pkgsrc/doc/pkgsrc.txt
2006-06-01 09:36:55 +00:00

6934 lines
269 KiB
Text

The pkgsrc guide
Documentation on the NetBSD packages system
Alistair Crooks
<agc@NetBSD.org>
Hubert Feyrer
<hubertf@NetBSD.org>
The pkgsrc Developers
Copyright 1994-2006 The NetBSD Foundation, Inc
$NetBSD: pkgsrc.xml,v 1.19 2006/06/01 08:39:03 rillig Exp $
Abstract
pkgsrc is a centralized package management system for Unix-like operating
systems. This guide provides information for users and developers of pkgsrc. It
covers installation of binary and source packages, creation of binary and
source packages and a high-level overview about the infrastructure.
-------------------------------------------------------------------------------
Table of Contents
1. What is pkgsrc?
1.1. Introduction
1.2. Overview
1.3. Terminology
1.3.1. People involved in pkgsrc
1.4. Typography
I. The pkgsrc user's guide
2. Where to get pkgsrc and how to keep it up-to-date
2.1. Getting pkgsrc for the first time
2.1.1. As tar file
2.1.2. Via SUP
2.1.3. Via CVS
2.2. Keeping pkgsrc up-to-date
2.2.1. Via tar files
2.2.2. Via CVS
3. Using pkgsrc on systems other than NetBSD
3.1. Bootstrapping pkgsrc
3.2. Platform-specific notes
3.2.1. Darwin (Mac OS X)
3.2.2. FreeBSD
3.2.3. Interix
3.2.4. IRIX
3.2.5. Linux
3.2.6. OpenBSD
3.2.7. Solaris
4. Using pkgsrc
4.1. Using binary packages
4.1.1. Finding binary packages
4.1.2. Installing binary packages
4.1.3. A word of warning
4.2. Building packages from source
4.2.1. Requirements
4.2.2. Fetching distfiles
4.2.3. How to build and install
4.2.4. Selecting the compiler
5. Configuring pkgsrc
5.1. General configuration
5.2. Variables affecting the build process
5.3. Developer/advanced settings
5.4. Selecting Build Options
6. Creating binary packages
6.1. Building a single binary package
6.2. Settings for creation of binary packages
6.3. Doing a bulk build of all packages
6.3.1. Configuration
6.3.2. Other environmental considerations
6.3.3. Operation
6.3.4. What it does
6.3.5. Disk space requirements
6.3.6. Setting up a sandbox for chrooted builds
6.3.7. Building a partial set of packages
6.3.8. Uploading results of a bulk build
6.4. Creating a multiple CD-ROM packages collection
6.4.1. Example of cdpack
7. Frequently Asked Questions
7.1. Are there any mailing lists for pkg-related discussion?
7.2. Where's the pkgviews documentation?
7.3. Utilities for package management (pkgtools)
7.4. How to use pkgsrc as non-root
7.5. How to resume transfers when fetching distfiles?
7.6. How can I install/use XFree86 from pkgsrc?
7.7. How can I install/use X.org from pkgsrc?
7.8. How to fetch files from behind a firewall
7.9. How do I tell make fetch to do passive FTP?
7.10. How to fetch all distfiles at once
7.11. What does "Don't know how to make /usr/share/tmac/tmac.andoc"
mean?
7.12. What does "Could not find bsd.own.mk" mean?
7.13. Using 'sudo' with pkgsrc
7.14. How do I change the location of configuration files?
7.15. Automated security checks
7.16. Why do some packages ignore my CFLAGS?
II. The pkgsrc developer's guide
8. Creating a new pkgsrc package from scratch
9. Package components - files, directories and contents
9.1. Makefile
9.2. distinfo
9.3. patches/*
9.4. Other mandatory files
9.5. Optional files
9.6. work*
9.7. files/*
10. Programming in Makefiles
10.1. Makefile variables
10.1.1. Naming conventions
10.2. Code snippets
10.2.1. Adding things to a list
10.2.2. Converting an internal list into an external list
10.2.3. Passing variables to a shell command
10.2.4. Quoting guideline
10.2.5. Workaround for a bug in BSD Make
11. PLIST issues
11.1. RCS ID
11.2. Semi-automatic PLIST generation
11.3. Tweaking output of make print-PLIST
11.4. Variable substitution in PLIST
11.5. Man page compression
11.6. Changing PLIST source with PLIST_SRC
11.7. Platform-specific and differing PLISTs
11.8. Sharing directories between packages
12. Buildlink methodology
12.1. Converting packages to use buildlink3
12.2. Writing buildlink3.mk files
12.2.1. Anatomy of a buildlink3.mk file
12.2.2. Updating BUILDLINK_API_DEPENDS.pkg in buildlink3.mk files
12.3. Writing builtin.mk files
12.3.1. Anatomy of a builtin.mk file
12.3.2. Global preferences for native or pkgsrc software
13. The pkginstall framework
13.1. Files and directories outside the installation prefix
13.1.1. Directory manipulation
13.1.2. File manipulation
13.2. Configuration files
13.2.1. How PKG_SYSCONFDIR is set
13.2.2. Telling the software where configuration files are
13.2.3. Patching installations
13.2.4. Disabling handling of configuration files
13.3. System startup scripts
13.3.1. Disabling handling of system startup scripts
13.4. System users and groups
13.5. System shells
13.5.1. Disabling shell registration
13.6. Fonts
13.6.1. Disabling automatic update of the fonts databases
14. Options handling
14.1. Global default options
14.2. Converting packages to use bsd.options.mk
14.3. Option Names
15. The build process
15.1. Introduction
15.2. Program location
15.3. Directories used during the build process
15.4. Running a phase
15.5. The fetch phase
15.6. The checksum phase
15.7. The extract phase
15.8. The patch phase
15.9. The tools phase
15.10. The wrapper phase
15.11. The configure phase
15.12. The build phase
15.13. The test phase
15.14. The install phase
15.15. The package phase
15.16. Other helpful targets
16. Tools needed for building or running
16.1. Tools for pkgsrc builds
16.2. Tools needed by packages
16.3. Tools provided by platforms
17. Making your package work
17.1. General operation
17.1.1. How to pull in variables from /etc/mk.conf
17.1.2. Where to install documentation
17.1.3. Restricted packages
17.1.4. Handling dependencies
17.1.5. Handling conflicts with other packages
17.1.6. Packages that cannot or should not be built
17.1.7. Packages which should not be deleted, once installed
17.1.8. Handling packages with security problems
17.1.9. How to handle compiler bugs
17.1.10. How to handle incrementing versions when fixing an
existing package
17.1.11. Portability of packages
17.2. Fixing problems in the fetch phase
17.2.1. Packages whose distfiles aren't available for plain
downloading
17.2.2. How to handle modified distfiles with the 'old' name
17.3. Fixing problems in the configure phase
17.3.1. Shared libraries - libtool
17.3.2. Using libtool on GNU packages that already support libtool
17.3.3. GNU Autoconf/Automake
17.4. Fixing problems in the build phase
17.4.1. Compiling C and C++ code conditionally
17.5. Package specific actions
17.5.1. User interaction
17.5.2. Handling licenses
17.6. Fixing problems in the install phase
17.6.1. Installing score files
17.6.2. Packages containing perl scripts
17.6.3. Packages with hardcoded paths to other interpreters
17.6.4. Packages installing perl modules
17.6.5. Packages installing info files
17.6.6. Packages installing man pages
17.6.7. Packages installing GConf2 data files
17.6.8. Packages installing scrollkeeper data files
17.6.9. Packages installing X11 fonts
17.6.10. Packages installing GTK2 modules
17.6.11. Packages installing SGML or XML data
17.6.12. Packages installing extensions to the MIME database
17.6.13. Packages using intltool
17.6.14. Packages installing startup scripts
17.6.15. Packages installing TeX modules
17.7. Feedback to the author
18. Debugging
19. Submitting and Committing
19.1. Submitting binary packages
19.2. Submitting source packages (for non-NetBSD-developers)
19.3. General notes when adding, updating, or removing packages
19.4. Committing: Importing a package into CVS
19.5. Updating a package to a newer version
19.6. Moving a package in pkgsrc
20. Frequently Asked Questions
III. The pkgsrc infrastructure internals
21. Design of the pkgsrc infrastructure
21.1. Variable evaluation
21.1.1. At load time
21.1.2. At runtime
21.2. Designing interfaces for Makefile fragments
21.2.1. Procedures with parameters
21.2.2. Actions taken on behalf of parameters
22. Regression tests
22.1. The regression tests framework
22.2. Running the regression tests
22.3. Adding a new regression test
22.3.1. Overridable functions
22.3.2. Helper functions
23. Porting pkgsrc
23.1. Porting pkgsrc to a new operating system
23.2. Adding support for a new compiler
A. A simple example package: bison
A.1. files
A.1.1. Makefile
A.1.2. DESCR
A.1.3. PLIST
A.1.4. Checking a package with pkglint
A.2. Steps for building, installing, packaging
B. Build logs
B.1. Building figlet
B.2. Packaging figlet
C. Directory layout of the pkgsrc FTP server
C.1. bootstrap-pkgsrc: Bootstrap kits
C.2. distfiles: The distributed source files
C.3. iso: Currently empty
C.4. misc: Miscellaneous things
C.5. packages*: Binary packages
C.6. current, 200xQy: source packages
D. Editing guidelines for the pkgsrc guide
D.1. Targets
D.2. Procedure
Chapter 1. What is pkgsrc?
Table of Contents
1.1. Introduction
1.2. Overview
1.3. Terminology
1.3.1. People involved in pkgsrc
1.4. Typography
1.1. Introduction
There is a lot of software freely available for Unix-based systems, which
usually runs on NetBSD and other Unix-flavoured systems, too, sometimes with
some modifications. The NetBSD Packages Collection (pkgsrc) incorporates any
such changes necessary to make that software run, and makes the installation
(and de-installation) of the software package easy by means of a single
command.
Once the software has been built, it is manipulated with the pkg_* tools so
that installation and de-installation, printing of an inventory of all
installed packages and retrieval of one-line comments or more verbose
descriptions are all simple.
pkgsrc currently contains several thousand packages, including:
* www/apache - The Apache web server
* www/mozilla - The Mozilla web browser
* meta-pkgs/gnome - The GNOME Desktop Environment
* meta-pkgs/kde3 - The K Desktop Environment
...just to name a few.
pkgsrc has built-in support for handling varying dependencies, such as pthreads
and X11, and extended features such as IPv6 support on a range of platforms.
pkgsrc was derived from FreeBSD's ports system, and initially developed for
NetBSD only. Since then, pkgsrc has grown a lot, and now supports the following
platforms:
* Darwin (Mac OS X)
* DragonFly BSD
* FreeBSD
* Microsoft Windows, via Interix
* IRIX
* Linux
* NetBSD (of course)
* Tru64 (Digital UNIX, OSF1)
* OpenBSD
* Solaris
1.2. Overview
This document is divided into three parts. The first, The pkgsrc user's guide,
describes how one can use one of the packages in the Package Collection, either
by installing a precompiled binary package, or by building one's own copy using
the NetBSD package system. The second part, The pkgsrc developer's guide,
explains how to prepare a package so it can be easily built by other NetBSD
users without knowing about the package's building details. The third part, The
pkgsrc infrastructure internals is intended for those who want to understand
how pkgsrc is implemented.
This document is available in various formats: HTML, PDF, PS, TXT.
1.3. Terminology
There has been a lot of talk about "ports", "packages", etc. so far. Here is a
description of all the terminology used within this document.
Package
A set of files and building instructions that describe what's necessary to
build a certain piece of software using pkgsrc. Packages are traditionally
stored under /usr/pkgsrc.
The NetBSD package system
This is the former name of "pkgsrc". It is part of the NetBSD operating
system and can be bootstrapped to run on non-NetBSD operating systems as
well. It handles building (compiling), installing, and removing of
packages.
Distfile
This term describes the file or files that are provided by the author of
the piece of software to distribute his work. All the changes necessary to
build on NetBSD are reflected in the corresponding package. Usually the
distfile is in the form of a compressed tar-archive, but other types are
possible, too. Distfiles are usually stored below /usr/pkgsrc/distfiles.
Port
This is the term used by FreeBSD and OpenBSD people for what we call a
package. In NetBSD terminology, "port" refers to a different architecture.
Precompiled/binary package
A set of binaries built with pkgsrc from a distfile and stuffed together in
a single .tgz file so it can be installed on machines of the same machine
architecture without the need to recompile. Packages are usually generated
in /usr/pkgsrc/packages; there is also an archive on ftp.NetBSD.org.
Sometimes, this is referred to by the term "package" too, especially in the
context of precompiled packages.
Program
The piece of software to be installed which will be constructed from all
the files in the distfile by the actions defined in the corresponding
package.
1.3.1. People involved in pkgsrc
pkgsrc users
The pkgsrc users are people who use the packages provided by pkgsrc.
Typically they are system administrators. The people using the software
that is inside the packages (maybe called "end users") are not covered by
the pkgsrc guide.
There are two kinds of pkgsrc users: Some only want to install pre-built
binary packages. Others build the pkgsrc packages from source, either for
installing them directly or for building binary packages themselves. For
pkgsrc users Part I, "The pkgsrc user's guide" should provide all necessary
documentation.
package maintainers
A package maintainer creates packages as described in Part II, "The pkgsrc
developer's guide".
infrastructure developers
These people are involved in all those files that live in the mk/ directory
and below. Only these people should need to read through Part III, "The
pkgsrc infrastructure internals", though others might be curious, too.
1.4. Typography
When giving examples for commands, shell prompts are used to show if the
command should/can be issued as root, or if "normal" user privileges are
sufficient. We use a # for root's shell prompt, and a % for users' shell
prompt, assuming they use the C-shell or tcsh.
Part I. The pkgsrc user's guide
Table of Contents
2. Where to get pkgsrc and how to keep it up-to-date
2.1. Getting pkgsrc for the first time
2.1.1. As tar file
2.1.2. Via SUP
2.1.3. Via CVS
2.2. Keeping pkgsrc up-to-date
2.2.1. Via tar files
2.2.2. Via CVS
3. Using pkgsrc on systems other than NetBSD
3.1. Bootstrapping pkgsrc
3.2. Platform-specific notes
3.2.1. Darwin (Mac OS X)
3.2.2. FreeBSD
3.2.3. Interix
3.2.4. IRIX
3.2.5. Linux
3.2.6. OpenBSD
3.2.7. Solaris
4. Using pkgsrc
4.1. Using binary packages
4.1.1. Finding binary packages
4.1.2. Installing binary packages
4.1.3. A word of warning
4.2. Building packages from source
4.2.1. Requirements
4.2.2. Fetching distfiles
4.2.3. How to build and install
4.2.4. Selecting the compiler
5. Configuring pkgsrc
5.1. General configuration
5.2. Variables affecting the build process
5.3. Developer/advanced settings
5.4. Selecting Build Options
6. Creating binary packages
6.1. Building a single binary package
6.2. Settings for creation of binary packages
6.3. Doing a bulk build of all packages
6.3.1. Configuration
6.3.2. Other environmental considerations
6.3.3. Operation
6.3.4. What it does
6.3.5. Disk space requirements
6.3.6. Setting up a sandbox for chrooted builds
6.3.7. Building a partial set of packages
6.3.8. Uploading results of a bulk build
6.4. Creating a multiple CD-ROM packages collection
6.4.1. Example of cdpack
7. Frequently Asked Questions
7.1. Are there any mailing lists for pkg-related discussion?
7.2. Where's the pkgviews documentation?
7.3. Utilities for package management (pkgtools)
7.4. How to use pkgsrc as non-root
7.5. How to resume transfers when fetching distfiles?
7.6. How can I install/use XFree86 from pkgsrc?
7.7. How can I install/use X.org from pkgsrc?
7.8. How to fetch files from behind a firewall
7.9. How do I tell make fetch to do passive FTP?
7.10. How to fetch all distfiles at once
7.11. What does "Don't know how to make /usr/share/tmac/tmac.andoc" mean?
7.12. What does "Could not find bsd.own.mk" mean?
7.13. Using 'sudo' with pkgsrc
7.14. How do I change the location of configuration files?
7.15. Automated security checks
7.16. Why do some packages ignore my CFLAGS?
Chapter 2. Where to get pkgsrc and how to keep it up-to-date
Table of Contents
2.1. Getting pkgsrc for the first time
2.1.1. As tar file
2.1.2. Via SUP
2.1.3. Via CVS
2.2. Keeping pkgsrc up-to-date
2.2.1. Via tar files
2.2.2. Via CVS
The most common location where pkgsrc is installed is /usr/pkgsrc for the
"package sources" and /usr/pkg for the installed binary packages. You are
though free to install the sources and binary packages wherever you want in
your filesystem, provided that both paths do not contain white-space or other
characters that are interpreted specially by the shell and some other programs.
