pkglint --only "https instead of http" -r -F
With manual adjustments afterwards since pkglint 19.4.4 fixed a few
indentations in unrelated lines.
This mainly affects projects hosted at SourceForce, as well as
freedesktop.org, CTAN and GNU.
Changes:
4.65
----
- The following new API routines for LP/MIP preprocessing were
added:
glp_npp_alloc_wksp allocate the preprocessor workspace
glp_npp_load_prob load original problem instance
glp_npp_preprocess1 perform basic LP/MIP preprocessing
glp_npp_build_prob build resultant problem instance
glp_npp_postprocess postprocess solution to resultant problem
glp_npp_obtain_sol obtain solution to original problem
glp_npp_free_wksp free the preprocessor workspace
See doc/npp.txt for detailed description of these API routines.
- A new, more robust implementation of locally valid simple cover
cuts was included in the MIP solver.
- The API routine glp_init_iocp was changed to enable long-step
option of the dual simplex by default.
4.64
----
- The dual simplex solver routine was changed to perform more
aggressive perturbation to prevent dual degeneracy and avoid
stalling even if the current dual basic solution is strongly
feasible (mainly if the objective is zero). Thanks to David
Monniaux <David.Monniaux@univ-grenoble-alpes.fr> for bug report
and example model.
- The exact simplex solver routine was changed to perform
terminal output according to the verbosity level (specified by
the control parameter smcp.msg_lev). Thanks to Jeroen Demeyer
<jdemeyer@cage.ugent.be> for bug report.
- A minor bug (related to MS Windows version) was fixed. Thanks
to Heinrich Schuchardt <xypron.glpk@gmx.de> for bug report.
- An example model (Graceful Tree Labeling Problem) in MathProg
was added. Thanks to Mike Appleby <mike@app.leby.org> for
contribution.
- Three example models (Power plant LP scheduler, Neumann CA
grid emulator generator) in MathProg and one in Cplex LP format
were added. Thanks to Peter Naszvadi <vuk@cs.elte.hu> for
contribution.
Discussed with <adam>, thanks!
A "smart" LP perturbation was implemented in the primal and
dual simplex solvers. Now LP is perturbed only if it is
necessary, and by default perturbation is not activated.
The sum of primal infeasibilites that appears in the terminal
output of the primal simplex solver (as "inf = ...") now
corresponds to the original bounds of variables. This allows to
see how much perturbed solution violates the original bounds.
The long-step technique was implemented for phase I of the
primal simplex solver. This feature can be enabled by
specifying --flip option for glpsol or by specifying
glp_smcp.r_test = GLP_RT_FLIP on api level. For many LP
instances the long-step technique allows reducing the number
of simplex iterations to 30-70%. Please note that unlike the
dual simplex, where this technique can be used on both phase I
and II, for the primal simplex it can be used only on phase I,
where the sum of primal infeasibilities (which is a convex
piecewise linear function) is minimized.
An internal objective scaling was included in both primal and
dual simplex solvers. For many LP/MIP instances this feature
improves numerical stability (for the dual solver) and prevents
cycling near the optimum (for the primal solver).
The Posix version of glp_time (glpk/src/env/time.c) was changed
to resolve time_t issue on msys2.
Three new example models in MathProg were added:
life_goe.mod (Conway's Game of Life garden of eden checker);
tiling.mod (Rectifiable polyomino tilings generator);
toto.mod (Covering code generator).
The following modules were renamed to simplify maintenance.
* src/prob.h RENAMED -> src/api/prob.h
* src/glpapi01.c RENAMED -> src/api/prob1.c
* src/glpapi02.c RENAMED -> src/api/prob2.c
* src/glpapi03.c RENAMED -> src/api/prob3.c
* src/glpapi04.c RENAMED -> src/api/prob4.c
* src/glpapi05.c RENAMED -> src/api/prob5.c
* src/env/tls.c
TLS (thread local storage class specifier) option was added;
see comments in tls.c for details.
