regardless.

0.30  2013-08-06

    [API Changes]
      - Primality proofs now use the new "MPU Certificate" format, which is
        text rather than a nested Perl data structure.  This is much better
        for external interaction, especially with non-Perl tools.  It is
        not quite as convenient for all-Perl manipulation.

    [Functions Added]
      - is_frobenius_underwood_pseudoprime
      - is_almost_extra_strong_lucas_pseudoprime
      - lucas_sequence
      - pplus1_factor

    [Enhancements]
      - Documentation and PP is_prime changed to use extra strong Lucas test
        from the strong test.  This matches what the newest MPU::GMP does.
        This has no effect at all for numbers < 2^64.  No counter-example is
        known for the standard, strong, extra strong, or almost extra strong
        (increment 1 or 2) tests.  The extra strong test is faster than the
        strong test and produces fewer pseudoprimes.  It retains the residue
        class properties of the strong Lucas test (where the SPSP-2
        pseudoprimes favor residue class 1 and the Lucas pseudoprimes favor
        residue class -1), hence should retain the BPSW test strength.

      - XS code for all 4 Lucas tests.

      - Clean up is_prob_prime, also ~10% faster for n >= 885594169.

      - Small mulmod speedup for non-gcc/x86_64 platforms, and for any platform
        with gcc 4.4 or newer.

    [Bug Fixes]
      - Fixed a rare refcount / bignum / callback issue in next_prime.
2013-08-25 01:28:38 +00:00
wen
3060b29b0f Update to 0.29
Add missing DEPENDS

Upstream changes:
0.29 30 May 2013

    - Fix a signed vs. unsigned char issue in ranged moebius.  Thanks to the
      Debian testers for finding this.

    - XS is_prob_prime / is_prime now use a BPSW-style test (SPRP2 plus
      extra strong Lucas test) for values over 2^32.  This results in up
      to 2.5x faster performance for large 64-bit values on most machines.
      All PSP2s have been verified with Jan Feitsma's database.

    - forprimes now uses a segmented sieve.  This (1) allows arbitrary 64-bit
      ranges with good memory use, and (2) allows nesting on threaded perls.

    - prime_count_approx for very large values (> 10^36) was very slow without
      Math::MPFR.  Switch to Li+correction for large values if Math::MPFR is
      not available.

    - Workaround for MSVC compiler.

    - Added:
        is_pseudoprime (Fermat probable prime test)
        is_lucas_pseudoprime (standard Lucas-Selfridge test)
        is_extra_strong_lucas_pseudoprime (Mo/Jones/Grantham E.S. Lucas test)

0.28 23 May 2013

    - An optimization to nth_prime caused occasional threaded Win32 faults.
      Adjust so this is avoided.

    - Yet another XS micro-speedup (PERL_NO_GET_CONTEXT)

    - forprimes { block } [begin,]end.  e.g.
        forprimes { say } 100;
        $sum = 0;  forprimes { $sum += $_ } 1000,50000;  say $sum;
        forprimes { say if is_prime($_+2) } 10000;  # print twin primes

    - my $it = prime_iterator(10000); say $it->();
      This is experimental (that is, the interface may change).

0.27 20 May 2013

    - is_prime, is_prob_prime, next_prime, and prev_prime now all go straight
      to XS if possible.  This makes them much faster for small inputs without
      having to use the -nobigint flag.

    - XS simple number validation to lower function call overhead.  Still a
      lot more overhead compared to directly calling the XS functions, but
      it shaves a little bit of time off every call.

    - Speedup pure Perl factoring of small numbers.

    - is_prob_prime / is_prime about 10% faster for composites.

    - Allow '+N' as the second parameter to primes.pl.  This allows:
          primes.pl 100 +30
      to return the primes between 100 and 130.  Or:
          primes.pl 'nth_prime(1000000000)' +2**8

    - Use EXTENDED_TESTING to turn on extra tests.

0.26 21 April 2013

    - Pure Perl factoring:
        - real p-1 -- much faster and more effective
        - Fermat (no better than HOLF)
        - speedup for pbrent
        - simple ECM
        - redo factoring mix

    - New functions:
        prime_certificate  produces a certificate of primality.
        verify_prime       checks a primality certificate.

    - Pure perl primality proof now uses BLS75 instead of Lucas, so some
      numbers will be much faster [n-1 only needs factoring to (n/2)^1/3].

    - Math::Prime::Util::ECAffinePoint and ECProjectivePoint modules for
      dealing with elliptic curves.

0.25 19 March 2013

    - Speed up p-1 stage 2 factoring.  Combined with some minor changes to the
      general factoring combination, ~20% faster for 19 digit semiprimes.