A safe bet is to use only letters, digits, underscores and dashes in the names.
2.1. Getting pkgsrc for the first time
Before you download any pkgsrc files, you should decide whether you want the
current branch or the stable branch. The latter is forked on a quarterly basis
from the current branch and only gets modified for security updates. The names
of the stable branches are built from the year and the quarter, for example
2006Q1.
The second step is to decide how you want to download pkgsrc. You can get it as
a tar file, via SUP, or via CVS. All three ways are described here.
2.1.1. As tar file
The primary download location for all pkgsrc files is ftp://ftp.NetBSD.org/pub/
pkgsrc/. There are a number of subdirectories for different purposes, which are
described in detail in Appendix C, Directory layout of the pkgsrc FTP server.
The tar file for the current branch is in the directory current and is called
pkgsrc.tar.gz. It is autogenerated daily.
The tar file for the stable branch 2006Q1 is in the directory 2006Q1 and is
also called pkgsrc.tar.gz.
After downloading the tar file, change to the directory where you want to have
pkgsrc. This is usually /usr. Then, run tar xfz pkgsrc.tar.gz to extract the
files.
2.1.2. Via SUP
As an alternative to the tar file, you can get pkgsrc via the Software Update
Protocol, SUP. To do so, make sure your supfile has a line
release=pkgsrc
in it, see the examples in /usr/share/examples/supfiles, and that the /usr/
pkgsrc directory exists. Then, simply run sup -v /path/to/your/supfile.
2.1.3. Via CVS
To get pkgsrc via CVS, make sure you have cvs(1) installed. To do an initial
(full) checkout of pkgsrc, you first have to set some environment variables.
For the C-Shell, type:
% setenv CVSROOT anoncvs@anoncvs.NetBSD.org:/cvsroot
% setenv CVS_RSH ssh
Or, the same for the bourne shell:
$ CVSROOT="anoncvs@anoncvs.NetBSD.org:/cvsroot"
$ CVS_RSH="ssh"
$ export CVSROOT CVS_RSH
Then, you change to the directory where you want to have your copy of pkgsrc.
In most cases this is /usr. In that directory you run the checkout command,
which is cvs -q checkout -P pkgsrc for the current branch and cvs -q checkout
-rpkgsrc-2006Q1 -P pkgsrc for the stable branch. This command will create a
directory called pkgsrc with all the pkgsrc files in it.
2.2. Keeping pkgsrc up-to-date
The preferred way to keep pkgsrc up-to-date is via CVS (which also works if you
have first installed it via a tar file). It saves bandwidth and hard disk
activity, compared to downloading the tar file again.
2.2.1. Via tar files
Warning
When updating from a tar file, you first need to completely remove the old
pkgsrc directory. Otherwise those files that have been removed from pkgsrc in
the mean time will not be removed on your local disk, resulting in
inconsistencies. When removing the old files, any changes that you have done to
the pkgsrc files will be lost after updating. Therefore updating via CVS is
strongly recommended.
To update pkgsrc from a tar file, download the tar file as explained above.
Then, make sure that you have not made any changes to the files in the pkgsrc
directory. Remove the pkgsrc directory and extract the new tar file. Done.
2.2.2. Via CVS
To update pkgsrc via CVS, make sure the environment variable CVS_RSH is set as
above. Then, change to the pkgsrc directory and run cvs -q update -dP.
2.2.2.1. Switching between different pkgsrc branches
When updating pkgsrc, the CVS program keeps track of the branch you selected.
But if you, for whatever reason, want to switch from the stable branch to the
current one, you can do it by adding the option "-A" after the "update"
keyword. To switch from the current branch back to the stable branch, add the
"-rpkgsrc-2006Q1" option.
2.2.2.2. What happens to my changes when updating?
When you update pkgsrc, the CVS program will only touch those files that are
registered in the CVS repository. That means that any packages that you created
on your own will stay unmodified. If you change files that are managed by CVS,
later updates will try to merge your changes with those that have been done by
others. See the CVS manual, chapter "update" for details.
Chapter 3. Using pkgsrc on systems other than NetBSD
Table of Contents
3.1. Bootstrapping pkgsrc
3.2. Platform-specific notes
3.2.1. Darwin (Mac OS X)
3.2.2. FreeBSD
3.2.3. Interix
3.2.4. IRIX
3.2.5. Linux
3.2.6. OpenBSD
3.2.7. Solaris
3.1. Bootstrapping pkgsrc
For operating systems other than NetBSD, we provide a bootstrap kit to build
the required tools to use pkgsrc on your platform. Besides support for native
NetBSD, pkgsrc and the bootstrap kit have support for the following operating
systems:
* Darwin (Mac OS X)
* DragonFly BSD
* FreeBSD
* Interix (Windows 2000, XP, 2003)
* IRIX
* Linux
* OpenBSD
* Solaris
* Tru64 (Digital UNIX/OSF1)
Support for other platforms is under development.
Installing the bootstrap kit should be as simple as:
# env CVS_RSH=ssh cvs -d anoncvs@anoncvs.NetBSD.org:/cvsroot checkout pkgsrc
# cd pkgsrc/bootstrap
# ./bootstrap
See Chapter 2, Where to get pkgsrc and how to keep it up-to-date for other ways
to get pkgsrc before bootstrapping. The given bootstrap command will use the
defaults of /usr/pkg for the prefix where programs will be installed in, and /
var/db/pkg for the package database directory where pkgsrc will do its internal
bookkeeping. However, these can also be set using command-line arguments.
Binary packages for the pkgsrc tools and an initial set of packages is
available for supported platforms. An up-to-date list of these can be found on
www.pkgsrc.org. Note that this only works for privileged builds that install
into /usr/pkg.
Note
The bootstrap installs a bmake tool. Use this bmake when building via pkgsrc.
For examples in this guide, use bmake instead of "make".
3.2. Platform-specific notes
Here are some platform-specific notes you should be aware of.
3.2.1. Darwin (Mac OS X)
Darwin 5.x and 6.x are supported. There are two methods of using pkgsrc on Mac
OS X, by using a disk image, or a UFS partition.
Before you start, you will need to download and install the Mac OS X Developer
Tools from Apple's Developer Connection. See http://developer.apple.com/macosx/
for details. Also, make sure you install X11 for Mac OS X and the X11 SDK from
http://www.apple.com/macosx/x11/download/ if you intend to build packages that
use the X11 Window System.
If you already have a UFS partition, or have a spare partition that you can
format as UFS, it is recommended to use that instead of the disk image. It'll
be somewhat faster and will mount automatically at boot time, where you must
manually mount a disk image.
Note
You cannot use a HFS+ file system for pkgsrc, because pkgsrc currently requires
the file system to be case-sensitive, and HFS+ is not.
3.2.1.1. Using a disk image
Create the disk image:
# cd pkgsrc/bootstrap
# ./ufsdiskimage create ~/Documents/NetBSD 512 # megabytes - season to taste
# ./ufsdiskimage mount ~/Documents/NetBSD
# sudo chown `id -u`:`id -g` /Volumes/NetBSD
That's it!
3.2.1.2. Using a UFS partition
By default, /usr will be on your root file system, normally HFS+. It is
possible to use the default prefix of /usr/pkg by symlinking /usr/pkg to a
directory on a UFS file system. Obviously, another symlink is required if you
want to place the package database directory outside the prefix. e.g.
# ./bootstrap --pkgdbdir /usr/pkg/pkgdb
If you created your partitions at the time of installing Mac OS X and formatted
the target partition as UFS, it should automatically mount on /Volumes/<volume
name> when the machine boots. If you are (re)formatting a partition as UFS, you
need to ensure that the partition map correctly reflects "Apple_UFS" and not
"Apple_HFS".
The problem is that none of the disk tools will let you touch a disk that is
booted from. You can unmount the partition, but even if you newfs it, the
partition type will be incorrect and the automounter won't mount it. It can be
mounted manually, but it won't appear in Finder.
You'll need to boot off of the OS X Installation (User) CD. When the
Installation program starts, go up to the menu and select Disk Utility. Now,
you will be able to select the partition you want to be UFS, and Format it
Apple UFS. Quit the Disk Utility, quit the installer which will reboot your
machine. The new UFS file system will appear in Finder.
Be aware that the permissions on the new file system will be writable by root
only.
This note is as of 10.2 (Jaguar) and applies to earlier versions. Hopefully
Apple will fix Disk Utility in 10.3 (Panther).
3.2.2. FreeBSD
FreeBSD 4.7 and 5.0 have been tested and are supported, other versions may
work.
Care should be taken so that the tools that this kit installs do not conflict
with the FreeBSD userland tools. There are several steps:
1. FreeBSD stores its ports pkg database in /var/db/pkg. It is therefore
recommended that you choose a different location (e.g. /usr/pkgdb) by using
the --pkgdbdir option to the bootstrap script.
2. If you do not intend to use the FreeBSD ports tools, it's probably a good
idea to move them out of the way to avoid confusion, e.g.
# cd /usr/sbin
# mv pkg_add pkg_add.orig
# mv pkg_create pkg_create.orig
# mv pkg_delete pkg_delete.orig
# mv pkg_info pkg_info.orig
3. An example /etc/mk.conf file will be placed in /etc/mk.conf.example file
when you use the bootstrap script.
3.2.3. Interix
Interix is a POSIX-compatible subsystem for the Windows NT kernel, providing a
Unix-like environment with a tighter kernel integration than available with
Cygwin. It is part of the Windows Services for Unix package, available for free
for any licensed copy of Windows 2000, XP (not including XP Home), or 2003. SFU
can be downloaded from http://www.microsoft.com/windows/sfu/.
Services for Unix 3.5, current as of this writing, has been tested. 3.0 or 3.1
may work, but are not officially supported. (The main difference in 3.0/3.1 is
lack of pthreads.)
3.2.3.1. When installing Interix/SFU
At an absolute minimum, the following packages must be installed from the
Windows Services for Unix 3.5 distribution in order to use pkgsrc:
* Utilities -> Base Utilities
* Interix GNU Components -> (all)
* Remote Connectivity
* Interix SDK
When using pkgsrc on Interix, DO NOT install the Utilities subcomponent "UNIX
Perl". That is Perl 5.6 without shared module support, installed to /usr/local,
and will only cause confusion. Instead, install Perl 5.8 from pkgsrc (or from a
binary package).
The Remote Connectivity subcomponent "Windows Remote Shell Service" does not
need to be installed, but Remote Connectivity itself should be installed in
order to have a working inetd.
During installation you may be asked whether to enable setuid behavior for
Interix programs, and whether to make pathnames default to case-sensitive.
Setuid should be enabled, and case-sensitivity MUST be enabled. (Without
case-sensitivity, a large number of packages including perl will not build.)
NOTE: Newer Windows service packs change the way binary execution works (via
the Data Execution Prevention feature). In order to use pkgsrc and other
gcc-compiled binaries reliably, a hotfix containing POSIX.EXE, PSXDLL.DLL,
PSXRUN.EXE, and PSXSS.EXE (899522 or newer) must be installed. Hotfixes are
available from Microsoft through a support contract; however, a NetBSD
developer has made most Interix hotfixes available for personal use from http:/
/www.duh.org/interix/hotfixes.php.
3.2.3.2. What to do if Interix/SFU is already installed
If SFU is already installed and you wish to alter these settings to work with
pkgsrc, note the following things.
* To uninstall UNIX Perl, use Add/Remove Programs, select Microsoft Windows
Services for UNIX, then click Change. In the installer, choose Add or
Remove, then uncheck Utilities->UNIX Perl.
* To enable case-sensitivity for the file system, run REGEDIT.EXE, and change
the following registry key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\kernel
Set the DWORD value "obcaseinsensitive" to 0; then reboot.
* To enable setuid binaries (optional), run REGEDIT.EXE, and change the
following registry key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Services for UNIX
Set the DWORD value "EnableSetuidBinaries" to 1; then reboot.
3.2.3.3. Important notes for using pkgsrc
The package manager (either the pkgsrc "su" user, or the user running
"pkg_add") must be a member of the local Administrators group. Such a user must
also be used to run the bootstrap. This is slightly relaxed from the normal
pkgsrc requirement of "root".
The package manager should use a umask of 002. "make install" will
automatically complain if this is not the case. This ensures that directories
written in /var/db/pkg are Administrators-group writeable.
The popular Interix binary packages from http://www.interopsystems.com/ use an
older version of pkgsrc's pkg_* tools. Ideally, these should NOT be used in
conjunction with pkgsrc. If you choose to use them at the same time as the
pkgsrc packages, ensure that you use the proper pkg_* tools for each type of
binary package.
The TERM setting used for DOS-type console windows (including those invoked by
the csh and ksh startup shortcuts) is "interix". Most systems don't have a
termcap/terminfo entry for it, but the following .termcap entry provides
adequate emulation in most cases:
interix:kP=\E[S:kN=\E[T:kH=\E[U:dc@:DC@:tc=pcansi:
3.2.3.4. Limitations of the Interix platform
Though Interix suffices as a familiar and flexible substitute for a full
Unix-like platform, it has some drawbacks that should be noted for those
desiring to make the most of Interix.
* X11:
Interix comes with the standard set of X11R6 client libraries, and can run
X11 based applications, but it does not come with an X server. Some options
are StarNet X-Win32, Hummingbird Exceed (available in a trimmed version for
Interix from Interop Systems as the Interop X Server), and the free X11
server included with Cygwin.
Also, StarNet Communications has graciously provided a free version of
their X-Win32 product that accepts connections only from localhost: X-Win32
LX, recommended by the maintainer of Interix pkgsrc support.
* X11 acceleration:
Because Interix runs in a completely different NT subsystem from Win32
applications, it does not currently support various X11 protocol extensions
for acceleration (such as MIT-SHM or DGA). Most interactive applications to
a local X server will run reasonably fast, but full motion video and other
graphics intensive applications may require a faster-than-expected CPU.
* Audio:
Interix has no native support for audio output. For audio support, pkgsrc
uses the esound client/server audio system on Interix. Unlike on most
platforms, the audio/esound package does not contain the esd server
component. To output audio via an Interix host, the emulators/cygwin_esound
package must also be installed.
* CD/DVDs, USB, and SCSI:
Direct device access is not currently supported in Interix, so it is not
currently possible to access CD/DVD drives, USB devices, or SCSI devices
through non-filesystem means. Among other things, this makes it impossible
to use Interix directly for CD/DVD burning.
* Tape drives:
Due to the same limitations as for CD-ROMs and SCSI devices, tape drives
are also not directly accessible in Interix. However, support is in work to
make tape drive access possible by using Cygwin as a bridge (similarly to
audio bridged via Cygwin's esound server).
3.2.3.5. Known issues for pkgsrc on Interix
It is not necessary, in general, to have a "root" user on the Windows system;
any member of the local Administrators group will suffice. However, some
packages currently assume that the user named "root" is the privileged user. To
accommodate these, you may create such a user; make sure it is in the local
group Administrators (or your language equivalent).
"pkg_add" creates directories of mode 0755, not 0775, in $PKG_DBDIR. For the
time being, install packages as the local Administrator (or your language
equivalent), or run the following command after installing a package to work
around the issue:
# chmod -R g+w $PKG_DBDIR
3.2.4. IRIX
You will need a working C compiler, either gcc or SGI's MIPS and MIPSpro
compiler (cc/c89). Please set the CC environment variable according to your
preference. If you do not have a license for the MIPSpro compiler suite, you
can download a gcc tardist file from http://freeware.sgi.com/.