* configure.ac, config.h.in
Test for TLS was added.
* src/env/tls.c
Dll support was added.
The following modules were changed to add __cdecl specifier
for functions passed to qsort (this is needed only on compiling
GLPK with MSVC to run under MS Windows).
* src/api/cpxbas.c
* src/cglib/cfg1.c
* src/cglib/gmigen.c
* src/cglib/mirgen.c
* src/misc/wclique1.c
* src/simplex/spychuzc.c
* src/glpios10.c
* src/glpios11.c
* examples/glpsol.c
* src/glpk.h, src/env/env.c
The API routine glp_version was changed to avoid initialization
of the GLPK environment. The new API routine glp_config was
added (but not documented yet).
* INSTALL
Description of the configure option '--with-zlib' was removed.
Some improvements were made in the primal and dual simplex
solvers to make the solution process more numerically stable.
An experimental long-step ratio test feature was added to the
dual simplex. On API level this feature is available thru the
GLP_RT_FLIP option. For glpsol it is available thru the options
--flip (for MIP) or --flip and --dual (for LP). This feature is
not documented yet.
Additional check was added to reject wrong solutions sometimes
reported by the PROXY heuristic.
A bug (memory leak) was fixed in the FPUMP heuristic routine.
The header sql.h was renamed to avoid conflicts with standard
ODBC headers.
A new, more efficient implementation of the dual simplex method
was included in the package. This new implementation replaces
the old one, which was removed.
Option sr_heur was added to struct glp_iocp to enable/disable
the simple rounding heuristic used by the MIP solver.
New API routine glp_at_error was added and documented.
Some minor typos were corrected in the GLPK documentation.
An example application program TSPSOL was added. It uses the
GLPK MIP optimizer to solve the Symmetric Traveling Salesman
Problem and illustrates "lazy" constraints generation. For more
details please see glpk/examples/tsp/README.
Some internal (non-API) routines to estimate the condition of
the basis matrix were added. These routines are mainly intended
to be used by the simplex-based solvers.
Two open modes "a" and "ab" were added to GLPK I/O routines.
Minor bug was fixed in the solver glpsol (command-line options
--btf, --cbg, and --cgr didn't work properly).
A serious bug was fixed in a basis factorization routine used
on the dense phase. (The bug might appear only if the number of
rows exceeded sqrt(2**31) ~= 46,340 and caused access violation
exception because of integer overflow.)
Two API routines glp_alloc and glp_realloc were documented.
Translation of the document "Modeling Language GNU MathProg"
to Spanish was included (in LaTeX and pdf formats).
Block-triangular LU-factorization was implemented to be used
on computing an initial factorization of the basis matrix.
A new version of the Schur-complement-based factorization
module was included in the package. Now it can be used along
with plain as well as with block-triangular LU-factorization.
Currently the following flags can be used to specify the type
of the basis matrix factorization (glp_bfcp.type):
GLP_BF_LUF + GLP_BF_FT LUF, Forrest-Tomlin update (default)
GLP_BF_LUF + GLP_BF_BG LUF, Schur complement, Bartels-Golub
update
GLP_BF_LUF + GLP_BF_GR LUF, Schur complement, Givens rotation
update
GLP_BF_BTF + GLP_BF_BG BTF, Schur complement, Bartels-Golub
update
GLP_BF_BTF + GLP_BF_GR BTF, Schur complement, Givens rotation
update
In case of GLP_BF_FT the update is applied to matrix U, while
in cases of GLP_BF_BG and GLP_BF_GR the update is applied to
the Schur complement.
Corresponding new options --luf and --btf were added to glpsol.
For more details please see a new edition of the GLPK reference
manual included in the distribution.
A minor bug (in reporting the mip solution status) was fixed.
A call to "iodbc-config --cflags" was added in configure.ac
to correctly detect iodbc flags.
* The API routine glp_read_mps was changed to remove free rows.
* A bug was fixed in the API routine glp_read_lp.
