RECOMMENDED is removed. It becomes ABI_DEPENDS.
BUILDLINK_RECOMMENDED.foo becomes BUILDLINK_ABI_DEPENDS.foo.
BUILDLINK_DEPENDS.foo becomes BUILDLINK_API_DEPENDS.foo.
BUILDLINK_DEPENDS does not change.
IGNORE_RECOMMENDED (which defaulted to "no") becomes USE_ABI_DEPENDS
which defaults to "yes".
Added to obsolete.mk checking for IGNORE_RECOMMENDED.
I did not manually go through and fix any aesthetic tab/spacing issues.
I have tested the above patch on DragonFly building and packaging
subversion and pkglint and their many dependencies.
I have also tested USE_ABI_DEPENDS=no on my NetBSD workstation (where I
have used IGNORE_RECOMMENDED for a long time). I have been an active user
of IGNORE_RECOMMENDED since it was available.
As suggested, I removed the documentation sentences suggesting bumping for
"security" issues.
As discussed on tech-pkg.
I will commit to revbump, pkglint, pkg_install, createbuildlink separately.
Note that if you use wip, it will fail! I will commit to pkgsrc-wip
later (within day).
developer is officially maintaining the package.
The rationale for changing this from "tech-pkg" to "pkgsrc-users" is
that it implies that any user can try to maintain the package (by
submitting patches to the mailing list). Since the folks most likely
to care about the package are the folks that want to use it or are
already using it, this would leverage the energy of users who aren't
developers.
around at either build-time or at run-time is:
USE_TOOLS+= perl # build-time
USE_TOOLS+= perl:run # run-time
Also remove some places where perl5/buildlink3.mk was being included
by a package Makefile, but all that the package wanted was the Perl
executable.
Several changes are involved since they are all interrelated. These
changes affect about 1000 files.
The first major change is rewriting bsd.builtin.mk as well as all of
the builtin.mk files to follow the new example in bsd.builtin.mk.
The loop to include all of the builtin.mk files needed by the package
is moved from bsd.builtin.mk and into bsd.buildlink3.mk. bsd.builtin.mk
is now included by each of the individual builtin.mk files and provides
some common logic for all of the builtin.mk files. Currently, this
includes the computation for whether the native or pkgsrc version of
the package is preferred. This causes USE_BUILTIN.* to be correctly
set when one builtin.mk file includes another.
The second major change is teach the builtin.mk files to consider
files under ${LOCALBASE} to be from pkgsrc-controlled packages. Most
of the builtin.mk files test for the presence of built-in software by
checking for the existence of certain files, e.g. <pthread.h>, and we
now assume that if that file is under ${LOCALBASE}, then it must be
from pkgsrc. This modification is a nod toward LOCALBASE=/usr. The
exceptions to this new check are the X11 distribution packages, which
are handled specially as noted below.
The third major change is providing builtin.mk and version.mk files
for each of the X11 distribution packages in pkgsrc. The builtin.mk
file can detect whether the native X11 distribution is the same as
the one provided by pkgsrc, and the version.mk file computes the
version of the X11 distribution package, whether it's built-in or not.
The fourth major change is that the buildlink3.mk files for X11 packages
that install parts which are part of X11 distribution packages, e.g.
Xpm, Xcursor, etc., now use imake to query the X11 distribution for
whether the software is already provided by the X11 distribution.
This is more accurate than grepping for a symbol name in the imake
config files. Using imake required sprinkling various builtin-imake.mk
helper files into pkgsrc directories. These files are used as input
to imake since imake can't use stdin for that purpose.
The fifth major change is in how packages note that they use X11.
Instead of setting USE_X11, package Makefiles should now include
x11.buildlink3.mk instead. This causes the X11 package buildlink3
and builtin logic to be executed at the correct place for buildlink3.mk
and builtin.mk files that previously set USE_X11, and fixes packages
that relied on buildlink3.mk files to implicitly note that X11 is
needed. Package buildlink3.mk should also include x11.buildlink3.mk
when linking against the package libraries requires also linking
against the X11 libraries. Where it was obvious, redundant inclusions
of x11.buildlink3.mk have been removed.
1.04 Thu Feb 3 15:27:41 GMT 2005
- Imlib2 1.1.2 broke our tests as it doesn't enable alpha by
default (for optimisation purposes). The module now enables
alpha by default when you create an image, but you can turn
it off with has_alpha (thanks to Don Armstrong)
- tested with Imlib2 1.2.0
Might fix PR 29054.
module directory has changed (eg. "darwin-2level" vs.
"darwin-thread-multi-2level").
binary packages of perl modules need to be distinguishable between
being built against threaded perl and unthreaded perl, so bump the
PKGREVISION of all perl module packages and introduce
BUILDLINK_RECOMMENDED for perl as perl>=5.8.5nb5 so the correct
dependencies are registered and the binary packages are distinct.
addresses PR pkg/28619 from H. Todd Fujinaka.
in the process. (More information on tech-pkg.)
Bump PKGREVISION and BUILDLINK_DEPENDS of all packages using libtool and
installing .la files.
Bump PKGREVISION (only) of all packages depending directly on the above
via a buildlink3 include.
1.03 Tue Jul 13 11:30:47 IST 2004
* fixed minor POD tyop
* new flip_horizontal, flip_vertical, flip_diagonal
(thanks to Tuomas Jormola)
1.02 Tue May 25 22:18:32 BST 2004
* renamed Changes to CHANGES
* new set_quality function (thanks to Andreas Plesner)
1.01 Mon Nov 3 19:18:14 GMT 2003
* document get_width and get_height methods (thanks to Andreas Plesner)
* added NINJA support
1.00 Sun Sep 14 09:47:42 BST 2003
* applied patch to make the module work under threaded perls
(thanks to Mathieu Jondet, Andreas Plesner Jacobsen, zak3)
* applied patch to make the module work without X
(spotted by Mike Castle, Jens Gassmann)
* applied patch to pass the correct compiler flags
(thanks to Christian Laursen)
image file loading and saving as well as manipulation, arbitrary polygon
support, etc. It does ALL of these operations FAST. It allows you to
create colour images using a large number of graphics primitives, and
output the images in a range of formats.