Please note that you will need IRIX 6.5.17 or higher, as this is the earliest
version of IRIX providing support for if_indextoname(3), if_nametoindex(3),
etc.
At this point in time, pkgsrc only supports one ABI at a time. That is, you can
not switch between the old 32-bit ABI, the new 32-bit ABI and the 64-bit ABI.
If you start out using "abi=n32", that's what all your packages will be built
with.
Therefore, please make sure that you have no conflicting CFLAGS in your
environment or the /etc/mk.conf. Particularly, make sure that you do not try to
link n32 object files with lib64 or vice versa. Check your /etc/
compiler.defaults!
If you have the actual pkgsrc tree mounted via NFS from a different host,
please make sure to set WRKOBJDIR to a local directory, as it appears that IRIX
linker occasionally runs into issues when trying to link over a network-mounted
file system.
The bootstrapping process should set all the right options for programs such as
imake(1), but you may want to set some options depending on your local setup.
Please see pkgsrc/mk/defaults/mk.conf and, of course, your compiler's man pages
for details.
If you are using SGI's MIPSPro compiler, please set
PKGSRC_COMPILER= mipspro
in /etc/mk.conf. Otherwise, pkgsrc will assume you are using gcc and may end up
passing invalid flags to the compiler. Note that bootstrap should create an
appropriate mk.conf.example by default.
If you have both the MIPSPro compiler chain installed as well as gcc, but want
to make sure that MIPRPro is used, please set your PATH to not include the
location of gcc (often /usr/freeware/bin), and (important) pass the
'--preserve-path' flag.
3.2.5. Linux
Some versions of Linux (for example Debian GNU/Linux) need either libtermcap or
libcurses (libncurses). Installing the distributions libncurses-dev package (or
equivalent) should fix the problem.
pkgsrc supports both gcc (GNU Compiler Collection) and icc (Intel C++
Compiler). gcc is the default. icc 8.0 and 8.1 on i386 have been tested.
To bootstrap using icc, assuming the default icc installation directory:
env CC=/opt/intel_cc_80/bin/icc LDFLAGS=-static-libcxa \
ac_cv___attribute__=yes ./bootstrap
Note
icc 8.1 needs the `-i-static' argument instead of -static-libcxa.
icc supports __attribute__, but the GNU configure test uses a nested function,
which icc does not support. #undef'ing __attribute__ has the unfortunate
side-effect of breaking many of the Linux header files, which cannot be
compiled properly without __attribute__. The test must be overridden so that
__attribute__ is assumed supported by the compiler.
After bootstrapping, you should set PKGSRC_COMPILER in /etc/mk.conf:
PKGSRC_COMPILER= icc
The default installation directory for icc is /opt/intel_cc_80, which is also
the pkgsrc default. If you have installed it into a different directory, set
ICCBASE in /etc/mk.conf:
ICCBASE= /opt/icc
pkgsrc uses the static linking method of the runtime libraries provided by icc,
so binaries can be run on other systems which do not have the shared libraries
installed.
Libtool, however, extracts a list of libraries from the ld(1) command run when
linking a C++ shared library and records it, throwing away the -Bstatic and
-Bdynamic options interspersed between the libraries. This means that
libtool-linked C++ shared libraries will have a runtime dependency on the icc
libraries until this is fixed in libtool.
3.2.6. OpenBSD
OpenBSD 3.0 and 3.2 are tested and supported.
Care should be taken so that the tools that this kit installs do not conflict
with the OpenBSD userland tools. There are several steps:
1. OpenBSD stores its ports pkg database in /var/db/pkg. It is therefore
recommended that you choose a different location (e.g. /usr/pkgdb) by using
the --pkgdbdir option to the bootstrap script.
2. If you do not intend to use the OpenBSD ports tools, it's probably a good
idea to move them out of the way to avoid confusion, e.g.
# cd /usr/sbin
# mv pkg_add pkg_add.orig
# mv pkg_create pkg_create.orig
# mv pkg_delete pkg_delete.orig
# mv pkg_info pkg_info.orig
3. An example /etc/mk.conf file will be placed in /etc/mk.conf.example file
when you use the bootstrap script. OpenBSD's make program uses /etc/mk.conf
as well. You can work around this by enclosing all the pkgsrc-specific
parts of the file with:
.ifdef BSD_PKG_MK
# pkgsrc stuff, e.g. insert defaults/mk.conf or similar here
.else
# OpenBSD stuff
.endif
3.2.7. Solaris
Solaris 2.6 through 9 are supported on both x86 and sparc. You will need a
working C compiler. Both gcc 2.95.3 and Sun WorkShop 5 have been tested.
The following packages are required on Solaris 8 for the bootstrap process and
to build packages.
* SUNWsprot
* SUNWarc
* SUNWbtool
* SUNWtoo
* SUNWlibm
Please note the use of GNU binutils on Solaris is not supported.
Whichever compiler you use, please ensure the compiler tools and your $prefix
are in your PATH. This includes /usr/ccs/{bin,lib} and e.g. /usr/pkg/
{bin,sbin}.
3.2.7.1. If you are using gcc
It makes life much simpler if you only use the same gcc consistently for
building all packages.
It is recommended that an external gcc be used only for bootstrapping, then
either build gcc from lang/gcc or install a binary gcc package, then remove gcc
used during bootstrapping.
Binary packages of gcc can be found through http://www.sun.com/bigadmin/common/
freewareSearch.html.
3.2.7.2. If you are using Sun WorkShop
You will need at least the following packages installed (from WorkShop 5.0)
* SPROcc - Sun WorkShop Compiler C 5.0
* SPROcpl - Sun WorkShop Compiler C++ 5.0
* SPROild - Sun WorkShop Incremental Linker
* SPROlang - Sun WorkShop Compilers common components
You should set CC, CXX and optionally, CPP in /etc/mk.conf, e.g.:
CC= cc
CXX= CC
CPP= /usr/ccs/lib/cpp
3.2.7.3. Buildling 64-bit binaries with SunPro
Building 64-bit binaries is a little trickier. First, you need to bootstrap
pkgsrc in 64-bit mode. One problem here is that while building one of the
programs in the bootstrap kit (bmake), the CFLAGS variable is not honored, even
if it is set in the environment. To work around this bug, you can create a
simple shell script called cc64 and put it somewhere in the PATH:
#! /bin/sh
exec /opt/SUNWspro/bin/cc -xtarget=ultra -xarch=v9 ${1+"$@"}
Then, pass the definition for CC in the environment of the bootstrap command:
$ cd bootstrap
$ CC=cc64 ./bootstrap
After bootstrapping, there are two alternative ways, depending on whether you
want to find bugs in packages or get your system ready quickly. If you just
want a running system, add the following lines to your mk.conf file:
CC= cc64
CXX= CC64
PKGSRC_COMPILER= sunpro
This way, all calls to the compiler will be intercepted by the above wrapper
and therefore get the necessary ABI options automatically. (Don't forget to
create the shell script CC64, too.)
To find packages that ignore the user-specified CFLAGS and CXXFLAGS, add the
following lines to your mk.conf file:
CC= cc
CXX= CC
PKGSRC_COMPILER= sunpro
CFLAGS= -xtarget=ultra -xarch=v9
CXXFLAGS= -xtarget=ultra -xarch=v9
LDFLAGS= -xtarget=ultra -xarch=v9
Packages that don't use the flags provided in the configuration file will try
to build 32-bit binaries and fail during linking. Detecting this is useful to
prevent bugs on other platforms where the error would not show up but pass
silently.
3.2.7.4. Common problems
Sometimes, when using libtool, /bin/ksh crashes with a segmentation fault. The
workaround is to use another shell for the configure scripts, for example by
installing shells/bash and adding the following lines to your mk.conf:
CONFIG_SHELL= ${LOCALBASE}/bin/bash
WRAPPER_SHELL= ${LOCALBASE}/bin/bash
Then, rebuild the devel/libtool-base package.
Chapter 4. Using pkgsrc
Table of Contents
4.1. Using binary packages
4.1.1. Finding binary packages
4.1.2. Installing binary packages
4.1.3. A word of warning
4.2. Building packages from source
4.2.1. Requirements
4.2.2. Fetching distfiles
4.2.3. How to build and install
4.2.4. Selecting the compiler
Basically, there are two ways of using pkgsrc. The first is to only install the
package tools and to use binary packages that someone else has prepared. This
is the "pkg" in pkgsrc. The second way is to install the "src" of pkgsrc, too.
Then you are able to build your own packages, and you can still use binary
packages from someone else.
4.1. Using binary packages
To use binary packages, you need some tools to manage them. On NetBSD, these
tools are already installed. On all other operating systems, you need to
install them first. For the following platforms, prebuilt versions of the
package tools are available and can simply be downloaded and unpacked in the /
directory:
+------------------------------------------------------------------------+
| Platform | URL |
|----------+-------------------------------------------------------------|
|Solaris 9 |ftp://ftp0.mh.bbc.co.uk/pub/pkgsrc/packages/bootstrap-pkgsrc/|
|----------+-------------------------------------------------------------|
|Solaris 10|http://public.enst.fr/pkgsrc/packages/bootstrap-pkgsrc/ |
+------------------------------------------------------------------------+
These prebuilt package tools use /usr/pkg for the base directory, and /var/db/
pkg for the database of installed packages. If you cannot use these directories
for whatever reasons (maybe because you're not root), you have to build the
package tools yourself, which is explained in Section 3.1, "Bootstrapping
pkgsrc".
4.1.1. Finding binary packages
To install binary packages, you first need to know from where to get them. You
can get them on CD-ROMs, DVDs, or via FTP or HTTP.
For NetBSD, the binary packages are made available on ftp.NetBSD.org and its
mirrors, in the directory /pub/NetBSD/packages/OSVERSION/ARCH/. For OSVERSION,
you should insert the output of uname -r, and for ARCH the output of uname -p.
For some other platforms, binary packages can be found at the following
locations:
+-------------------------------------------------------+
| Platform | URL |
|----------+--------------------------------------------|
|Solaris 9 |ftp://ftp0.mh.bbc.co.uk/pub/pkgsrc/packages/|
|----------+--------------------------------------------|
|Solaris 10|http://public.enst.fr/pkgsrc/packages/ |
+-------------------------------------------------------+
Most of these directories contain the pkgsrc distribution for multiple
platforms. Select the appropriate subdirectories, according to your machine
architecture and operating system, until you find a directory called All. This
directory contains all the binary packages. Further, there are subdirectories
for categories that contain symbolic links that point to the actual binary
package in ../All. This directory layout is used for all package repositories,
no matter if they are accessed via HTTP, FTP, NFS, CD-ROM, or the local
filesystem.
4.1.2. Installing binary packages
If you have the files on a CD-ROM or downloaded them to your hard disk, you can
install them with the following command (be sure to su to root first):
# pkg_add /path/to/package.tgz
If you have FTP access and you don't want to download the packages via FTP
prior to installation, you can do this automatically by giving pkg_add an FTP
URL:
# pkg_add ftp://ftp.NetBSD.org/pub/NetBSD/packages/<OSVERSION>/<ARCH>/All/package.tgz
Note that any prerequisite packages needed to run the package in question will
be installed, too, assuming they are present where you install from.
To save some typing, you can set the PKG_PATH environment variable to a
semicolon-separated list of paths (including remote URLs); trailing slashes are
not allowed.
Additionally to the All directory there exists a vulnerable directory to which
binary packages with known vulnerabilities are moved, since removing them could
cause missing dependencies. To use these packages, add the vulnerable directory
to your PKG_PATH. However, you should run security/audit-packages regularly,
especially after installing new packages, and verify that the vulnerabilities
are acceptable for your configuration. An example PKG_PATH would be: ftp://
ftp.NetBSD.org/pub/NetBSD/packages/<OSVERSION>/<ARCH>/All;ftp://ftp.NetBSD.org/
pub/NetBSD/packages/<OSVERSION>/<ARCH>/vulnerable Please note that semicolon
(';') is a shell meta-character, so you'll probably have to quote it.
After you've installed packages, be sure to have /usr/pkg/bin and /usr/pkg/sbin
in your PATH so you can actually start the just installed program.
4.1.3. A word of warning
Please pay very careful attention to the warnings expressed in the pkg_add(1)
manual page about the inherent dangers of installing binary packages which you
did not create yourself, and the security holes that can be introduced onto
your system by indiscriminate adding of such files.
The same warning of course applies to every package you install from source
when you haven't completely read and understood the source code of the package,
the compiler that is used to build the package and all the other tools that are
involved.
4.2. Building packages from source
This assumes that the package is already in pkgsrc. If it is not, see Part II,
"The pkgsrc developer's guide" for instructions how to create your own
packages.
4.2.1. Requirements
To build packages from source on a NetBSD system the "comp" and the "text"
distribution sets must be installed. If you want to build X11-related packages
the "xbase" and "xcomp" distribution sets are required, too.
4.2.2. Fetching distfiles
The first step for building a package is downloading the distfiles (i.e. the
unmodified source). If they have not yet been downloaded, pkgsrc will fetch
them automatically.
You can overwrite some of the major distribution sites to fit to sites that are
close to your own. Have a look at pkgsrc/mk/defaults/mk.conf to find some
examples ? in particular, look for the MASTER_SORT, MASTER_SORT_REGEX and
INET_COUNTRY definitions. This may save some of your bandwidth and time.
You can change these settings either in your shell's environment, or, if you
want to keep the settings, by editing the /etc/mk.conf file, and adding the
definitions there.
If you don't have a permanent Internet connection and you want to know which
files to download, make fetch-list will tell you what you'll need. Put these
distfiles into /usr/pkgsrc/distfiles.
4.2.3. How to build and install
Assuming that the distfile has been fetched (see previous section), become root
and change into the relevant directory and run make.
Note
If using bootstrap or pkgsrc on a non-NetBSD system, use the pkgsrc bmake
command instead of "make" in the examples in this guide.
For example, type
% cd misc/figlet
% make
at the shell prompt to build the various components of the package, and
# make install
to install the various components into the correct places on your system.
Installing the package on your system requires you to be root. However, pkgsrc
has a just-in-time-su feature, which allows you to only become root for the
actual installation step
Taking the figlet utility as an example, we can install it on our system by
building as shown in Appendix B, Build logs.
The program is installed under the default root of the packages tree - /usr/
pkg. Should this not conform to your tastes, set the LOCALBASE variable in your
environment, and it will use that value as the root of your packages tree. So,
to use /usr/local, set LOCALBASE=/usr/local in your environment. Please note
that you should use a directory which is dedicated to packages and not shared
with other programs (i.e., do not try and use LOCALBASE=/usr). Also, you should
not try to add any of your own files or directories (such as src/, obj/, or
pkgsrc/) below the LOCALBASE tree. This is to prevent possible conflicts
between programs and other files installed by the package system and whatever
else may have been installed there.
Some packages look in /etc/mk.conf to alter some configuration options at build
time. Have a look at pkgsrc/mk/defaults/mk.conf to get an overview of what will
be set there by default. Environment variables such as LOCALBASE can be set in
/etc/mk.conf to save having to remember to set them each time you want to use
pkgsrc.
Occasionally, people want to "look under the covers" to see what is going on
when a package is building or being installed. This may be for debugging
purposes, or out of simple curiosity. A number of utility values have been
added to help with this.
1. If you invoke the make(1) command with PKG_DEBUG_LEVEL=2, then a huge
amount of information will be displayed. For example,
make patch PKG_DEBUG_LEVEL=2
will show all the commands that are invoked, up to and including the
"patch" stage.