* The zlib compression library used by some GLPK routines and
included in the package was downgraded from 1.2.7 to 1.2.5 (as
in GLPK 4.50) because of addressability bugs on some 64-bit
platforms.
* A bug was fixed in a routine that reads gzipped files.
* Two API routines glp_get_it_cnt and glp_set_it_cnt were added.
* All obsolete GLPK API routines (prefixed with lpx) were removed
from the package.
* A set of routines that simulate the old GLPK API (as defined
in 4.48) were added; see examples/oldapi/api/lpx.c.
* A namespace bug was fixed in the SQL table drive module.
This is a bug-fix release.
A version information bug in Makefile.am was fixed. Thanks to
Sebastien Villemot <sebastien@debian.org> for bug report.
GLPK 4.52 (release date: Jul 18, 2013)
The clique cut generator was essentially reimplemented, and now
it is able to process very large and/or dense conflict graphs.
A simple rounding heuristic was added to the MIP optimizer.
Some bugs were fixed in the proximity search heuristic routine.
Thanks to Giorgio Sartor <0gioker0@gmail.com>.
New command-line option '--proxy [nnn]' was added to glpsol to
enable using the proximity search heuristic.
A bug (incorrect processing of LI column indicator) was fixed
in the mps format reading routine. Thanks to Charles Brixko for
bug report.
Singleton and dense phases were implemented on computing
LU-factorization with Gaussian elimination. The singleton phase
is a feature that allows processing row and column singletons
on initial elimination steps more efficiently. The dense phase
is a feature used on final elimination steps when the active
submatrix becomes relatively dense. It significantly reduces
the time needed, especially if the active submatrix fits in CPU
cache, and improves numerical accuracy due to full pivoting.
The API routine glp_adv_basis that constructs advanced initial
LP basis was replaced by an improved version, which (unlike the
old version) takes into account numerical values of constraint
coefficients.
The proximity search heuristic for MIP was included in the GLPK
integer optimizer glp_intopt. On API level the heuristic can be
enabled by setting the parameter ps_heur in glp_iocp to GLP_ON.
This feature is also available in the solver glpsol through
command-line option '--proxy'.
A bug was fixed that caused numerical instability in the FPUMP
heuristic.
A new version of LU-factorization routines were added.
Currently this version provides the same functionality as the
old one, however, the new version allows further improving.
Old routines for FHV-factorization used to update the basis
factorization were replaced by a new version conforming to the
new version of LU-factorization.
Some clarifications about using the name index routines were
added.
Some typos were corrected in the MathProg language reference.
A serious bug (out-of-range indexing error) was *tentatively*
fixed in the routine glp_relax4. Unfortunatly, this bug is
inherited from the original Fortran version of the RELAX-IV
code (for details please see ChangeLog), and since the code is
very intricate, the bug is still under investigation.
The new API routine glp_mincost_relax4, which is a driver to
relaxation method of Bertsekas and Tseng (RELAX-IV), was added
to the package. RELAX-IV is a code for solving minimum cost
flow problems. On large instances it is 100-1000 times faster
than the standard primal simplex method. Prof. Bertsekas, the
author of the original RELAX-IV Fortran code, kindly permitted
to include a C translation of his code in GLPK under GPLv3.
A bug (wrong dual feasibility test) was fixed in API routine
glp_warm_up. Thanks to David T. Price <dtprice@speakeasy.net>
for bug report.
Obsolete API routine lpx_check_kkt was replaced by new routine
glp_check_kkt.
IMPORTANT: All old API routines whose names begin with 'lpx_'
were removed from API level and NO MORE AVAILABLE.
The following suffixes for variables and constraints were
implemented in the MathProg language:
.lb (lower bound),
.ub (upper bound),
.status (status in the solution),
.val (primal value), and
.dual (dual value).
Now the MathProg language allows comment records (marked by
'#' in the very first position) in CSV data files read with the
table statements. Note that the comment records may appear only
in the beginning of a CSV data file.
