pkgsrc/math/R-acepack/distinfo
brook c22aa5b3f0 R-acepack: initial commit.
Two nonparametric methods for multiple regression transform selection
are provided. The first, Alternative Conditional Expectations (ACE),
is an algorithm to find the fixed point of maximal correlation, i.e.
it finds a set of transformed response variables that maximizes R^2
using smoothing functions [see Breiman, L., and J.H. Friedman. 1985.
"Estimating Optimal Transformations for Multiple Regression and
Correlation". Journal of the American Statistical Association.
80:580-598. <doi:10.1080/01621459.1985.10478157>]. Also included is
the Additivity Variance Stabilization (AVAS) method which works better
than ACE when correlation is low [see Tibshirani, R.. 1986.
"Estimating Transformations for Regression via Additivity and Variance
Stabilization". Journal of the American Statistical Association.
83:394-405. <doi:10.1080/01621459.1988.10478610>]. A good introduction
to these two methods is in chapter 16 of Frank Harrel's "Regression
Modeling Strategies" in the Springer Series in Statistics.
2019-07-31 13:09:36 +00:00

6 lines
412 B
Text

$NetBSD: distinfo,v 1.1 2019/07/31 13:09:36 brook Exp $
SHA1 (R/acepack_1.4.1.tar.gz) = b8f34f23f133fb62b40ab579c69e8c9131934f31
RMD160 (R/acepack_1.4.1.tar.gz) = 23499d6aa9c41ec3575cc2209559e64af61bfb7f
SHA512 (R/acepack_1.4.1.tar.gz) = e6787d653224043d0fac8b7e63a8b8060320fc1e4c6ab76b20ce3e7712cbd0f89af8731b383ceb90f9be4381a72eb965cad84e979cb8c935318fecf6d3f9ee88
Size (R/acepack_1.4.1.tar.gz) = 34848 bytes