    - New internal macro to loop over primary sieve starting at 2.  Simplifies
      code in quite a few places.

    - Forgot to skip one of the tests with broken 5.6.2.

0.24 10 March 2013

    - Fix compilation with old pre-C99 strict compilers (decl after statement).

    - euler_phi on a range wasn't working right with some ranges.

    - More XS prime count improvements to speed and space.  Add some tables
      to the sieve count so it runs a bit faster.  Transition from sieve later.

    - PP prime count for 10^9 and larger is ~2x faster and uses much less
      memory.  Similar impact for nth_prime 10^8 or larger.

    - Let factor.pl accept expressions just like primes.pl.

0.23  5 March 2013

    - Replace XS Zeta for x > 5 with series from Cephes.  It is 1 eps more
      accurate for a small fraction of inputs.  More importantly, it is much
      faster in range 5 < x < 10.  This only affects non-integer inputs.

    - PP Zeta code replaced (for no-MPFR, non-bignums) with new series.  The
      new code is much more accurate for small values, and *much* faster.

    - Add consecutive_integer_lcm function, just like MPU::GMP's (though we
      define ci_lcm(0) = 0, which should get propogated).

    - Implement binary search on RiemannR for XS nth_prime when n > 2e11.
      Runs ~2x faster for 1e12, 3x faster for 1e13.  Thanks to Programming
      Praxis for the idea and motivation.

    - Add the first and second Chebyshev functions (theta and psi).

    - put isqrt(n) in util.h, use it everywhere.
      put icbrt(n) in lehmer.h, use it there.

    - Start on Lagarias-Miller-Odlyzko prime count.

    - A new data structure for the phi(x,a) function used by all the fast
      prime count routines.  Quite a bit faster and most importantly, uses
      half the memory of the old structure.

    - Performance:
       - Divisor sum with no sub is ~10x faster.
       - Speed up PP version of exp_mangoldt, create XS version.
       - Zeta much faster as mentioned above.
       - faster nth_prime as mentioned above.
       - AKS about 10% faster.
       - Unroll a little more in sieve inner loop.  A couple percent faster.
       - Faster prime_count and nth_prime due to new phi(x,a) (about 1.25x).

0.22 26 February 2013

    - Move main factor loop out of xs and into factor.c.

    - Totient and Moebius now have complete XS implementations.

    - Ranged totient uses less memory when segmented.

    - Switch thread locking to pthreads condition variables.

0.21 22 February 2013

    - Switch to using Bytes::Random::Secure for random primes.  This is a
      big change in that it is the first non-CORE module used.  However, it
      gets rid of lots of possible stupidness from system rand.

    - Spelling fixes in documentation.

    - primes.pl: Add circular and Panaitopol primes.

    - euler_phi and moebius now will compute over a range.

    - Add mertens function: 1000+ times faster than summing moebius($_).

    - Add exp_mangoldt function: exponential of von Mangoldt's function.

    - divisor_sum defaults to sigma if no sub is given (i.e. it sums).

    - Performance:
       - Speedup factoring small numbers.  With -nobigint factoring from
         1 to 10M, it's 1.2x faster.  1.5x faster than Math::Factor::XS.
       - Totient and M枚bius over a range are much faster than separate calls.
       - divisor_sum is 2x faster.
       - primes.pl is much faster with Pillai primes.
       - Reduce overhead in euler_phi -- about 2x faster for individual calls.

0.20  3 February 2013

    - Speedup for PP AKS, and turn off test on 32-bit machines.

    - Replaced fast sqrt detection in PP.pm with a slightly slower version.
      The bloom filter doesn't work right in 32-bit Perl.  Having a non-working
      detector led to really bad performance.  Hence this and the AKS change
      should speed up testing on some 32-bit machines by a huge amount.

    - Fix is_perfect_power in XS AKS.

0.19  1 February 2013

    - Update MR bases with newest from http://miller-rabin.appspot.com/.

    - Fixed some issues when using bignum and Calc BigInt backend, and bignum
      and Perl 5.6.

    - Added tests for bigint is_provable_prime.

    - Added a few tests to give better coverage.

    - Adjust some validation subroutines to cut down on overhead.

0.18  14 January 2013

    - Add random_strong_prime.

    - Fix builds with Solaris 9 and older.

    - Add some debug info to perhaps find out why old ActiveState Perls are
      dying in Math::BigInt::Calc, as if they were using really old versions
      that run out of memory trying to calculate '2 ** 66'.
      http://code.activestate.com/ppm/Math-Prime-Util/

0.17  20 December 2012

    - Perl 5.8.1 - 5.8.7 miscalculates 12345 ** 4, which I used in a test.

    - Fix (hopefully) for MSC compilation.