The API routine glp_cpp to solve the Critical Path Problem was
added and documented.
* This is a maintainer release.
* `configure.ac' was changed to allow building the package under
Mac OS and Darwin with ODBC support.
* The SQL table driver was improved to process NULL data.
* Some bugs were fixed in the LP/MIP preprocessor.
Changes 4.42:
* The new API routines were added.
* The new command-line options were added to the stand-alone solver glpsol.
This changes the buildlink3.mk files to use an include guard for the
recursive include. The use of BUILDLINK_DEPTH, BUILDLINK_DEPENDS,
BUILDLINK_PACKAGES and BUILDLINK_ORDER is handled by a single new
variable BUILDLINK_TREE. Each buildlink3.mk file adds a pair of
enter/exit marker, which can be used to reconstruct the tree and
to determine first level includes. Avoiding := for large variables
(BUILDLINK_ORDER) speeds up parse time as += has linear complexity.
The include guard reduces system time by avoiding reading files over and
over again. For complex packages this reduces both %user and %sys time to
half of the former time.
* New API routines were added to the package.
* A minor change were made in the internal routine xputc.
* A minor bug was fixed in the internal routine mpl_fn_time2str.
* The GNU MathProg modeling language was supplemented with three
new built-in functions:
gmtime obtaining current calendar time
str2time converting character string to calendar time
time2str converting calendar time to character string
* For detailed description of these functions see Appendix A in
the document "Modeling Language GNU MathProg", a new edition of
which was included in the distribution.
* A bug was fixed in the MIP solver.
* A new makefile was added to build the GLPK DLL with Microsoft
Visual Studio Express 2008 for 64-bit Windows.
* New API routines
* A crude implementation of CPLEX-like interface to GLPK API was
added to the package. Currently it allows using GLPK as a core
LP solver for Concorde, a well known computer code for solving
the symmetric TSP.
* Some bugs were fixed in the SQL table driver.
The following new features were included in the MIP solver
* MIP presolver
* mixed cover cut generator
* clique cut generator
* Euclidean reduction of the objective value
Due to changes the routine glp_intopt may additionally return
GLP_ENOPFS, GLP_ENODFS, and GLP_EMIPGAP.
The API routines lpx_integer are lpx_intopt are deprecated,
since they are completely superseded by glp_intopt.
The following new branch-and-cut API routines were added:
glp_ios_row_attr determine additional row attributes
glp_ios_pool_size determine current size of the cut pool
glp_ios_add_row add constraint to the cut pool
glp_ios_del_row delete constraint from the cut pool
glp_ios_clear_pool delete all constraints from the cut pool
* The core LP solver based on the dual simplex method was
re-implemented and now it provides both phases I and II.
* New API routines.
* For description of these new routines see the reference manual
included in the distribution.
* The following API routines are deprecated:
lpx_scale_prob, lpx_std_basis, lpx_adv_basis, lpx_cpx_basis.
* Necessary changes were made in memory allocation routines to
resolve portability issues for 64-bit platforms.
* New version of the routine lpx_write_pb to write problem data
in OPB (pseudo boolean format) was added to the package.
* Two new makefiles were added to build the package for 32- and
64-bit Windows with Microsoft Visual Studio Express 2008.
* Two new makefiles were added to build the package with Digital
Mars C/C++ 8.50 and Open Watcom C/C++ 1.6 (for 32-bit Windows).
* glpspx.h, glpspx03.c, glpapi06.c
The primal simplex solver (spx_prim_opt, spx_prim_feas) was
replaced by a new implementation (spx_primal), which currently
provides the same features as the old version.
* glpmpl01.c, glpmpl03.c
Some changes were made in the MathProg translator to allow <,
<=, >=, and > on comparing symbolic values.
* glplpx10.c
Internal routine set_d_eps in the exact LP solver was changed
to prevent approximation errors in case of integral data.