2. If you want to know the value of a certain make(1) definition, then the
VARNAME definition should be used, in conjunction with the show-var target.
e.g. to show the expansion of the make(1) variable LOCALBASE:
% make show-var VARNAME=LOCALBASE
/usr/pkg
%
If you want to install a binary package that you've either created yourself
(see next section), that you put into pkgsrc/packages manually or that is
located on a remote FTP server, you can use the "bin-install" target. This
target will install a binary package - if available - via pkg_add(1), else do a
make package. The list of remote FTP sites searched is kept in the variable
BINPKG_SITES, which defaults to ftp.NetBSD.org. Any flags that should be added
to pkg_add(1) can be put into BIN_INSTALL_FLAGS. See pkgsrc/mk/defaults/mk.conf
for more details.
A final word of warning: If you set up a system that has a non-standard setting
for LOCALBASE, be sure to set that before any packages are installed, as you
can not use several directories for the same purpose. Doing so will result in
pkgsrc not being able to properly detect your installed packages, and fail
miserably. Note also that precompiled binary packages are usually built with
the default LOCALBASE of /usr/pkg, and that you should not install any if you
use a non-standard LOCALBASE.
4.2.4. Selecting the compiler
By default, pkgsrc will use GCC to build packages. This may be overridden by
setting the following variables in /etc/mk.conf:
PKGSRC_COMPILER:
This is a list of values specifying the chain of compilers to invoke when
building packages. Valid values are:
* distcc: distributed C/C++ (chainable)
* ccache: compiler cache (chainable)
* gcc: GNU C/C++ Compiler
* mipspro: Silicon Graphics, Inc. MIPSpro (n32/n64)
* mipspro: Silicon Graphics, Inc. MIPSpro (o32)
* sunpro: Sun Microsystems, Inc. WorkShip/Forte/Sun ONE Studio
The default is "gcc". You can use ccache and/or distcc with an appropriate
PKGSRC_COMPILER setting, e.g. "ccache gcc". This variable should always be
terminated with a value for a real compiler.
GCC_REQD:
This specifies the minimum version of GCC to use when building packages. If
the system GCC doesn't satisfy this requirement, then pkgsrc will build and
install one of the GCC packages to use instead.
Chapter 5. Configuring pkgsrc
Table of Contents
5.1. General configuration
5.2. Variables affecting the build process
5.3. Developer/advanced settings
5.4. Selecting Build Options
5.1. General configuration
In this section, you can find some variables that apply to all pkgsrc packages.
The preferred method of setting these variables is by setting them in /etc/
mk.conf.
* LOCALBASE: Where packages will be installed. The default is /usr/pkg. Do
not mix binary packages with different LOCALBASEs!
* CROSSBASE: Where "cross" category packages will be installed. The default
is ${LOCALBASE}/cross.
* X11BASE: Where X11 is installed on the system. The default is /usr/X11R6.
* DISTDIR: Where to store the downloaded copies of the original source
distributions used for building pkgsrc packages. The default is $
{PKGSRCDIR}/distfiles.
* MASTER_SITE_OVERRIDE: If set, override the packages' MASTER_SITES with this
value.
* MASTER_SITE_BACKUP: Backup location(s) for distribution files and patch
files if not found locally or in ${MASTER_SITES} or ${PATCH_SITES}
respectively. The defaults are ftp://ftp.NetBSD.org/pub/NetBSD/packages/
distfiles/${DIST_SUBDIR}/ and ftp://ftp.freebsd.org/pub/FreeBSD/distfiles/$
{DIST_SUBDIR}/.
* BINPKG_SITES: List of sites carrying binary pkgs.
5.2. Variables affecting the build process
XXX
* PACKAGES: The top level directory for the binary packages. The default is $
{PKGSRCDIR}/packages.
* WRKOBJDIR: The top level directory where, if defined, the separate working
directories will get created, and symbolically linked to from ${WRKDIR}
(see below). This is useful for building packages on several architectures,
then ${PKGSRCDIR} can be NFS-mounted while ${WRKOBJDIR} is local to every
architecture. (It should be noted that PKGSRCDIR should not be set by the
user ? it is an internal definition which refers to the root of the pkgsrc
tree. It is possible to have many pkgsrc tree instances.)
* LOCALPATCHES: Directory for local patches that aren't part of pkgsrc. See
Section 9.3, "patches/*" for more information. rel and arch are replaced
with OS release ("2.0", etc.) and architecture ("mipsel", etc.).
* PKGMAKECONF: Location of the mk.conf file used by a package's BSD-style
Makefile. If this is not set, MAKECONF is set to /dev/null to avoid picking
up settings used by builds in /usr/src.
5.3. Developer/advanced settings
XXX
* PKG_DEVELOPER: Run some sanity checks that package developers want:
o make sure patches apply with zero fuzz
o run check-shlibs to see that all binaries will find their shared libs.
* PKG_DEBUG_LEVEL: The level of debugging output which is displayed whilst
making and installing the package. The default value for this is 0, which
will not display the commands as they are executed (normal, default, quiet
operation); the value 1 will display all shell commands before their
invocation, and the value 2 will display both the shell commands before
their invocation, and their actual execution progress with set -x will be
displayed.
* ALLOW_VULNERABILITIES.pkgbase: A space separated list of vulnerability IDs
that may be ignored when performing the automated security checks. These
IDs are listed in the pkg-vulnerabilities file and are displayed by
audit-packages when it finds a vulnerable package.
* SKIP_AUDIT_PACKAGES: If this is set to "yes", the automated security checks
(which use the security/audit-packages package) will be entirely skipped
for all packages built. Normally you'll want to use ALLOW_VULNERABILITIES
instead of this.
5.4. Selecting Build Options
Some packages have build time options, usually to select between different
dependencies, enable optional support for big dependencies or enable
experimental features.
To see which options, if any, a package supports, and which options are
mutually exclusive, run make show-options, for example:
The following options are supported by this package:
ssl Enable SSL support.
Exactly one of the following gecko options is required:
firefox Use firefox as gecko rendering engine.
mozilla Use mozilla as gecko rendering engine.
At most one of the following database options may be selected:
mysql Enable support for MySQL database.
pgsql Enable support for PostgreSQL database.
These options are enabled by default: firefox
These options are currently enabled: mozilla ssl
The following variables can be defined in /etc/mk.conf to select which options
to enable for a package: PKG_DEFAULT_OPTIONS, which can be used to select or
disable options for all packages that support them, and PKG_OPTIONS.pkgbase,
which can be used to select or disable options specifically for package pkgbase
. Options listed in these variables are selected, options preceded by "-" are
disabled. A few examples:
$ grep "PKG.*OPTION" /etc/mk.conf
PKG_DEFAULT_OPTIONS= -arts -dvdread -esound
PKG_OPTIONS.kdebase= debug -sasl
PKG_OPTIONS.apache= suexec
The following settings are consulted in the order given, and the last setting
that selects or disables an option is used:
1. the default options as suggested by the package maintainer
2. the options implied by the settings of legacy variables (see below)
3. PKG_DEFAULT_OPTIONS
4. PKG_OPTIONS.pkgbase
For groups of mutually exclusive options, the last option selected is used, all
others are automatically disabled. If an option of the group is explicitly
disabled, the previously selected option, if any, is used. It is an error if no
option from a required group of options is selected, and building the package
will fail.
Before the options framework was introduced, build options were selected by
setting a variable (often named USE_FOO) in /etc/mk.conf for each option. To
ease transition to the options framework for the user, these legacy variables
are converted to the appropriate options setting (PKG_OPTIONS.pkgbase)
automatically. A warning is issued to prompt the user to update /etc/mk.conf to
use the options framework directly. Support for the legacy variables will be
removed eventually.
Chapter 6. Creating binary packages
Table of Contents
6.1. Building a single binary package
6.2. Settings for creation of binary packages
6.3. Doing a bulk build of all packages
6.3.1. Configuration
6.3.2. Other environmental considerations
6.3.3. Operation
6.3.4. What it does
6.3.5. Disk space requirements
6.3.6. Setting up a sandbox for chrooted builds
6.3.7. Building a partial set of packages
6.3.8. Uploading results of a bulk build
6.4. Creating a multiple CD-ROM packages collection
6.4.1. Example of cdpack
6.1. Building a single binary package
Once you have built and installed a package, you can create a binary package
which can be installed on another system with pkg_add(1). This saves having to
build the same package on a group of hosts and wasting CPU time. It also
provides a simple means for others to install your package, should you
distribute it.
To create a binary package, change into the appropriate directory in pkgsrc,
and run make package:
# cd misc/figlet
# make package
This will build and install your package (if not already done), and then build
a binary package from what was installed. You can then use the pkg_* tools to
manipulate it. Binary packages are created by default in /usr/pkgsrc/packages,
in the form of a gzipped tar file. See Section B.2, "Packaging figlet" for a
continuation of the above misc/figlet example.
See Chapter 19, Submitting and Committing for information on how to submit such
a binary package.
6.2. Settings for creation of binary packages
See Section 15.16, "Other helpful targets".
6.3. Doing a bulk build of all packages
If you want to get a full set of precompiled binary packages, this section
describes how to get them. Beware that the bulk build will remove all currently
installed packages from your system!
Having an FTP server configured either on the machine doing the bulk builds or
on a nearby NFS server can help to make the packages available to other
machines that can then save time by installing only the binary packages. See
ftpd(8) for more information. If you use a remote NFS server's storage, be sure
to not actually compile on NFS storage, as this slows things down a lot.
6.3.1. Configuration
6.3.1.1. build.conf
The build.conf file is the main configuration file for bulk builds. You can
configure how your copy of pkgsrc is kept up to date, how the distfiles are
downloaded, how the packages are built and how the report is generated. You can
find an annotated example file in pkgsrc/mk/bulk/build.conf-example. To use it,
copy build.conf-example to build.conf and edit it, following the comments in
that file.
6.3.1.2. /etc/mk.conf
You may want to set variables in /etc/mk.conf. Look at pkgsrc/mk/defaults/
mk.conf for details of the default settings. You will want to ensure that
ACCEPTABLE_LICENSES meet your local policy. As used in this example,
_ACCEPTABLE=yes accepts all licenses.
PACKAGES?= ${_PKGSRCDIR}/packages/${MACHINE_ARCH}
WRKOBJDIR?= /usr/tmp/pkgsrc # build here instead of in pkgsrc
BSDSRCDIR= /usr/src
BSDXSRCDIR= /usr/xsrc # for x11/xservers
OBJHOSTNAME?= yes # use work.`hostname`
FAILOVER_FETCH= yes # insist on the correct checksum
PKG_DEVELOPER?= yes
_ACCEPTABLE= yes
Some options that are especially useful for bulk builds can be found at the top
lines of the file mk/bulk/bsd.bulk-pkg.mk. The most useful options of these are
briefly described here.
* If you are on a slow machine, you may want to set USE_BULK_BROKEN_CHECK to
"no".
* If you are doing bulk builds from a read-only copy of pkgsrc, you have to
set BULKFILESDIR to the directory where all log files are created.
Otherwise the log files are created in the pkgsrc directory.
* Another important variable is BULK_PREREQ, which is a list of packages that
should be always available while building other packages.
Some other options are scattered in the pkgsrc infrastructure:
* ALLOW_VULNERABLE_PACKAGES should be set to yes. The purpose of the bulk
builds is creating binary packages, no matter if they are vulnerable or
not. When uploading the packages to a public server, the vulnerable
packages will be put into a directory of their own. Leaving this variable
unset would prevent the bulk build system from even trying to build them,
so possible building errors would not show up.
* CHECK_FILES (pkgsrc/mk/bsd.pkg.check.mk) can be set to "yes" to check that
the installed set of files matches the PLIST.
* CHECK_INTERPRETER (pkgsrc/mk/bsd.pkg.check.mk) can be set to "yes" to check
that the installed "#!"-scripts will find their interpreter.
6.3.1.3. pre-build.local
It is possible to configure the bulk build to perform certain site-specific
tasks at the end of the pre-build stage. If the file pre-build.local exists in
/usr/pkgsrc/mk/bulk, it will be executed (as a sh(1) script) at the end of the
usual pre-build stage. An example use of pre-build.local is to have the line:
echo "I do not have enough disk space to build this pig." \
> misc/openoffice/$BROKENF
to prevent the system from trying to build a particular package which requires
nearly 3 GB of disk space.
6.3.2. Other environmental considerations
As /usr/pkg will be completely deleted at the start of bulk builds, make sure
your login shell is placed somewhere else. Either drop it into /usr/local/bin
(and adjust your login shell in the passwd file), or (re-)install it via
pkg_add(1) from /etc/rc.local, so you can login after a reboot (remember that
your current process won't die if the package is removed, you just can't start
any new instances of the shell any more). Also, if you use NetBSD earlier than
1.5, or you still want to use the pkgsrc version of ssh for some reason, be
sure to install ssh before starting it from rc.local:
( cd /usr/pkgsrc/security/ssh ; make bulk-install )
if [ -f /usr/pkg/etc/rc.d/sshd ]; then
/usr/pkg/etc/rc.d/sshd
fi
Not doing so will result in you being not able to log in via ssh after the bulk
build is finished or if the machine gets rebooted or crashes. You have been
warned! :)
6.3.3. Operation
Make sure you don't need any of the packages still installed.
Warning
During the bulk build, all packages will be removed!
Be sure to remove all other things that might interfere with builds, like some
libs installed in /usr/local, etc. then become root and type:
# cd /usr/pkgsrc
# sh mk/bulk/build
If for some reason your last build didn't complete (power failure, system
panic, ...), you can continue it by running:
# sh mk/bulk/build restart
At the end of the bulk build, you will get a summary via mail, and find build
logs in the directory specified by FTP in the build.conf file.
6.3.4. What it does
The bulk builds consist of three steps:
1. pre-build
The script updates your pkgsrc tree via (anon)cvs, then cleans out any
broken distfiles, and removes all packages installed.
2. the bulk build
This is basically "make bulk-package" with an optimised order in which
packages will be built. Packages that don't require other packages will be
built first, and packages with many dependencies will be built later.
3. post-build
Generates a report that's placed in the directory specified in the
build.conf file named broken.html, a short version of that report will also
be mailed to the build's admin.
During the build, a list of broken packages will be compiled in /usr/pkgsrc
/.broken (or .../.broken.${MACHINE} if OBJMACHINE is set), individual build
logs of broken builds can be found in the package's directory. These files are
used by the bulk-targets to mark broken builds to not waste time trying to
rebuild them, and they can be used to debug these broken package builds later.
6.3.5. Disk space requirements
Currently, roughly the following requirements are valid for NetBSD 2.0/i386:
* 10 GB - distfiles (NFS ok)
* 8 GB - full set of all binaries (NFS ok)
* 5 GB - temp space for compiling (local disk recommended)
Note that all pkgs will be de-installed as soon as they are turned into a
binary package, and that sources are removed, so there is no excessively huge
demand to disk space. Afterwards, if the package is needed again, it will be
installed via pkg_add(1) instead of building again, so there are no cycles
wasted by recompiling.
6.3.6. Setting up a sandbox for chrooted builds
If you don't want all the packages nuked from a machine (rendering it useless
for anything but pkg compiling), there is the possibility of doing the package
bulk build inside a chroot environment.
The first step is to set up a chroot sandbox, e.g. /usr/sandbox. This can be
done by using null mounts, or manually.
There is a shell script called pkgsrc/mk/bulk/mksandbox which will set up the
sandbox environment using null mounts. It will also create a script called
sandbox in the root of the sandbox environment, which will allow the null
mounts to be activated using the sandbox mount command and deactivated using
the sandbox umount command.
To set up a sandbox environment by hand, after extracting all the sets from a
NetBSD installation or doing a make distribution DESTDIR=/usr/sandbox in /usr/
src/etc, be sure the following items are present and properly configured:
1. Kernel
# cp /netbsd /usr/sandbox
2. /dev/*
# cd /usr/sandbox/dev ; sh MAKEDEV all
3. /etc/resolv.conf (for security/smtpd and mail):
# cp /etc/resolv.conf /usr/sandbox/etc
4. Working(!) mail config (hostname, sendmail.cf):
# cp /etc/mail/sendmail.cf /usr/sandbox/etc/mail
5. /etc/localtime (for security/smtpd):
# ln -sf /usr/share/zoneinfo/UTC /usr/sandbox/etc/localtime
6. /usr/src (system sources, e. g. for sysutils/aperture):
# ln -s ../disk1/cvs .
# ln -s cvs/src-2.0 src
7. Create /var/db/pkg (not part of default install):
# mkdir /usr/sandbox/var/db/pkg
8. Create /usr/pkg (not part of default install):
# mkdir /usr/sandbox/usr/pkg
9. Checkout pkgsrc via cvs into /usr/sandbox/usr/pkgsrc:
# cd /usr/sandbox/usr
# cvs -d anoncvs@anoncvs.NetBSD.org:/cvsroot checkout -d -P pkgsrc
Do not mount/link this to the copy of your pkgsrc tree you do development
in, as this will likely cause problems!
