This changes the buildlink3.mk files to use an include guard for the
recursive include. The use of BUILDLINK_DEPTH, BUILDLINK_DEPENDS,
BUILDLINK_PACKAGES and BUILDLINK_ORDER is handled by a single new
variable BUILDLINK_TREE. Each buildlink3.mk file adds a pair of
enter/exit marker, which can be used to reconstruct the tree and
to determine first level includes. Avoiding := for large variables
(BUILDLINK_ORDER) speeds up parse time as += has linear complexity.
The include guard reduces system time by avoiding reading files over and
over again. For complex packages this reduces both %user and %sys time to
half of the former time.
and add a new helper target and script, "show-buildlink3", that outputs
a listing of the buildlink3.mk files included as well as the depth at
which they are included.
For example, "make show-buildlink3" in fonts/Xft2 displays:
zlib
fontconfig
iconv
zlib
freetype2
expat
freetype2
Xrender
renderproto
RECOMMENDED is removed. It becomes ABI_DEPENDS.
BUILDLINK_RECOMMENDED.foo becomes BUILDLINK_ABI_DEPENDS.foo.
BUILDLINK_DEPENDS.foo becomes BUILDLINK_API_DEPENDS.foo.
BUILDLINK_DEPENDS does not change.
IGNORE_RECOMMENDED (which defaulted to "no") becomes USE_ABI_DEPENDS
which defaults to "yes".
Added to obsolete.mk checking for IGNORE_RECOMMENDED.
I did not manually go through and fix any aesthetic tab/spacing issues.
I have tested the above patch on DragonFly building and packaging
subversion and pkglint and their many dependencies.
I have also tested USE_ABI_DEPENDS=no on my NetBSD workstation (where I
have used IGNORE_RECOMMENDED for a long time). I have been an active user
of IGNORE_RECOMMENDED since it was available.
As suggested, I removed the documentation sentences suggesting bumping for
"security" issues.
As discussed on tech-pkg.
I will commit to revbump, pkglint, pkg_install, createbuildlink separately.
Note that if you use wip, it will fail! I will commit to pkgsrc-wip
later (within day).
* Faster FFTW_ESTIMATE planner.
* New (faster) algorithm for REDFT00/RODFT00 (type-I DCT/DST) of odd size.
* "4-step" algorithm for faster FFTs of very large sizes (> 2^18).
* Faster in-place real-data DFTs (for R2HC and HC2R r2r formats).
* Faster in-place non-square transpositions (FFTW uses these internally
for in-place FFTs, and you can also perform them explicitly using
the guru interface).
* Faster prime-size DFTs: implemented Bluestein's algorithm, as well
as a zero-padded Rader variant to limit recursive use of Rader's algorithm.
* SIMD support for split complex arrays.
* Much faster Altivec/VMX performance.
* New fftw_set_timelimit function to specify a (rough) upper bound to the
planning time (does not affect ESTIMATE mode).
* Removed --enable-3dnow support; use --enable-k7 instead.
* FMA (fused multiply-add) version is now included in "standard" FFTW,
and is enabled with --enable-fma (the default on PowerPC and Itanium).
* Automatic detection of native architecture flag for gcc. New
configure options: --enable-portable-binary and --with-gcc-arch=<arch>,
for people distributing compiled binaries of FFTW (see manual).
* Automatic detection of Altivec under Linux with gcc 3.4 (so that
same binary should work on both Altivec and non-Altivec PowerPCs).
* Compiler-specific tweaks/flags/workarounds for gcc 3.4, xlc, HP/UX,
Solaris/Intel.
* Various documentation clarifications.
* 64-bit clean. (Fixes a bug affecting the split guru planner on
64-bit machines, reported by David Necas.)
* Fixed Debian bug no.259612: inadvertent use of SSE instructions on
non-SSE machines (causing a crash) for --enable-sse binaries.
* Fixed bug that caused HC2R transforms to destroy the input in
certain cases, even if the user specified FFTW_PRESERVE_INPUT.
* Fixed bug where wisdom would be lost under rare circumstances,
causing excessive planning time.
* FAQ notes bug in gcc-3.4.[1-3] that causes FFTW to crash with SSE/SSE2.
* Fixed accidentally exported symbol that prohibited simultaneous
linking to double/single multithreaded FFTW (thanks to Alessio Massaro).
* Support Win32 threads under MinGW (thanks to Alessio Massaro).
in the process. (More information on tech-pkg.)
Bump PKGREVISION and BUILDLINK_DEPENDS of all packages using libtool and
installing .la files.
Bump PKGREVISION (only) of all packages depending directly on the above
via a buildlink3 include.