c3dee2c443
The Reed-Solomon Code is an algebraic code belonging to the class of BCH (Bose-Chaudry-Hocquehen) multiple burst correcting cyclic codes. The Reed Solomon code operates on bytes of fixed length. Given m parity bytes, a Reed-Solomon code can correct up to m byte errors in known positions (erasures), or detect and correct up to m/2 byte errors in unknown positions. This is an implementation of a Reed-Solomon code with 8 bit bytes, and a configurable number of parity bytes. The maximum sequence length (codeword) that can be generated is 255 bytes, including parity bytes. In practice, shorter sequences are used. The more general error-location algorithm is the Berlekamp-Massey algorithm, which will locate up to four errors, by iteratively solving for the error-locator polynomial. The Modified Berlekamp Massey algorithm takes as initial conditions any known suspicious bytes (erasure flags) which you may have (such as might be flagged by a laser demodulator, or deduced from a failure in a cross-interleaved block code row or column). Once the location of errors is known, error correction is done using the error-evaluator polynomial.
6 lines
294 B
Text
6 lines
294 B
Text
$NetBSD: distinfo,v 1.1.1.1 2007/04/15 21:39:52 agc Exp $
|
|
|
|
SHA1 (rscode-1.0.tar.gz) = b143b3794de81f73154e6452a213c8c85d501264
|
|
RMD160 (rscode-1.0.tar.gz) = 3659c9bd0e9aa000691e214ca07d8722e83811c4
|
|
Size (rscode-1.0.tar.gz) = 9516 bytes
|
|
SHA1 (patch-aa) = a191c8a12329f46d0f5873d882d7927947ab5d03
|