10. Make /usr/sandbox/usr/pkgsrc/packages and .../distfiles point somewhere
appropriate. NFS- and/or nullfs-mounts may come in handy!
11. Edit /etc/mk.conf, see Section 6.3.1.2, "/etc/mk.conf".
12. Adjust mk/bulk/build.conf to suit your needs.
When the chroot sandbox is set up, you can start the build with the following
steps:
# cd /usr/sandbox/usr/pkgsrc
# sh mk/bulk/do-sandbox-build
This will just jump inside the sandbox and start building. At the end of the
build, mail will be sent with the results of the build. Created binary pkgs
will be in /usr/sandbox/usr/pkgsrc/packages (wherever that points/mounts to/
from).
6.3.7. Building a partial set of packages
In addition to building a complete set of all packages in pkgsrc, the pkgsrc/mk
/bulk/build script may be used to build a subset of the packages contained in
pkgsrc. By setting SPECIFIC_PKGS in /etc/mk.conf, the variables
* SITE_SPECIFIC_PKGS
* HOST_SPECIFIC_PKGS
* GROUP_SPECIFIC_PKGS
* USER_SPECIFIC_PKGS
will define the set of packages which should be built. The bulk build code will
also include any packages which are needed as dependencies for the explicitly
listed packages.
One use of this is to do a bulk build with SPECIFIC_PKGS in a chroot sandbox
periodically to have a complete set of the binary packages needed for your site
available without the overhead of building extra packages that are not needed.
6.3.8. Uploading results of a bulk build
This section describes how pkgsrc developers can upload binary pkgs built by
bulk builds to ftp.NetBSD.org.
If you would like to automatically create checksum files for the binary
packages you intend to upload, remember to set MKSUMS=yes in your mk/bulk/
build.conf.
If you would like to PGP sign the checksum files (highly recommended!),
remember to set SIGN_AS=username@NetBSD.org in your mk/bulk/build.conf. This
will prompt you for your GPG password to sign the files before uploading
everything.
Then, make sure that you have RSYNC_DST set properly in your mk/bulk/build.conf
file, i.e. adjust it to something like one of the following:
RSYNC_DST=ftp.NetBSD.org:/pub/NetBSD/packages/pkgsrc-200xQy/NetBSD-a.b.c/arch/upload
Please use appropriate values for "pkgsrc-200xQy", "NetBSD-a.b.c" and "arch"
here. If your login on ftp.NetBSD.org is different from your local login, write
your login directly into the variable, e.g. my local account is "feyrer", but
for my login "hubertf", I use:
RSYNC_DST=hubertf@ftp.NetBSD.org:/pub/NetBSD/packages/pkgsrc-200xQy/NetBSD-a.b.c/arch/upload
A separate upload directory is used here to allow "closing" the directory
during upload. To do so, run the following command on ftp.NetBSD.org next:
nbftp% mkdir -p -m 750 /pub/NetBSD/packages/pkgsrc-200xQy/NetBSD-a.b.c/arch/upload
Please note that /pub/NetBSD/packages is only appropriate for packages for the
NetBSD operating system. Binary packages for other operating systems should go
into /pub/pkgsrc.
Before uploading the binary pkgs, ssh authentication needs to be set up. This
example shows how to set up temporary keys for the root account inside the
sandbox (assuming that no keys should be present there usually):
# chroot /usr/sandbox
chroot-# rm $HOME/.ssh/id-dsa*
chroot-# ssh-keygen -t dsa
chroot-# cat $HOME/.ssh/id-dsa.pub
Now take the output of id-dsa.pub and append it to your ~/.ssh/authorized_keys
file on ftp.NetBSD.org. You can remove the key after the upload is done!
Next, test if your ssh connection really works:
chroot-# ssh ftp.NetBSD.org date
Use "-l yourNetBSDlogin" here as appropriate!
Now after all this works, you can exit the sandbox and start the upload:
chroot-# exit
# cd /usr/sandbox/usr/pkgsrc
# sh mk/bulk/do-sandbox-upload
The upload process may take quite some time. Use ls(1) or du(1) on the FTP
server to monitor progress of the upload. The upload script will take care of
not uploading restricted packages and putting vulnerable packages into the
vulnerable subdirectory.
After the upload has ended, first thing is to revoke ssh access:
nbftp% vi ~/.ssh/authorized_keys
Gdd:x!
Use whatever is needed to remove the key you've entered before! Last, move the
uploaded packages out of the upload directory to have them accessible to
everyone:
nbftp% cd /pub/NetBSD/packages/pkgsrc-200xQy/NetBSD-a.b.c/arch
nbftp% mv upload/* .
nbftp% rmdir upload
nbftp% chmod 755 .
6.4. Creating a multiple CD-ROM packages collection
After your pkgsrc bulk-build has completed, you may wish to create a CD-ROM set
of the resulting binary packages to assist in installing packages on other
machines. The pkgtools/cdpack package provides a simple tool for creating the
ISO 9660 images. cdpack arranges the packages on the CD-ROMs in a way that
keeps all the dependencies for a given package on the same CD as that package.
6.4.1. Example of cdpack
Complete documentation for cdpack is found in the cdpack(1) man page. The
following short example assumes that the binary packages are left in /usr/
pkgsrc/packages/All and that sufficient disk space exists in /u2 to hold the
ISO 9660 images.
# mkdir /u2/images
# pkg_add /usr/pkgsrc/packages/All/cdpack
# cdpack /usr/pkgsrc/packages/All /u2/images
If you wish to include a common set of files (COPYRIGHT, README, etc.) on each
CD in the collection, then you need to create a directory which contains these
files. e.g.
# mkdir /tmp/common
# echo "This is a README" > /tmp/common/README
# echo "Another file" > /tmp/common/COPYING
# mkdir /tmp/common/bin
# echo "#!/bin/sh" > /tmp/common/bin/myscript
# echo "echo Hello world" >> /tmp/common/bin/myscript
# chmod 755 /tmp/common/bin/myscript
Now create the images:
# cdpack -x /tmp/common /usr/pkgsrc/packages/All /u2/images
Each image will contain README, COPYING, and bin/myscript in their root
directories.
Chapter 7. Frequently Asked Questions
Table of Contents
7.1. Are there any mailing lists for pkg-related discussion?
7.2. Where's the pkgviews documentation?
7.3. Utilities for package management (pkgtools)
7.4. How to use pkgsrc as non-root
7.5. How to resume transfers when fetching distfiles?
7.6. How can I install/use XFree86 from pkgsrc?
7.7. How can I install/use X.org from pkgsrc?
7.8. How to fetch files from behind a firewall
7.9. How do I tell make fetch to do passive FTP?
7.10. How to fetch all distfiles at once
7.11. What does "Don't know how to make /usr/share/tmac/tmac.andoc" mean?
7.12. What does "Could not find bsd.own.mk" mean?
7.13. Using 'sudo' with pkgsrc
7.14. How do I change the location of configuration files?
7.15. Automated security checks
7.16. Why do some packages ignore my CFLAGS?
This section contains hints, tips & tricks on special things in pkgsrc that we
didn't find a better place for in the previous chapters, and it contains items
for both pkgsrc users and developers.
7.1. Are there any mailing lists for pkg-related discussion?
The following mailing lists may be of interest to pkgsrc users:
* pkgsrc-bugs: All bug reports in category "pkg" sent with send-pr(1) appear
here. Please do not report your bugs here directly; use one of the other
mailing lists. discussed.
* pkgsrc-bulk: A list where the results of pkgsrc bulk builds are sent and
discussed.
* pkgsrc-changes: This list is for those who are interested in getting a
commit message for every change committed to pkgsrc. It is also available
in digest form, meaning one daily message containing all commit messages
for changes to the package source tree in that 24 hour period.
* pkgsrc-users: This is a general purpose list for most issues regarding
pkgsrc, regardless of platform, e.g. soliciting user help for pkgsrc
configuration, unexpected build failures, using particular packages,
upgrading pkgsrc installations, questions regarding the pkgsrc release
branches, etc. General announcements or proposals for changes that impact
the pkgsrc user community, e.g. major infrastructure changes, new features,
package removals, etc., may also be posted.
* tech-pkg: This is a list for technical discussions related to pkgsrc
development, e.g. soliciting feedback for changes to pkgsrc infrastructure,
proposed new features, questions related to porting pkgsrc to a new
platform, advice for maintaining a package, patches that affect many
packages, help requests moved from pkgsrc-users when an infrastructure bug
is found, etc.
To subscribe, do:
% echo subscribe listname | mail majordomo@NetBSD.org
Archives for all these mailing lists are available from http://
mail-index.NetBSD.org/.
7.2. Where's the pkgviews documentation?
Pkgviews is tightly integrated with buildlink. You can find a pkgviews User's
guide in pkgsrc/mk/buildlink3/PKGVIEWS_UG.
7.3. Utilities for package management (pkgtools)
The pkgsrc/pkgtools directory pkgtools contains a number of useful utilities
for both users and developers of pkgsrc. This section attempts only to make the
reader aware of the utilities and when they might be useful, and not to
duplicate the documentation that comes with each package.
Utilities used by pkgsrc (automatically installed when needed):
* pkgtools/x11-links: Symlinks for use by buildlink.
OS tool augmentation (automatically installed when needed):
* pkgtools/digest: Calculates various kinds of checksums (including SHA1).
* pkgtools/libnbcompat: Compatibility library for pkgsrc tools.
* pkgtools/mtree: Installed on non-BSD systems due to lack of native mtree.
* pkgtools/pkg_install: Up-to-date replacement for /usr/sbin/pkg_install, or
for use on operating systems where pkg_install is not present.
Utilities used by pkgsrc (not automatically installed):
* pkgtools/pkg_tarup: Create a binary package from an already-installed
package. Used by make replace to save the old package.
* pkgtools/dfdisk: Adds extra functionality to pkgsrc, allowing it to fetch
distfiles from multiple locations. It currently supports the following
methods: multiple CD-ROMs and network FTP/HTTP connections.
* pkgtools/xpkgwedge: Put X11 packages someplace else (enabled by default).
* devel/cpuflags: Determine the best compiler flags to optimise code for your
current CPU and compiler.
Utilities for keeping track of installed packages, being up to date, etc:
* pkgtools/pkg_chk: Reports on packages whose installed versions do not match
the latest pkgsrc entries.
* pkgtools/pkgdep: Makes dependency graphs of packages, to aid in choosing a
strategy for updating.
* pkgtools/pkgdepgraph: Makes graphs from the output of pkgtools/pkgdep (uses
graphviz).
* pkgtools/pkglint: The pkglint(1) program checks a pkgsrc entry for errors,
lintpkgsrc(1) does various checks on the complete pkgsrc system.
* pkgtools/pkgsurvey: Report what packages you have installed.
Utilities for people maintaining or creating individual packages:
* pkgtools/pkgdiff: Automate making and maintaining patches for a package
(includes pkgdiff, pkgvi, mkpatches, etc.).
* pkgtools/rpm2pkg, pkgtools/url2pkg: Aids in converting to pkgsrc.
* pkgtools/gensolpkg: Convert pkgsrc to a Solaris package.
Utilities for people maintaining pkgsrc (or: more obscure pkg utilities)
* pkgtools/pkg_comp: Build packages in a chrooted area.
* pkgtools/libkver: Spoof kernel version for chrooted cross builds.
7.4. How to use pkgsrc as non-root
If you want to use pkgsrc as non-root user, you can set some variables to make
pkgsrc work under these conditions. At the very least, you need to set
UNPRIVILEGED to "yes"; this will turn on unprivileged mode and set multiple
related variables to allow installation of packages as non-root.
In case the defaults are not enough, you may want to tune some other variables
used. For example, if the automatic user/group detection leads to incorrect
values (or not the ones you would like to use), you can change them by setting
UNPRIVILEGED_USER and UNPRIVILEGED_GROUP respectively.
As regards bootstrapping, please note that the bootstrap script will ease
non-root configuration when given the "--ignore-user-check" flag, as it will
choose and use multiple default directories under ~/pkg as the installation
targets. These directories can be overriden by the "--prefix" flag provided by
the script, as well as some others that allow finer tuning of the tree layout.
7.5. How to resume transfers when fetching distfiles?
By default, resuming transfers in pkgsrc is disabled, but you can enable this
feature by adding the option PKG_RESUME_TRANSFERS=YES into /etc/mk.conf. If,
during a fetch step, an incomplete distfile is found, pkgsrc will try to resume
it.
You can also use a different program than the default ftp(1) by changing the
FETCH_CMD variable. Don't forget to set FETCH_RESUME_ARGS and FETCH_OUTPUT_ARGS
if you are not using default values.
For example, if you want to use wget to resume downloads, you'll have to use
something like:
FETCH_CMD= wget
FETCH_BEFORE_ARGS= --passive-ftp
FETCH_RESUME_ARGS= -c
FETCH_OUTPUT_ARGS= -O
7.6. How can I install/use XFree86 from pkgsrc?
If you want to use XFree86 from pkgsrc instead of your system's own X11 (/usr/
X11R6, /usr/openwin, ...), you will have to add the following line into /etc/
mk.conf:
X11_TYPE=XFree86
7.7. How can I install/use X.org from pkgsrc?
If you want to use X.org from pkgsrc instead of your system's own X11 (/usr/
X11R6, /usr/openwin, ...) you will have to add the following line into /etc/
mk.conf:
X11_TYPE=xorg
Note
The DragonFly operating system defaults to using this X.org X11 implementation
from pkgsrc.
7.8. How to fetch files from behind a firewall
If you are sitting behind a firewall which does not allow direct connections to
Internet hosts (i.e. non-NAT), you may specify the relevant proxy hosts. This
is done using an environment variable in the form of a URL, e.g. in Amdahl, the
machine "orpheus.amdahl.com" is one of the firewalls, and it uses port 80 as
the proxy port number. So the proxy environment variables are:
ftp_proxy=ftp://orpheus.amdahl.com:80/
http_proxy=http://orpheus.amdahl.com:80/
7.9. How do I tell make fetch to do passive FTP?
This depends on which utility is used to retrieve distfiles. From bsd.pkg.mk,
FETCH_CMD is assigned the first available command from the following list:
* ${LOCALBASE}/bin/ftp
* /usr/bin/ftp
On a default NetBSD installation, this will be /usr/bin/ftp, which
automatically tries passive connections first, and falls back to active
connections if the server refuses to do passive. For the other tools, add the
following to your /etc/mk.conf file: PASSIVE_FETCH=1.
Having that option present will prevent /usr/bin/ftp from falling back to
active transfers.
7.10. How to fetch all distfiles at once
You would like to download all the distfiles in a single batch from work or
university, where you can't run a make fetch. There is an archive of distfiles
on ftp.NetBSD.org, but downloading the entire directory may not be appropriate.
The answer here is to do a make fetch-list in /usr/pkgsrc or one of its
subdirectories, carry the resulting list to your machine at work/school and use
it there. If you don't have a NetBSD-compatible ftp(1) (like tnftp) at work,
don't forget to set FETCH_CMD to something that fetches a URL:
At home:
% cd /usr/pkgsrc
% make fetch-list FETCH_CMD=wget DISTDIR=/tmp/distfiles >/tmp/fetch.sh
% scp /tmp/fetch.sh work:/tmp
At work:
% sh /tmp/fetch.sh
then tar up /tmp/distfiles and take it home.