The iODBC and MySQL table drivers, which allows transmitting
data between MathProg model objects and relational databases,
were re-implemented to replace a static linking by a dynamic
linking to corresponding shared libraries.
Many thanks to Heinrich Schuchardt <heinrich.schuchardt@gmx.de>
for the contribution, Rafael Laboissiere <rafael@debian.org>
for useful advices concerning the shared library support under
GNU/Linux, and Vijay Patil <vijay.patil@gmail.com> for testing
this feature under Windows XP.
A new optional feature was added to the package. This feature
is based on the zlib data compression library and allows GLPK
API routines and the stand-alone solver to read and write
compressed data files performing compression/decompression "on
the fly" (compressed data files are recognized by suffix `.gz'
in the file name). It may be useful in case of large MPS files
to save the disk space (up to ten times).
A tentative implementation of Gomory's mixed integer cuts was
included in the branch-and-cut solver. To enable generating
Gomory's cuts the control parameter gmi_cuts passed to the
routine glp_intopt should be set to GLP_ON. This feature is
also available in the solver glpsol through command-line option
'--gomory'. For more details please see the reference manual
included in the distribution.
A tentative implementation of MIR (mixed integer rounding) cuts
was included in the MIP solver. To enable generating MIR cuts
the control parameter mir_cuts passed to the routine glp_intopt
should be set to GLP_ON. This feature is also available in the
stand-alone solver glpsol via command-line option '--mir'. For
more details please see the reference manual included in the
distribution.
The implementation is mainly based on the following two papers:
1. H. Marchand and L. A. Wolsey. Aggregation and mixed integer
rounding to solve MIPs. CORE discussion paper 9839, CORE,
Universite catholique de Louvain, June 1998.
2. G. Andreello, A. Caprara, and M. Fischetti. Embedding cuts
in a Branch&Cut framework. Preliminary draft, October 2003.
MIR cuts can be generated on any level of the search tree that
makes the GLPK MIP solver to be a real branch-and-cut solver.
A bug was fixed in the routine lpx_write_cpxlp. If a variable
x has upper bound and no lower bound, it should appear in the
bounds section as "-inf <= x <= u", not as "x <= u". Thanks to
Enric Rodriguez <erodri@lsi.upc.edu> for the bug report.
The following new API routines were added:
glp_read_sol read basic solution from text file
glp_write_sol write basic solution to text file
glp_read_ipt read interior-point solution from text file
glp_write_ipt write interior-point solution to text file
glp_read_mip read MIP solution from text file
glp_write_mip write MIP solution to text file
The following new API routines were added:
glp_set_rii set (change) row scale factor
glp_set_sjj set (change) column scale factor
glp_get_rii retrieve row scale factor
glp_get_sjj retrieve column scale factor
glp_simplex solve LP problem with the simplex method
(this routine replaces lpx_simplex, which is
also available for backward compatibility)
glp_init_smcp initialize simplex method control params
glp_bf_exists check if the basis factorization exists
glp_factorize compute the basis factorization
glp_bf_updated check if the basis factorization has been
updated
glp_get_bfcp retrieve basis factorization control params
glp_set_bfcp change basis factorization control params
glp_get_bhead retrieve the basis header information
glp_get_row_bind retrieve row index in the basis header
glp_get_col_bind retrieve column index in the basis header
glp_ftran perform forward transformation
glp_btran perform backward transformation
Autotools specification files (configure.ac, Makefile.am) were
changed to use GNU Libtool. This allows building the static as
well as shared GLPK library.
Changes 4.14:
Now GLPK conforms to ILP32, LLP64, and LP64 programming models
(the latter seems to be the ultimate choice regarding 64-bit
architectures). Note that GLPK itself is a 32-bit application,
and the conformity only means that the package works correctly
on all these arenae. Nevertheless, on 64-bit platforms it is
possible to use more than 4GB of memory, if necessary.
A tentative implementation of the "exact" simplex method based
on bignum (rational) arithmetic was included in the package.
On API level this new feature is available through the routine
lpx_exact, which is similar to the routine lpx_simplex.
