Changes:
3.4.1
-----
This release fixes a few bugs, and makes the RSA private key
operations side channel silent. The RSA improvements are
contributed by Simo Sorce and Red Hat, and include one new
public function, rsa_sec_decrypt, see below.
All functions using RSA private keys are now side-channel
silent, meaning that they try hard to avoid any branches or
memory accesses depending on secret data. This applies both to
the bignum calculations, which now use GMP's mpn_sec_* family
of functions, and the processing of PKCS#1 padding needed for
RSA decryption.
Nettle's ECC functions were already side-channel silent, while
the DSA functions still aren't. There's also one caveat
regarding the improved RSA functions: due to small table
lookups in relevant mpn_sec_* functions in GMP-6.1.2, the
lowest and highest few bits of the secret factors p and q may
still leak. I'm not aware of any attacks on RSA where knowing
a few bits of the factors makes a significant difference. This
leak will likely be plugged in later GMP versions.
Changes in behavior:
* The functions rsa_decrypt and rsa_decrypt_tr may now clobber
all of the provided message buffer, independent of the
actual message length. They are side-channel silent, in that
branches and memory accesses don't depend on the validity or
length of the message. Side-channel leakage from the
caller's use of length and return value may still provide an
oracle useable for a Bleichenbacher-style chosen ciphertext
attack. Which is why the new function rsa_sec_decrypt is
recommended.
New features:
* A new function rsa_sec_decrypt. It differs from
rsa_decrypt_tr in that the length of the decrypted message
is given a priori, and PKCS#1 padding indicating a different
length is treated as an error. For applications that may be
subject to chosen ciphertext attacks, it is recommended to
initialize the message area with random data, call this
function, and ignore the return value. This applies in
particular to RSA-based key exchange in the TLS protocol.
Bug fixes:
* Fix bug in pkcs1-conv, missing break statements in the
parsing of PEM input files.
* Fix link error on the pss-mgf1-test test, affecting builds
without public key support.
Performance regression:
* All RSA private key operations employing RSA blinding, i.e.,
rsa_decrypt_tr, rsa_*_sign_tr, the new rsa_sec_decrypt, and
rsa_compute_root_tr, are significantly slower. This is
because (i) RSA blinding now use side-channel silent
operations, (ii) blinding includes a modular inversion, and
(iii) side-channel silent modular inversion, implemented as
mpn_sec_invert, is very expensive. A 60% slowdown for
2048-bit RSA keys have been measured.
Miscellaneous:
* Building the public key support of nettle now requires GMP
version 6.0 or later (unless --enable-mini-gmp is used).
The shared library names are libnettle.so.6.5 and
libhogweed.so.4.5, with sonames still libnettle.so.6 and
libhogweed.so.4. It is intended to be fully binary compatible
with nettle-3.1.
The actual fix as been done by "pkglint -F */*/buildlink3.mk", and was
reviewed manually.
There are some .include lines that still are indented with zero spaces
although the surrounding .if is indented. This is existing practice.
Fix some pkglint while here.
NEWS for the Nettle 3.2 release
Bug fixes:
* The SHA3 implementation is updated according to the FIPS 202
standard. It is not interoperable with earlier versions of
Nettle. Thanks to Nikos Mavrogiannopoulos. To easily
differentiate at compile time, sha3.h defines the constant
NETTLE_SHA3_FIPS202.
* Fix corner-case carry propagation bugs affecting elliptic
curve operations on the curves secp_256r1 and secp_384r1 on
certain platforms, including x86_64. Reported by Hanno Böck.
New features:
* New functions for RSA private key operations, identified by
the "_tr" suffix, with better resistance to side channel
attacks and to hardware or software failures which could
break the CRT optimization. See the Nettle manual for
details. Initial patch by Nikos Mavrogiannopoulos.
* New functions nettle_version_major, nettle_version_minor, as
a run-time variant of the compile-time constants
NETTLE_VERSION_MAJOR and NETTLE_VERSION_MINOR.
Optimizations:
* New ARM Neon implementation of the chacha stream cipher.
Miscellaneous:
* ABI detection on mips, with improved default libdir
location. Contributed by Klaus Ziegler.
* Fixes for ARM assembly syntax, to work better with the clang
assembler. Thanks to Jukka Ukkonen.
* Disabled use of ifunc relocations for fat builds, to fix
problems most easily triggered by using dlopen RTLD_NOW.
The shared library names are libnettle.so.6.2 and
libhogweed.so.4.2, with sonames still libnettle.so.6 and
libhogweed.so.4. It is intended to be fully binary compatible
with nettle-3.1.
or less any context: In crypto toolkits for object-oriented languages
(C++, Python, Pike, ...), in applications like LSH or GNUPG, or even in
kernel space. In most contexts, you need more than the basic
cryptographic algorithms, you also need some way to keep track of available
algorithms, their properties and variants. You often have some algorithm
selection process, often dictated by a protocol you want to implement.
And as the requirements of applications differ in subtle and not so
subtle ways, an API that fits one application well can be a pain to use
in a different context. And that is why there are so many different
cryptographic libraries around.
Nettle tries to avoid this problem by doing one thing, the low-level
crypto stuff, and providing a simple but general interface to it.
In particular, Nettle doesn't do algorithm selection. It doesn't do
memory allocation. It doesn't do any I/O.
The idea is that one can build several application and context specific
interfaces on top of Nettle, and share the code, test cases, benchmarks,
documentation, etc. Examples are the Nettle module for the Pike
language, and LSH, which both use an object-oriented abstraction on top
of the library.