If you have a machine running NetBSD, and you want to get all distfiles (even
ones that aren't for your machine architecture), you can do so by using the
above-mentioned make fetch-list approach, or fetch the distfiles directly by
running:
% make mirror-distfiles
If you even decide to ignore NO_{SRC,BIN}_ON_{FTP,CDROM}, then you can get
everything by running:
% make fetch NO_SKIP=yes
7.11. What does "Don't know how to make /usr/share/tmac/tmac.andoc" mean?
When compiling the pkgtools/pkg_install package, you get the error from make
that it doesn't know how to make /usr/share/tmac/tmac.andoc? This indicates
that you don't have installed the "text" set (nroff, ...) from the NetBSD base
distribution on your machine. It is recommended to do that to format man pages.
In the case of the pkgtools/pkg_install package, you can get away with setting
NOMAN=YES either in the environment or in /etc/mk.conf.
7.12. What does "Could not find bsd.own.mk" mean?
You didn't install the compiler set, comp.tgz, when you installed your NetBSD
machine. Please get and install it, by extracting it in /:
# cd /
# tar --unlink -zxvpf .../comp.tgz
comp.tgz is part of every NetBSD release. Get the one that corresponds to your
release (determine via uname -r).
7.13. Using 'sudo' with pkgsrc
When installing packages as non-root user and using the just-in-time su(1)
feature of pkgsrc, it can become annoying to type in the root password for each
required package installed. To avoid this, the sudo package can be used, which
does password caching over a limited time. To use it, install sudo (either as
binary package or from security/sudo) and then put the following into your /etc
/mk.conf:
.if exists(${LOCALBASE}/bin/sudo)
SU_CMD= ${LOCALBASE}/bin/sudo /bin/sh -c
.endif
7.14. How do I change the location of configuration files?
As the system administrator, you can choose where configuration files are
installed. The default settings make all these files go into ${PREFIX}/etc or
some of its subdirectories; this may be suboptimal depending on your
expectations (e.g., a read-only, NFS-exported PREFIX with a need of per-machine
configuration of the provided packages).
In order to change the defaults, you can modify the PKG_SYSCONFBASE variable
(in /etc/mk.conf) to point to your preferred configuration directory; some
common examples include /etc or /etc/pkg.
Furthermore, you can change this value on a per-package basis by setting the
PKG_SYSCONFDIR.${PKG_SYSCONFVAR} variable. PKG_SYSCONFVAR's value usually
matches the name of the package you would like to modify, that is, the contents
of PKGBASE.
Note that after changing these settings, you must rebuild and reinstall any
affected packages.
7.15. Automated security checks
Please be aware that there can often be bugs in third-party software, and some
of these bugs can leave a machine vulnerable to exploitation by attackers. In
an effort to lessen the exposure, the NetBSD packages team maintains a database
of known-exploits to packages which have at one time been included in pkgsrc.
The database can be downloaded automatically, and a security audit of all
packages installed on a system can take place. To do this, install the security
/audit-packages package. It has two components:
1. download-vulnerability-list, an easy way to download a list of the security
vulnerabilities information. This list is kept up to date by the NetBSD
security officer and the NetBSD packages team, and is distributed from the
NetBSD ftp server:
ftp://ftp.NetBSD.org/pub/NetBSD/packages/distfiles/pkg-vulnerabilities
2. audit-packages, an easy way to audit the current machine, checking each
vulnerability which is known. If a vulnerable package is installed, it will
be shown by output to stdout, including a description of the type of
vulnerability, and a URL containing more information.
Use of the security/audit-packages package is strongly recommended! After
"audit-packages" is installed, please read the package's message, which you can
get by running pkg_info -D audit-packages.
If this package is installed, pkgsrc builds will use it to perform a security
check before building any package. See Section 5.2, "Variables affecting the
build process" for ways to control this check.
7.16. Why do some packages ignore my CFLAGS?
When you add your own preferences to the CFLAGS variable in your mk.conf, these
flags are passed in environment variables to the ./configure scripts and to
make(1). Some package authors ignore the CFLAGS from the environment variable
by overriding them in the Makefiles of their package.
Currently there is no solution to this problem. If you really need the package
to use your CFLAGS you should run make patch in the package directory and then
inspect any Makefile and Makefile.in for whether they define CFLAGS explicitly.
Usually you can remove these lines. But be aware that some "smart" programmers
write so bad code that it only works for the specific combination of CFLAGS
they have chosen.
Part II. The pkgsrc developer's guide
This part of the book deals with creating and modifying packages. It starts
with a "HOWTO"-like guide on creating a new package. The remaining chapters are
more like a reference manual for pkgsrc.
Table of Contents
8. Creating a new pkgsrc package from scratch
9. Package components - files, directories and contents
9.1. Makefile
9.2. distinfo
9.3. patches/*
9.4. Other mandatory files
9.5. Optional files
9.6. work*
9.7. files/*
10. Programming in Makefiles
10.1. Makefile variables
10.1.1. Naming conventions
10.2. Code snippets
10.2.1. Adding things to a list
10.2.2. Converting an internal list into an external list
10.2.3. Passing variables to a shell command
10.2.4. Quoting guideline
10.2.5. Workaround for a bug in BSD Make
11. PLIST issues
11.1. RCS ID
11.2. Semi-automatic PLIST generation
11.3. Tweaking output of make print-PLIST
11.4. Variable substitution in PLIST
11.5. Man page compression
11.6. Changing PLIST source with PLIST_SRC
11.7. Platform-specific and differing PLISTs
11.8. Sharing directories between packages
12. Buildlink methodology
12.1. Converting packages to use buildlink3
12.2. Writing buildlink3.mk files
12.2.1. Anatomy of a buildlink3.mk file
12.2.2. Updating BUILDLINK_API_DEPENDS.pkg in buildlink3.mk files
12.3. Writing builtin.mk files
12.3.1. Anatomy of a builtin.mk file
12.3.2. Global preferences for native or pkgsrc software
13. The pkginstall framework
13.1. Files and directories outside the installation prefix
13.1.1. Directory manipulation
13.1.2. File manipulation
13.2. Configuration files
13.2.1. How PKG_SYSCONFDIR is set
13.2.2. Telling the software where configuration files are
13.2.3. Patching installations
13.2.4. Disabling handling of configuration files
13.3. System startup scripts
13.3.1. Disabling handling of system startup scripts
13.4. System users and groups
13.5. System shells
13.5.1. Disabling shell registration
13.6. Fonts
13.6.1. Disabling automatic update of the fonts databases
14. Options handling
14.1. Global default options
14.2. Converting packages to use bsd.options.mk
14.3. Option Names
15. The build process
15.1. Introduction
15.2. Program location
15.3. Directories used during the build process
15.4. Running a phase
15.5. The fetch phase
15.6. The checksum phase
15.7. The extract phase
15.8. The patch phase
15.9. The tools phase
15.10. The wrapper phase
15.11. The configure phase
15.12. The build phase
15.13. The test phase
15.14. The install phase
15.15. The package phase
15.16. Other helpful targets
16. Tools needed for building or running
16.1. Tools for pkgsrc builds
16.2. Tools needed by packages
16.3. Tools provided by platforms
17. Making your package work
17.1. General operation
17.1.1. How to pull in variables from /etc/mk.conf
17.1.2. Where to install documentation
17.1.3. Restricted packages
17.1.4. Handling dependencies
17.1.5. Handling conflicts with other packages
17.1.6. Packages that cannot or should not be built
17.1.7. Packages which should not be deleted, once installed
17.1.8. Handling packages with security problems
17.1.9. How to handle compiler bugs
17.1.10. How to handle incrementing versions when fixing an existing
package
17.1.11. Portability of packages
17.2. Fixing problems in the fetch phase
17.2.1. Packages whose distfiles aren't available for plain downloading
17.2.2. How to handle modified distfiles with the 'old' name
17.3. Fixing problems in the configure phase
17.3.1. Shared libraries - libtool
17.3.2. Using libtool on GNU packages that already support libtool
17.3.3. GNU Autoconf/Automake
17.4. Fixing problems in the build phase
17.4.1. Compiling C and C++ code conditionally
17.5. Package specific actions
17.5.1. User interaction
17.5.2. Handling licenses
17.6. Fixing problems in the install phase
17.6.1. Installing score files
17.6.2. Packages containing perl scripts
17.6.3. Packages with hardcoded paths to other interpreters
17.6.4. Packages installing perl modules
17.6.5. Packages installing info files
17.6.6. Packages installing man pages
17.6.7. Packages installing GConf2 data files
17.6.8. Packages installing scrollkeeper data files
17.6.9. Packages installing X11 fonts
17.6.10. Packages installing GTK2 modules
17.6.11. Packages installing SGML or XML data
17.6.12. Packages installing extensions to the MIME database
17.6.13. Packages using intltool
17.6.14. Packages installing startup scripts
17.6.15. Packages installing TeX modules
17.7. Feedback to the author
18. Debugging
19. Submitting and Committing
19.1. Submitting binary packages
19.2. Submitting source packages (for non-NetBSD-developers)
19.3. General notes when adding, updating, or removing packages
19.4. Committing: Importing a package into CVS
19.5. Updating a package to a newer version
19.6. Moving a package in pkgsrc
20. Frequently Asked Questions
Chapter 8. Creating a new pkgsrc package from scratch
When you find a package that is not yet in pkgsrc, you most likely have a URL
from where you can download the source code. Starting with this URL, creating a
package involves only a few steps.
1. First, install the packages pkgtools/url2pkg and pkgtools/pkglint.
2. Then, choose one of the top-level directories as the category in which you
want to place your package. You can also create a directory of your own
(maybe called local). In that category directory, create another directory
for your package and change into it.
3. Run the program url2pkg, which will ask you for a URL. Enter the URL of the
distribution file (in most cases a .tar.gz file) and watch how the basic
ingredients of your package are created automatically. The distribution
file is extracted automatically to fill in some details in the Makefile
that would otherwise have to be done manually.
4. Examine the extracted files to determine the dependencies of your package.
Ideally, this is mentioned in some README file, but things may differ. For
each of these dependencies, look where it exists in pkgsrc, and if there is
a file called buildlink3.mk in that directory, add a line to your package
Makefile which includes that file just before the last line. If the
buildlink3.mk file does not exist, add a DEPENDS line to the Makefile,
which specifies the version of the dependency and where it can be found in
pkgsrc. This line should be placed in the third paragraph. If the
dependency is only needed for building the package, but not when using it,
use BUILD_DEPENDS instead of DEPENDS. Your package may then look like this:
[...]
BUILD_DEPENDS+= lua>=5.0:../../lang/lua
DEPENDS+= screen-[0-9]*:../../misc/screen
DEPENDS+= screen>=4.0:../../misc/screen
[...]
.include "../../category/package/buildlink3.mk"
.include "../../devel/glib2/buildlink3.mk"
.include "../../mk/bsd.pkg.mk"
5. Run pkglint to see what things still need to be done to make your package a
"good" one. If you don't know what pkglint's warnings want to tell you, try
pkglint --explain or pkglint -e, which outputs additional explanations.
6. Now, run bmake to build the package. For the various things that can go
wrong in this phase, consult Chapter 17, Making your package work.
7. When the package builds fine, the next step is to install the package. Run
bmake install and hope that everything works.
8. Up to now, the file PLIST, which contains a list of the files that are
installed by the package, is nearly empty. Run bmake print-PLIST >PLIST to
generate a probably correct list. Check the file using your preferred text
editor to see if the list of files looks plausible.
9. Run pkglint again to see if the generated PLIST contains garbage or not.
10. When you ran bmake install, the package has been registered in the database
of installed files, but with an empty list of files. To fix this, run bmake
deinstall and bmake install again. Now the package is registered with the
list of files from PLIST.
11. Run bmake package to create a binary package from the set of installed
files.
Chapter 9. Package components - files, directories and contents
Table of Contents
9.1. Makefile
9.2. distinfo
9.3. patches/*
9.4. Other mandatory files
9.5. Optional files
9.6. work*
9.7. files/*
Whenever you're preparing a package, there are a number of files involved which
are described in the following sections.
9.1. Makefile
Building, installation and creation of a binary package are all controlled by
the package's Makefile. The Makefile describes various things about a package,
for example from where to get it, how to configure, build, and install it.
A package Makefile contains several sections that describe the package.
In the first section there are the following variables, which should appear
exactly in the order given here.
* DISTNAME is the basename of the distribution file to be downloaded from the
package's website.
* PKGNAME is the name of the package, as used by pkgsrc. You only need to
provide it if it differs from DISTNAME. Usually it is the directory name
together with the version number. It must match the regular expression ^
[A-Za-z0-9][A-Za-z0-9-_.+]*$, that is, it starts with a letter or digit,
and contains only letters, digits, dashes, underscores, dots and plus
signs.
* CATEGORIES is a list of categories which the package fits in. You can
choose any of the top-level directories of pkgsrc for it.
Currently the following values are available for CATEGORIES. If more than
one is used, they need to be separated by spaces:
archivers cross geography meta-pkgs security
audio databases graphics misc shells
benchmarks devel ham multimedia sysutils
biology editors inputmethod net textproc
cad emulators lang news time
chat finance mail parallel wm
comms fonts math pkgtools www
converters games mbone print x11
* MASTER_SITES is a list of URLs where the distribution files can be
downloaded. Each URL must end with a slash.
The MASTER_SITES may make use of the following predefined sites:
${MASTER_SITE_APACHE}
${MASTER_SITE_BACKUP}
${MASTER_SITE_CYGWIN}
${MASTER_SITE_DEBIAN}
${MASTER_SITE_FREEBSD}
${MASTER_SITE_FREEBSD_LOCAL}
${MASTER_SITE_GNOME}
${MASTER_SITE_GNU}
${MASTER_SITE_GNUSTEP}
${MASTER_SITE_IFARCHIVE}
${MASTER_SITE_MOZILLA}
${MASTER_SITE_OPENOFFICE}
${MASTER_SITE_PERL_CPAN}
${MASTER_SITE_R_CRAN}
${MASTER_SITE_SOURCEFORGE}
${MASTER_SITE_SUNSITE}
${MASTER_SITE_SUSE}
${MASTER_SITE_TEX_CTAN}
${MASTER_SITE_XCONTRIB}
${MASTER_SITE_XEMACS}
If one of these predefined sites is chosen, you may want to specify a
subdirectory of that site. Since these macros may expand to more than one
actual site, you must use the following construct to specify a
subdirectory:
${MASTER_SITE_GNU:=subdirectory/name/}
${MASTER_SITE_SOURCEFORGE:=project_name/}
Note the trailing slash after the subdirectory name.
If the package has multiple DISTFILES or multiple PATCHFILES from different
sites, set SITES.foo to a list of URIs where file "foo" may be found. "foo"
includes the suffix, e.g.:
DISTFILES= ${DISTNAME}${EXTRACT_SUFX}
DISTFILES+= foo-file.tar.gz
SITES.foo-file.tar.gz= \
http://www.somewhere.com/somehow/ \
http://www.somewhereelse.com/mirror/somehow/
* DISTFILES: Name(s) of archive file(s) containing distribution. The default
is ${DISTNAME}${EXTRACT_SUFX}. Should only be set if you have more than one
distfile.
Note that the normal default setting of DISTFILES must be made explicit if
you want to add to it (rather than replace it), as you usually would.
* EXTRACT_SUFX: Suffix of the distribution file, will be appended to
DISTNAME. Defaults to .tar.gz.
The second section contains information about separately downloaded patches, if
any.
* PATCHFILES: Name(s) of additional files that contain distribution patches.
There is no default. pkgsrc will look for them at PATCH_SITES. They will
automatically be uncompressed before patching if the names end with .gz or
.Z.
* PATCH_SITES: Primary location(s) for distribution patch files (see
PATCHFILES below) if not found locally.
The third section contains the following variables.
* MAINTAINER is the email address of the person who feels responsible for
this package, and who is most likely to look at problems or questions
regarding this package which have been reported with send-pr(1). Other
developers should contact the MAINTAINER before making major changes to the
package. When packaging a new program, set MAINTAINER to yourself. If you
really can't maintain the package for future updates, set it to <
pkgsrc-users@NetBSD.org>.