In the solver glpsol this feature is available through two new
command-line options: --exact and --xcheck. If the '--exact'
option is specified, glpsol solves LP instance using the exact
simplex method; in case of MIP it is used to obtain optimal
solution of LP relaxation. If the --xcheck option is specified,
LP instance (or LP relaxation) is solved using the standard
(floating-point) simplex method, however, then glpsol calls the
exact simplex routine to make sure that the final LP basis is
exactly optimal, and if it is not, to perform some additional
simplex iterations in exact arithmetic.
Changes 4.12:
A tentative implementation of some simplex method routines
based on exact (bignum) arithmetic was included in the package.
Currently these routines provide computing LU-factorization of
the basis matrix and computing components of basic solution.
These routines were used to implement a routine, which checks
primal and dual feasibility of basic solution exactly, i.e. in
rational numbers, without round-off errors. In glpsol this
feature is available through the command-line option --xcheck.
GLPK has its own low-level routines implementing operations on
integer and rational numbers that makes it independent on other
software packages. However, to attain a much better performance
it is highly recommended to install (before configuring GLPK)
the GNU Multiple Precision Arithmetic Library (GMP). Using GMP
makes computations 100-200 times faster.
and add a new helper target and script, "show-buildlink3", that outputs
a listing of the buildlink3.mk files included as well as the depth at
which they are included.
For example, "make show-buildlink3" in fonts/Xft2 displays:
zlib
fontconfig
iconv
zlib
freetype2
expat
freetype2
Xrender
renderproto
Cutting planes of two new classes were implemented: mixed cover
cuts and clique cuts. On API level this feature can be enabled
by setting control parameter LPX_K_USECUTS passed to the routine
lpx_intopt. In glpsol this feature is available through the
command-line options --cover and --clique. For more details see
the reference manual.
Now the routines lpx_read_mps and lpx_read_freemps support LI
bound type. It is similar to LO, however, indicates the column
as of integer kind.
RECOMMENDED is removed. It becomes ABI_DEPENDS.
BUILDLINK_RECOMMENDED.foo becomes BUILDLINK_ABI_DEPENDS.foo.
BUILDLINK_DEPENDS.foo becomes BUILDLINK_API_DEPENDS.foo.
BUILDLINK_DEPENDS does not change.
IGNORE_RECOMMENDED (which defaulted to "no") becomes USE_ABI_DEPENDS
which defaults to "yes".
Added to obsolete.mk checking for IGNORE_RECOMMENDED.
I did not manually go through and fix any aesthetic tab/spacing issues.
I have tested the above patch on DragonFly building and packaging
subversion and pkglint and their many dependencies.
I have also tested USE_ABI_DEPENDS=no on my NetBSD workstation (where I
have used IGNORE_RECOMMENDED for a long time). I have been an active user
of IGNORE_RECOMMENDED since it was available.
As suggested, I removed the documentation sentences suggesting bumping for
"security" issues.
As discussed on tech-pkg.
I will commit to revbump, pkglint, pkg_install, createbuildlink separately.
Note that if you use wip, it will fail! I will commit to pkgsrc-wip
later (within day).
A MIP presolver were implemented (currently incomplete). It is
used internally in the routine lpx_intopt (see below).
An advanced branch-and-bound solver (the routine lpx_intopt)
were implemented.
The routine lpx_check_int to check MIP feasibility conditions
was added.
The routine lpx_print_mip was changed to print MIP feasibility
conditions.
The built-in functions sin, cos, atan, and atan2 were added to
the MathProg language.
Some typos were fixed.
Thanks to Minh Ha Duong <haduong@centre-cired.fr> (CIRED, CNRS).
Core simplex method and interior-point method routines were
re-implemented and now they use a new, "storage-by-rows" sparse
matrix format (unlike previous versions where linked lists were
used to represent sparse matrices). For details see ChangeLog.
Also a minor bug was fixed in API routine lpx_read_cpxlp.