Install the new interchangeable BLAS system created by Thomas Orgis,
currently supporting Netlib BLAS/LAPACK, OpenBLAS, cblas, lapacke, and
Apple's Accelerate.framework. This system allows the user to select any
BLAS implementation without modifying packages or using package options, by
setting PKGSRC_BLAS_TYPES in mk.conf. See mk/blas.buildlink3.mk for details.
This commit should not alter behavior of existing packages as the system
defaults to Netlib BLAS/LAPACK, which until now has been the only supported
implementation.
Details:
Add new mk/blas.buildlink3.mk for inclusion in dependent packages
Install compatible Netlib math/blas and math/lapack packages
Update math/blas and math/lapack MAINTAINER approved by adam@
OpenBLAS, cblas, and lapacke will follow in separate commits
Update direct dependents to use mk/blas.buildlink3.mk
Perform recursive revbump
pkglint --only "https instead of http" -r -F
With manual adjustments afterwards since pkglint 19.4.4 fixed a few
indentations in unrelated lines.
This mainly affects projects hosted at SourceForce, as well as
freedesktop.org, CTAN and GNU.
Problems found with existing digests:
Package fotoxx distfile fotoxx-14.03.1.tar.gz
ac2033f87de2c23941261f7c50160cddf872c110 [recorded]
118e98a8cc0414676b3c4d37b8df407c28a1407c [calculated]
Package ploticus-examples distfile ploticus-2.00/plnode200.tar.gz
34274a03d0c41fae5690633663e3d4114b9d7a6d [recorded]
da39a3ee5e6b4b0d3255bfef95601890afd80709 [calculated]
Problems found locating distfiles:
Package AfterShotPro: missing distfile AfterShotPro-1.1.0.30/AfterShotPro_i386.deb
Package pgraf: missing distfile pgraf-20010131.tar.gz
Package qvplay: missing distfile qvplay-0.95.tar.gz
Otherwise, existing SHA1 digests verified and found to be the same on
the machine holding the existing distfiles (morden). All existing
SHA1 digests retained for now as an audit trail.
1.6.6 (27 Nov 2008)
--------------------
* Fixed issue that caused all images to be 570x570 on some systems, due to a
change in the python2.5 C API.
* Improved setup.py and Makefiles.
* Contours can now be used with PlotKey.
* Added Labels component. Similar to Points, but with text labels instead
of symbols.
1.6.5 (20 Mar 2007)
-------------------
* Replaced Numeric with numpy.
1.6.4 (08 Mar 2004)
-------------------
* Phil Kromer contributed the new ColoredPoints and Density components.
See example9.py for details.
* Todd Fox contributed Makefiles for building with MS Visual C++.
* Can now specify the width/height of postscript output, by passing (e.g.)
width="5in" or height="10in" to the functions which produce postscript
output. Default values are in the [postscript] section of config.ini.
The old [printer]/paper option is now [postscript]/paper.
* Added UpperLimits, LowerLimits components. These produce symbols
with half-arrows indicating the true value is below/above the
point.
* Added TeX codes \`,\',\^,\",\~ for character accents.
on some platforms that lacked shared library support in the past. The
list hasn't been maintained at all and the gain is very limited, so just
get rid of it.
- assume that Python 2.4 and 2.5 are compatible and allow checking for
fallout.
- remove PYTHON_VERSIONS_COMPATIBLE that are obsoleted by the 2.3+
default. Modify the others to deal with the removals.
Several changes are involved since they are all interrelated. These
changes affect about 1000 files.
The first major change is rewriting bsd.builtin.mk as well as all of
the builtin.mk files to follow the new example in bsd.builtin.mk.
The loop to include all of the builtin.mk files needed by the package
is moved from bsd.builtin.mk and into bsd.buildlink3.mk. bsd.builtin.mk
is now included by each of the individual builtin.mk files and provides
some common logic for all of the builtin.mk files. Currently, this
includes the computation for whether the native or pkgsrc version of
the package is preferred. This causes USE_BUILTIN.* to be correctly
set when one builtin.mk file includes another.
The second major change is teach the builtin.mk files to consider
files under ${LOCALBASE} to be from pkgsrc-controlled packages. Most
of the builtin.mk files test for the presence of built-in software by
checking for the existence of certain files, e.g. <pthread.h>, and we
now assume that if that file is under ${LOCALBASE}, then it must be
from pkgsrc. This modification is a nod toward LOCALBASE=/usr. The
exceptions to this new check are the X11 distribution packages, which
are handled specially as noted below.
The third major change is providing builtin.mk and version.mk files
for each of the X11 distribution packages in pkgsrc. The builtin.mk
file can detect whether the native X11 distribution is the same as
the one provided by pkgsrc, and the version.mk file computes the
version of the X11 distribution package, whether it's built-in or not.
The fourth major change is that the buildlink3.mk files for X11 packages
that install parts which are part of X11 distribution packages, e.g.
Xpm, Xcursor, etc., now use imake to query the X11 distribution for
whether the software is already provided by the X11 distribution.
This is more accurate than grepping for a symbol name in the imake
config files. Using imake required sprinkling various builtin-imake.mk
helper files into pkgsrc directories. These files are used as input
to imake since imake can't use stdin for that purpose.
The fifth major change is in how packages note that they use X11.
Instead of setting USE_X11, package Makefiles should now include
x11.buildlink3.mk instead. This causes the X11 package buildlink3
and builtin logic to be executed at the correct place for buildlink3.mk
and builtin.mk files that previously set USE_X11, and fixes packages
that relied on buildlink3.mk files to implicitly note that X11 is
needed. Package buildlink3.mk should also include x11.buildlink3.mk
when linking against the package libraries requires also linking
against the X11 libraries. Where it was obvious, redundant inclusions
of x11.buildlink3.mk have been removed.
in the process. (More information on tech-pkg.)
Bump PKGREVISION and BUILDLINK_DEPENDS of all packages using libtool and
installing .la files.
Bump PKGREVISION (only) of all packages depending directly on the above
via a buildlink3 include.
modified by me.
Biggles is a Python module for creating publication-quality 2D
scientific plots.
It supports multiple output formats (postscript, x11, png, svg, gif),
understands simple TeX, and sports a high-level, elegant interface.
It's intended for technical users with sophisticated plotting needs.