* HOMEPAGE is a URL where users can find more information about the package.
* COMMENT is a one-line description of the package (should not include the
package name).
Other variables that affect the build:
* WRKSRC: The directory where the interesting distribution files of the
package are found. The default is ${WRKDIR}/${DISTNAME}, which works for
most packages.
If a package doesn't create a subdirectory for itself (most GNU software
does, for instance), but extracts itself in the current directory, you
should set WRKSRC= ${WRKDIR}.
If a package doesn't create a subdirectory with the name of DISTNAME but
some different name, set WRKSRC to point to the proper name in ${WRKDIR},
for example WRKSRC= ${WRKDIR}/${DISTNAME}/unix. See lang/tcl and x11/tk for
other examples.
The name of the working directory created by pkgsrc is taken from the
WRKDIR_BASENAME variable. By default, its value is work. If you want to use
the same pkgsrc tree for building different kinds of binary packages, you
can change the variable according to your needs. Two other variables handle
common cases of setting WRKDIR_BASENAME individually. If OBJHOSTNAME is
defined in /etc/mk.conf, the first component of the host's name is attached
to the directory name. If OBJMACHINE is defined, the platform name is
attached, which might look like work.i386 or work.sparc.
Please pay attention to the following gotchas:
* Add MANCOMPRESSED if man pages are installed in compressed form by the
package; see comment in bsd.pkg.mk.
* Replace /usr/local with "${PREFIX}" in all files (see patches, below).
* If the package installs any info files, see Section 17.6.5, "Packages
installing info files".
9.2. distinfo
The distinfo file contains the message digest, or checksum, of each distfile
needed for the package. This ensures that the distfiles retrieved from the
Internet have not been corrupted during transfer or altered by a malign force
to introduce a security hole. Due to recent rumor about weaknesses of digest
algorithms, all distfiles are protected using both SHA1 and RMD160 message
digests, as well as the file size.
The distinfo file also contains the checksums for all the patches found in the
patches directory (see Section 9.3, "patches/*").
To regenerate the distinfo file, use the make makedistinfo or make mdi command.
Some packages have different sets of distfiles depending on the platform, for
example www/navigator). These are kept in the same distinfo file and care
should be taken when upgrading such a package to ensure distfile information is
not lost.
9.3. patches/*
This directory contains files that are used by the patch(1) command to modify
the sources as distributed in the distribution file into a form that will
compile and run perfectly on NetBSD. The files are applied successively in
alphabetic order (as returned by a shell "patches/patch-*" glob expansion), so
patch-aa is applied before patch-ab, etc.
The patch-* files should be in diff -bu format, and apply without a fuzz to
avoid problems. (To force patches to apply with fuzz you can set
PATCH_FUZZ_FACTOR=-F2). Furthermore, do not put changes for more than one file
into a single patch file, as this will make future modifications more
difficult.
Similar, a file should be patched at most once, not several times by several
different patches. If a file needs several patches, they should be combined
into one file.
One important thing to mention is to pay attention that no RCS IDs get stored
in the patch files, as these will cause problems when later checked into the
NetBSD CVS tree. Use the pkgdiff from the pkgtools/pkgdiff package to avoid
these problems.
For even more automation, we recommend using mkpatches from the same package to
make a whole set of patches. You just have to backup files before you edit them
to filename.orig, e.g. with cp -p filename filename.orig or, easier, by using
pkgvi again from the same package. If you upgrade a package this way, you can
easily compare the new set of patches with the previously existing one with
patchdiff.
When you have finished a package, remember to generate the checksums for the
patch files by using the make makepatchsum command, see Section 9.2, "distinfo"
.
When adding a patch that corrects a problem in the distfile (rather than e.g.
enforcing pkgsrc's view of where man pages should go), send the patch as a bug
report to the maintainer. This benefits non-pkgsrc users of the package, and
usually enables removing the patch in future version.
Patch files that are distributed by the author or other maintainers can be
listed in $PATCHFILES.
If it is desired to store any patches that should not be committed into pkgsrc,
they can be kept outside the pkgsrc tree in the $LOCALPATCHES directory. The
directory tree there is expected to have the same "category/package" structure
as pkgsrc, and patches are expected to be stored inside these dirs (also known
as $LOCALPATCHES/$PKGPATH). For example, if you want to keep a private patch
for pkgsrc/graphics/png, keep it in $LOCALPATCHES/graphics/png/mypatch. All
files in the named directory are expected to be patch files, and they are
applied after pkgsrc patches are applied.
9.4. Other mandatory files
DESCR
A multi-line description of the piece of software. This should include any
credits where they are due. Please bear in mind that others do not share
your sense of humour (or spelling idiosyncrasies), and that others will
read everything that you write here.
PLIST
This file governs the files that are installed on your system: all the
binaries, manual pages, etc. There are other directives which may be
entered in this file, to control the creation and deletion of directories,
and the location of inserted files. See Chapter 11, PLIST issues for more
information.
9.5. Optional files
INSTALL
This shell script is invoked twice by pkg_add(1). First time after package
extraction and before files are moved in place, the second time after the
files to install are moved in place. This can be used to do any custom
procedures not possible with @exec commands in PLIST. See pkg_add(1) and
pkg_create(1) for more information.
DEINSTALL
This script is executed before and after any files are removed. It is this
script's responsibility to clean up any additional messy details around the
package's installation, since all pkg_delete knows is how to delete the
files created in the original distribution. See pkg_delete(1) and
pkg_create(1) for more information.
MESSAGE
This file is displayed after installation of the package. Useful for things
like legal notices on almost-free software and hints for updating config
files after installing modules for apache, PHP etc. Please note that you
can modify variables in it easily by using MESSAGE_SUBST in the package's
Makefile:
MESSAGE_SUBST+= SOMEVAR="somevalue"
replaces "${SOMEVAR}" with "somevalue" in MESSAGE.
9.6. work*
When you type make, the distribution files are unpacked into the directory
denoted by WRKDIR. It can be removed by running make clean. Besides the
sources, this directory is also used to keep various timestamp files. The
directory gets removed completely on clean. The default is ${.CURDIR}/work or $
{.CURDIR}/work.${MACHINE_ARCH} if OBJMACHINE is set.
9.7. files/*
If you have any files that you wish to be placed in the package prior to
configuration or building, you could place these files here and use a "${CP}"
command in the "pre-configure" target to achieve this. Alternatively, you could
simply diff the file against /dev/null and use the patch mechanism to manage
the creation of this file.
Chapter 10. Programming in Makefiles
Table of Contents
10.1. Makefile variables
10.1.1. Naming conventions
10.2. Code snippets
10.2.1. Adding things to a list
10.2.2. Converting an internal list into an external list
10.2.3. Passing variables to a shell command
10.2.4. Quoting guideline
10.2.5. Workaround for a bug in BSD Make
Pkgsrc consists of many Makefile fragments, each of which forms a well-defined
part of the pkgsrc system. Using the make(1) system as a programming language
for a big system like pkgsrc requires some discipline to keep the code correct
and understandable.
The basic ingredients for Makefile programming are variables (which are
actually macros) and shell commands. Among these shell commands may even be
more complex ones like awk(1) programs. To make sure that every shell command
runs as intended it is necessary to quote all variables correctly when they are
used.
This chapter describes some patterns, that appear quite often in Makefiles,
including the pitfalls that come along with them.
10.1. Makefile variables
Makefile variables contain strings that can be processed using the five
operators ``='', ``+='', ``?='', ``:='', and ``!='', which are described in the
make(1) man page.
When a variable's value is parsed from a Makefile, the hash character ``#'' and
the backslash character ``\'' are handled specially. If a backslash is followed
by a newline, any whitespace immediately in front of the backslash, the
backslash, the newline, and any whitespace immediately behind the newline are
replaced with a single space. A backslash character and an immediately
following hash character are replaced with a single hash character. Otherwise,
the backslash is passed as is. In a variable assignment, any hash character
that is not preceded by a backslash starts a comment that continues upto the
end of the logical line.
Note: Because of this parsing algorithm the only way to create a variable
consisting of a single backslash is using the ``!='' operator, for example:
BACKSLASH!=echo "\\".
So far for defining variables. The other thing you can do with variables is
evaluating them. A variable is evaluated when it is part of the right side of
the ``:='' or the ``!='' operator, or directly before executing a shell command
which the variable is part of. In all other cases, make(1) performs lazy
evaluation, that is, variables are not evaluated until there's no other way.
The ``modifiers'' mentioned in the man page also evaluate the variable.
Some of the modifiers split the string into words and then operate on the
words, others operate on the string as a whole. When a string is split into
words, it is split as you would expect it from sh(1).
No rule without exception?the .for loop does not follow the shell quoting rules
but splits at sequences of whitespace.
There are several types of variables that should be handled differently.
Strings and two types of lists.
* Strings can contain arbitrary characters. Nevertheless, you should restrict
yourself to only using printable characters. Examples are PREFIX and
COMMENT.
* Internal lists are lists that are never exported to any shell command.
Their elements are separated by whitespace. Therefore, the elements
themselves cannot have embedded whitespace. Any other characters are
allowed. Internal lists can be used in .for loops. Examples are DEPENDS and
BUILD_DEPENDS.
* External lists are lists that may be exported to a shell command. Their
elements can contain any characters, including whitespace. That's why they
cannot be used in .for loops. Examples are DISTFILES and MASTER_SITES.
10.1.1. Naming conventions
* All variable names starting with an underscore are reserved for use by the
pkgsrc infrastructure. They shall not be used by package Makefiles.
* In .for loops you should use lowercase variable names for the iteration
variables.
* All list variables should have a ``plural'' name, e.g. PKG_OPTIONS or
DISTFILES.
10.2. Code snippets
This section presents you with some code snippets you should use in your own
code. If you don't find anything appropriate here, you should test your code
and add it here.
10.2.1. Adding things to a list
STRING= foo * bar `date`
INT_LIST= # empty
ANOTHER_INT_LIST= apache-[0-9]*:../../www/apache
EXT_LIST= # empty
ANOTHER_EXT_LIST= a=b c=d
INT_LIST+= ${STRING} # 1
INT_LIST+= ${ANOTHER_INT_LIST} # 2
EXT_LIST+= ${STRING:Q} # 3
EXT_LIST+= ${ANOTHER_EXT_LIST} # 4
When you add a string to an external list (example 3), it must be quoted. In
all other cases, you must not add a quoting level. You must not merge internal
and external lists, unless you are sure that all entries are correctly
interpreted in both lists.
10.2.2. Converting an internal list into an external list
EXT_LIST= # empty
.for i in ${INT_LIST}
EXT_LIST+= ${i:Q}""
.endfor
This code converts the internal list INT_LIST into the external list EXT_LIST.
As the elements of an internal list are unquoted they must be quoted here. The
reason for appending "" is explained below.
10.2.3. Passing variables to a shell command
STRING= foo bar < > * `date` $$HOME ' "
EXT_LIST= string=${STRING:Q} x=second\ item
all:
echo ${STRING} # 1
echo "${STRING}" # 2
echo "${STRING:Q}" # 3
echo ${STRING:Q} # 4
echo x${STRING:Q} | sed 1s,.,, # 5
env ${EXT_LIST} /bin/sh -c 'echo "$$string"; echo "$$x"'
Example 1 leads to a syntax error in the shell, as the characters are just
copied.
Example 2 leads to a syntax error too, and if you leave out the last "
character from ${STRING}, date(1) will be executed. The $HOME shell variable
would be evaluated, too.
Example 3 outputs each space character preceded by a backslash (or not),
depending on the implementation of the echo(1) command.
Example 4 handles correctly every string that does not start with a dash. In
that case, the result depends on the implementation of the echo(1) command. As
long as you can guarantee that your input does not start with a dash, this form
is appropriate.
Example 5 handles even the case of a leading dash correctly.
The EXT_LIST does not need to be quoted because the quoting has already been
done when adding elements to the list.
As internal lists shall not be passed to the shell, there is no example for it.
10.2.4. Quoting guideline
There are many possible sources of wrongly quoted variables. This section lists
some of the commonly known ones.
* Whenever you use the value of a list, think about what happens to leading
or trailing whitespace. If the list is a well-formed shell expression, you
can apply the :M* modifier to strip leading and trailing whitespace from
each word. The :M operator first splits its argument according to the rules
of the shell, and then creates a new list consisting of all words that
match the shell glob expression *, that is: all. One class of situations
where this is needed is when adding a variable like CPPFLAGS to
CONFIGURE_ARGS. If the configure script invokes other configure scripts, it
strips the leading and trailing whitespace from the variable and then
passes it to the other configure scripts. But these configure scripts
expect the (child) CPPFLAGS variable to be the same as the parent CPPFLAGS.
That's why we better pass the CPPFLAGS value properly trimmed. And here is
how we do it:
CPPFLAGS= # empty
CPPFLAGS+= -Wundef -DPREFIX=\"${PREFIX:Q}\"
CPPFLAGS+= ${MY_CPPFLAGS}
CONFIGURE_ARGS+= CPPFLAGS=${CPPFLAGS:M*:Q}
all:
echo x${CPPFLAGS:Q}x # leading and trailing whitespace
echo x${CONFIGURE_ARGS}x # properly trimmed
* The example above contains one bug: The ${PREFIX} is a properly quoted
shell expression, but there is the C compiler after it, which also expects
a properly quoted string (this time in C syntax). The version above is
therefore only correct if ${PREFIX} does not have embedded backslashes or
double quotes. If you want to allow these, you have to add another layer of
quoting to each variable that is used as a C string literal. You cannot use
the :Q operator for it, as this operator only works for the shell.
* Whenever a variable can be empty, the :Q operator can have surprising
results. Here are two completely different cases which can be solved with
the same trick.
EMPTY= # empty
empty_test:
for i in a ${EMPTY:Q} c; do \
echo "$$i"; \
done
for_test:
.for i in a:\ a:\test.txt
echo ${i:Q}
echo "foo"
.endfor
The first example will only print two of the three lines we might have
expected. This is because ${EMPTY:Q} expands to the empty string, which the
shell cannot see. The workaround is to write ${EMPTY:Q}"". This pattern can
be often found as ${TEST} -z ${VAR:Q} or as ${TEST} -f ${FNAME:Q} (both of
these are wrong).
The second example will only print three lines instead of four. The first
line looks like a:\ echo foo. This is because the backslash of the value a:
\ is interpreted as a line-continuation by make(1), which makes the second
line the arguments of the echo(1) command from the first line. To avoid
this, write ${i:Q}"".
10.2.5. Workaround for a bug in BSD Make
The pkgsrc bmake program does not handle the following assignment correctly. In
case _othervar_ contains a ``-'' character, one of the closing braces is
included in ${VAR} after this code executes.
VAR:= ${VAR:N${_othervar_:C/-//}}
For a more complex code snippet and a workaround, see the package regress/
make-quoting, testcase bug1.
Chapter 11. PLIST issues
Table of Contents
11.1. RCS ID
11.2. Semi-automatic PLIST generation
11.3. Tweaking output of make print-PLIST
11.4. Variable substitution in PLIST
11.5. Man page compression
11.6. Changing PLIST source with PLIST_SRC
11.7. Platform-specific and differing PLISTs
11.8. Sharing directories between packages
The PLIST file contains a package's "packing list", i.e. a list of files that
belong to the package (relative to the ${PREFIX} directory it's been installed
in) plus some additional statements - see the pkg_create(1) man page for a full
list. This chapter addresses some issues that need attention when dealing with
the PLIST file (or files, see below!).
11.1. RCS ID
Be sure to add a RCS ID line as the first thing in any PLIST file you write:
@comment $NetBSD$
11.2. Semi-automatic PLIST generation
You can use the make print-PLIST command to output a PLIST that matches any new
files since the package was extracted. See Section 15.16, "Other helpful
targets" for more information on this target.