    - Unroll sieve loop for another 20% or so speedup.  It won't have much
      practical application now that we use Lehmer's method for counts, but
      there are some cases that can still show speedups.

    - Changed the rand functionality yet again.  Sorry.  This should give
      better support for plugging in crypto RNG's when used from other
      modules.

0.16  11 December 2012

    - randbits >= 32 on some 32-bit systems was messing us up.  Restrict our
      internal randbits to wordsize-1.
2013-07-14 06:11:50 +00:00
wiz
d2ca14a3f1 Bump all packages for perl-5.18, that
a) refer 'perl' in their Makefile, or
b) have a directory name of p5-*, or
c) have any dependency on any p5-* package

Like last time, where this caused no complaints.
2013-05-31 12:39:57 +00:00
wen
d1f49ba51a Update to 0.15
Upstream changes:
0.15  9 December 2012

    - Lots of internal changes to Ei, li, Zeta, and R functions:
       - Native Zeta and R have slightly more accurate results.
       - For bignums, use Math::MPFR if possible.  MUCH faster.
         Also allows extended precision while still being fast.
       - Better accuracy for standard bignums.
       - All four functions do:
          - XS if native input.
          - MPFR to whatever accuracy is desired, if Math::MPFR installed.
          - BigFloat versions if no MPFR and BigFloat input.
          - standard version if no MPFR and not a BigFloat.

    - Add tests for primorial, jordan_totient, and divisor_sum.

    - Revamp of the random_prime internals.  Also fixes some issues with
      random n-bit and maurer primes.

    - The random prime and primorial functions now will return a Math::BigInt
      object if the result is greater than the native size.  This includes
      loading up the Math::BigInt library if necessary.
2012-12-10 13:35:45 +00:00
wen
b8af85d1ef Update to 0.14
Upstream changes:
0.14  29 November 2012

    - Compilation and test issues:
          Fix compilation on NetBSD
          Try to fix compilation on Win32 + MSVC
          Speed up some testing, helps a lot with Cygwin on slow machines
          Speed up a lot of slow PP areas, especially used by test suite

    - XS AKS extended from half-word to full-word.

    - Add functions:
           jordan_totient          generalization of Euler Totient
           divisor_sum             run coderef for every divisor

    - Allow environment variables MPU_NO_XS and MPU_NO_GMP to turn off XS and
      GMP support respectively if they are defined and equal to 1.

    - Lehmer prime count for Pure Perl code, including use in nth_prime.
         prime count 10^9 using sieve:
            71.9s   PP sieve
             0.47s  XS sieve
         prime count 10^9 using Lehmer:
             0.70s  PP lehmer
             0.03s  XS lehmer

    - Moved bignum Zeta and R to separate file, only loaded when needed.
      Helpful to get the big rarely-used tables out of the main loading.

    - Quote arguments to Math::Big{Int,Float} in a few places it wasn't.
      Math::Big* coerces the input to a signed value if it isn't a string,
      which causes us all sorts of grief.

0.13  19 November 2012

    - Fix an issue with prime count, and make prime count available as a
      standalone program using primesieve.

0.12  17 November 2012

    - Add bin/primes.pl and bin/factor.pl

    - Add functions:
           primorial               product of primes <= n
           pn_primorial            product of first n primes
           prime_set_config        set config options
           RiemannZeta             export and make accurate for small reals
           is_provable_prime       prove primes after BPSW
           is_aks_prime            prove prime via AKS

    - Add 'assume_rh' configuration option (default: false) which can be set
      to allow functions to assume the Riemann Hypothesis.

    - Use the Schoenfeld bound for Pi(x) (x large) if assume_rh is true.

    - valgrind testing

    - Use long doubles for math functions.

    - Some fixes and speedups for ranged primes().

    - In the PP code, use 2 MR bases for more numbers when possible.

    - Fixup of racing SQUFOF, and switch to use it in factor().

    - Complete rewrite of XS p-1 factor routine, includes second stage.

    - bug fix for prime_count on edge of cache.

    - prime_count will use Lehmer prime counting algorithm for largish
      sizes (above 4 million).  This is MUCH faster than sieving.

    - nth_prime now uses the fast Lehmer prime count below the lower limit,
      then sieves up from there.  This makes a big speed difference for inputs
      over 10^6 or so -- over 100x faster for 10^9 and up.
2012-11-30 08:24:50 +00:00
sno
32f8147f61 Add new package for CPAN module Math::Prime::Util version 0.11 into
math/p5-Math-Prime-Util.

A set of utilities related to prime numbers. These include multiple sieving
methods, is_prime, prime_count, nth_prime, approximations and bounds for
the prime_count and nth prime, next_prime and prev_prime, factoring
utilities, and more.
2012-10-19 07:30:32 +00:00