11.3. Tweaking output of make print-PLIST
If you have used any of the *-dirs packages, as explained in Section 11.8,
"Sharing directories between packages", you may have noticed that make
print-PLIST outputs a set of @comments instead of real @dirrm lines. You can
also do this for specific directories and files, so that the results of that
command are very close to reality. This helps a lot during the update of
packages.
The PRINT_PLIST_AWK variable takes a set of AWK patterns and actions that are
used to filter the output of print-PLIST. You can append any chunk of AWK
scripting you like to it, but be careful with quoting.
For example, to get all files inside the libdata/foo directory removed from the
resulting PLIST:
PRINT_PLIST_AWK+= /^libdata\/foo/ { next; }
And to get all the @dirrm lines referring to a specific (shared) directory
converted to @comments:
PRINT_PLIST_AWK+= /^@dirrm share\/specific/ { print "@comment " $$0; next; }
11.4. Variable substitution in PLIST
A number of variables are substituted automatically in PLISTs when a package is
installed on a system. This includes the following variables:
${MACHINE_ARCH}, ${MACHINE_GNU_ARCH}
Some packages like emacs and perl embed information about which
architecture they were built on into the pathnames where they install their
files. To handle this case, PLIST will be preprocessed before actually
used, and the symbol "${MACHINE_ARCH}" will be replaced by what uname -p
gives. The same is done if the string ${MACHINE_GNU_ARCH} is embedded in
PLIST somewhere - use this on packages that have GNU autoconf-created
configure scripts.
Legacy note
There used to be a symbol "$ARCH" that was replaced by the output of uname
-m, but that's no longer supported and has been removed.
${OPSYS}, ${LOWER_OPSYS}, ${OS_VERSION}
Some packages want to embed the OS name and version into some paths. To do
this, use these variables in the PLIST:
* ${OPSYS} - output of "uname -s"
* ${LOWER_OPSYS} - lowercase common name (eg. "solaris")
* ${OS_VERSION} - "uname -r"
For a complete list of values which are replaced by default, please look in
bsd.pkg.mk (and search for PLIST_SUBST).
If you want to change other variables not listed above, you can add variables
and their expansions to this variable in the following way, similar to
MESSAGE_SUBST (see Section 9.5, "Optional files"):
PLIST_SUBST+= SOMEVAR="somevalue"
This replaces all occurrences of "${SOMEVAR}" in the PLIST with "somevalue".
11.5. Man page compression
Man pages should be installed in compressed form if MANZ is set (in
bsd.own.mk), and uncompressed otherwise. To handle this in the PLIST file, the
suffix ".gz" is appended/removed automatically for man pages according to MANZ
and MANCOMPRESSED being set or not, see above for details. This modification of
the PLIST file is done on a copy of it, not PLIST itself.
11.6. Changing PLIST source with PLIST_SRC
To use one or more files as source for the PLIST used in generating the binary
package, set the variable PLIST_SRC to the names of that file(s). The files are
later concatenated using cat(1), and order of things is important.
11.7. Platform-specific and differing PLISTs
Some packages decide to install a different set of files based on the operating
system being used. These differences can be automatically handled by using the
following files:
* PLIST.common
* PLIST.${OPSYS}
* PLIST.${MACHINE_ARCH}
* PLIST.${OPSYS}-${MACHINE_ARCH}
* PLIST.common_end
11.8. Sharing directories between packages
A "shared directory" is a directory where multiple (and unrelated) packages
install files. These directories are problematic because you have to add
special tricks in the PLIST to conditionally remove them, or have some
centralized package handle them.
Within pkgsrc, you'll find both approaches. If a directory is shared by a few
unrelated packages, it's often not worth to add an extra package to remove it.
Therefore, one simply does:
@unexec ${RMDIR} %D/path/to/shared/directory 2>/dev/null || ${TRUE}
in the PLISTs of all affected packages, instead of the regular "@dirrm" line.
However, if the directory is shared across many packages, two different
solutions are available:
1. If the packages have a common dependency, the directory can be removed in
that. For example, see textproc/scrollkeeper, which removes the shared
directory share/omf.
2. If the packages using the directory are not related at all (they have no
common dependencies), a *-dirs package is used.
From now on, we'll discuss the second solution. To get an idea of the *-dirs
packages available, issue:
% cd .../pkgsrc
% ls -d */*-dirs
Their use from other packages is very simple. The USE_DIRS variable takes a
list of package names (without the "-dirs" part) together with the required
version number (always pick the latest one when writing new packages).
For example, if a package installs files under share/applications, it should
have the following line in it:
USE_DIRS+= xdg-1.1
After regenerating the PLIST using make print-PLIST, you should get the right
(commented out) lines.
Note that even if your package is using $X11BASE, it must not depend on the
*-x11-dirs packages. Just specify the name without that part and pkgsrc (in
particular, mk/dirs.mk) will take care of it.
Chapter 12. Buildlink methodology
Table of Contents
12.1. Converting packages to use buildlink3
12.2. Writing buildlink3.mk files
12.2.1. Anatomy of a buildlink3.mk file
12.2.2. Updating BUILDLINK_API_DEPENDS.pkg in buildlink3.mk files
12.3. Writing builtin.mk files
12.3.1. Anatomy of a builtin.mk file
12.3.2. Global preferences for native or pkgsrc software
Buildlink is a framework in pkgsrc that controls what headers and libraries are
seen by a package's configure and build processes. This is implemented in a two
step process:
1. Symlink headers and libraries for dependencies into BUILDLINK_DIR, which by
default is a subdirectory of WRKDIR.
2. Create wrapper scripts that are used in place of the normal compiler tools
that translate -I${LOCALBASE}/include and -L${LOCALBASE}/lib into
references to BUILDLINK_DIR. The wrapper scripts also make native compiler
on some operating systems look like GCC, so that packages that expect GCC
won't require modifications to build with those native compilers.
This normalizes the environment in which a package is built so that the package
may be built consistently despite what other software may be installed. Please
note that the normal system header and library paths, e.g. /usr/include, /usr/
lib, etc., are always searched -- buildlink3 is designed to insulate the
package build from non-system-supplied software.
12.1. Converting packages to use buildlink3
The process of converting packages to use the buildlink3 framework
("bl3ifying") is fairly straightforward. The things to keep in mind are:
1. Ensure that the build always calls the wrapper scripts instead of the
actual toolchain. Some packages are tricky, and the only way to know for
sure is the check ${WRKDIR}/.work.log to see if the wrappers are being
invoked.
2. Don't override PREFIX from within the package Makefile, e.g. Java VMs,
standalone shells, etc., because the code to symlink files into $
{BUILDLINK_DIR} looks for files relative to "pkg_info -qp pkgname".
3. Remember that only the buildlink3.mk files that you list in a package's
Makefile are added as dependencies for that package.
If a dependency on a particular package is required for its libraries and
headers, then we replace:
DEPENDS+= foo>=1.1.0:../../category/foo
with
.include "../../category/foo/buildlink3.mk"
The buildlink3.mk files usually define the required dependencies. If you need a
newer version of the dependency when using buildlink3.mk files, then you can
define it in your Makefile; for example:
BUILDLINK_API_DEPENDS.foo+= foo>=1.1.0
.include "../../category/foo/buildlink3.mk"
There are several buildlink3.mk files in pkgsrc/mk that handle special package
issues:
* bdb.buildlink3.mk chooses either the native or a pkgsrc Berkeley DB
implementation based on the values of BDB_ACCEPTED and BDB_DEFAULT.
* curses.buildlink3.mk: If the system comes with neither Curses nor NCurses,
this will take care to install the devel/ncurses package.
* krb5.buildlink3.mk uses the value of KRB5_ACCEPTED to choose between adding
a dependency on Heimdal or MIT-krb5 for packages that require a Kerberos 5
implementation.
* motif.buildlink3.mk checks for a system-provided Motif installation or adds
a dependency on x11/lesstif or x11/openmotif.
* oss.buildlink3.mk defines several variables that may be used by packages
that use the Open Sound System (OSS) API.
* pgsql.buildlink3.mk will accept either Postgres 7.3 or 7.4, whichever is
found installed. See the file for more information.
* pthread.buildlink3.mk uses the value of PTHREAD_OPTS and checks for native
pthreads or adds a dependency on devel/pth as needed.
* xaw.buildlink3.mk uses the value of XAW_TYPE to choose a particular Athena
widgets library.
The comments in those buildlink3.mk files provide a more complete description
of how to use them properly.
12.2. Writing buildlink3.mk files
A package's buildlink3.mk file is included by Makefiles to indicate the need to
compile and link against header files and libraries provided by the package. A
buildlink3.mk file should always provide enough information to add the correct
type of dependency relationship and include any other buildlink3.mk files that
it needs to find headers and libraries that it needs in turn.
To generate an initial buildlink3.mk file for further editing, Rene Hexel's
pkgtools/createbuildlink package is highly recommended. For most packages, the
following command will generate a good starting point for buildlink3.mk files:
% cd pkgsrc/category/pkgdir
% createbuildlink >buildlink3.mk
12.2.1. Anatomy of a buildlink3.mk file
The following real-life example buildlink3.mk is taken from pkgsrc/graphics/
tiff:
# $NetBSD: buildlink3.mk,v 1.7 2004/03/18 09:12:12 jlam Exp $
BUILDLINK_DEPTH:= ${BUILDLINK_DEPTH}+
TIFF_BUILDLINK3_MK:= ${TIFF_BUILDLINK3_MK}+
.if !empty(BUILDLINK_DEPTH:M+)
BUILDLINK_DEPENDS+= tiff
.endif
BUILDLINK_PACKAGES:= ${BUILDLINK_PACKAGES:Ntiff}
BUILDLINK_PACKAGES+= tiff
.if !empty(TIFF_BUILDLINK3_MK:M+)
BUILDLINK_API_DEPENDS.tiff+= tiff>=3.6.1
BUILDLINK_PKGSRCDIR.tiff?= ../../graphics/tiff
.endif # TIFF_BUILDLINK3_MK
.include "../../devel/zlib/buildlink3.mk"
.include "../../graphics/jpeg/buildlink3.mk"
BUILDLINK_DEPTH:= ${BUILDLINK_DEPTH:S/+$//}
The header and footer manipulate BUILDLINK_DEPTH, which is common across all
buildlink3.mk files and is used to track at what depth we are including
buildlink3.mk files.
The first section controls if the dependency on pkg is added. BUILDLINK_DEPENDS
is the global list of packages for which dependencies are added by buildlink3.
The second section advises pkgsrc that the buildlink3.mk file for pkg has been
included at some point. BUILDLINK_PACKAGES is the global list of packages for
which buildlink3.mk files have been included. It must always be appended to
within a buildlink3.mk file.
The third section is protected from multiple inclusion and controls how the
dependency on pkg is added. Several important variables are set in the section:
* BUILDLINK_API_DEPENDS.pkg is the actual dependency recorded in the
installed package; this should always be set using += to ensure that we're
appending to any pre-existing list of values. This variable should be set
to the first version of the package that had an API change.
* BUILDLINK_PKGSRCDIR.pkg is the location of the pkg pkgsrc directory.
* BUILDLINK_DEPMETHOD.pkg (not shown above) controls whether we use
BUILD_DEPENDS or DEPENDS to add the dependency on pkg. The build dependency
is selected by setting BUILDLINK_DEPMETHOD.pkg to "build". By default, the
full dependency is used.
* BUILDLINK_INCDIRS.pkg and BUILDLINK_LIBDIRS.pkg (not shown above) are lists
of subdirectories of ${BUILDLINK_PREFIX.pkg} to add to the header and
library search paths. These default to "include" and "lib" respectively.
* BUILDLINK_CPPFLAGS.pkg (not shown above) is the list of preprocessor flags
to add to CPPFLAGS, which are passed on to the configure and build phases.
The "-I" option should be avoided and instead be handled using
BUILDLINK_INCDIRS.pkg as above.
The following variables are all optionally defined within this second section
(protected against multiple inclusion) and control which package files are
symlinked into ${BUILDLINK_DIR} and how their names are transformed during the
symlinking:
* BUILDLINK_FILES.pkg (not shown above) is a shell glob pattern relative to $
{BUILDLINK_PREFIX.pkg} to be symlinked into ${BUILDLINK_DIR}, e.g. include/
*.h.
* BUILDLINK_FILES_CMD.pkg (not shown above) is a shell pipeline that outputs
to stdout a list of files relative to ${BUILDLINK_PREFIX.pkg}. The
resulting files are to be symlinked into ${BUILDLINK_DIR}. By default, this
takes the +CONTENTS of a pkg and filters it through $
{BUILDLINK_CONTENTS_FILTER.pkg}.
* BUILDLINK_CONTENTS_FILTER.pkg (not shown above) is a filter command that
filters +CONTENTS input into a list of files relative to $
{BUILDLINK_PREFIX.pkg} on stdout. By default for overwrite packages,
BUILDLINK_CONTENTS_FILTER.pkg outputs the contents of the include and lib
directories in the package +CONTENTS, and for pkgviews packages, it outputs
any libtool archives in lib directories.
* BUILDLINK_TRANSFORM.pkg (not shown above) is a list of sed arguments used
to transform the name of the source filename into a destination filename,
e.g. -e "s|/curses.h|/ncurses.h|g".
The last section includes any buildlink3.mk needed for pkg's library
dependencies. Including these buildlink3.mk files means that the headers and
libraries for these dependencies are also symlinked into ${BUILDLINK_DIR}
whenever the pkg buildlink3.mk file is included.
12.2.2. Updating BUILDLINK_API_DEPENDS.pkg in buildlink3.mk files
The situation that requires increasing the dependency listed in
BUILDLINK_API_DEPENDS.pkg after a package update is when the API or interface
to the header files change.
In this case, BUILDLINK_API_DEPENDS.pkg should be adjusted to require at least
the new package version. In some cases, the packages that depend on this new
version may need their PKGREVISIONs increased and, if they have buildlink3.mk
files, their BUILDLINK_API_DEPENDS.pkg adjusted, too. This is needed so pkgsrc
will require the correct package dependency and not settle for an older one
when building the source.
BUILDLINK_ABI_DEPENDS.pkg should be increased when the binary interface or
sonames (major number of the library version) of any installed shared libraries
change. This is needed so that binary packages made using it will require the
correct package dependency and not settle for an older one which will not
contain the necessary shared libraries.
See Section 17.1.4, "Handling dependencies" for more information about
dependencies on other packages, including the BUILDLINK_ABI_DEPENDS and
ABI_DEPENDS definitions.
Please take careful consideration before adjusting BUILDLINK_API_DEPENDS.pkg or
BUILDLINK_ABI_DEPENDS.pkg as we don't want to cause unneeded package deletions
and rebuilds. In many cases, new versions of packages work just fine with older
dependencies.
Also it is not needed to set BUILDLINK_ABI_DEPENDS.pkg when it is identical to
BUILDLINK_API_DEPENDS.pkg.
12.3. Writing builtin.mk files
Some packages in pkgsrc install headers and libraries that coincide with
headers and libraries present in the base system. Aside from a buildlink3.mk
file, these packages should also include a builtin.mk file that includes the
necessary checks to decide whether using the built-in software or the pkgsrc
software is appropriate.
The only requirements of a builtin.mk file for pkg are:
1. It should set USE_BUILTIN.pkg to either "yes" or "no" after it is included.
2. It should not override any USE_BUILTIN.pkg which is already set before the
builtin.mk file is included.
3. It should be written to allow multiple inclusion. This is very important
and takes careful attention to Makefile coding.
12.3.1. Anatomy of a builtin.mk file
The following is the recommended template for builtin.mk files:
.if !defined(IS_BUILTIN.foo)
#
# IS_BUILTIN.foo is set to "yes" or "no" depending on whether "foo"
# genuinely exists in the system or not.
#
IS_BUILTIN.foo?= no
# BUILTIN_PKG.foo should be set here if "foo" is built-in and its package
# version can be determined.
#
. if !empty(IS_BUILTIN.foo:M[yY][eE][sS])
BUILTIN_PKG.foo?= foo-1.0
. endif
.endif # IS_BUILTIN.foo
.if !defined(USE_BUILTIN.foo)
USE_BUILTIN.foo?= ${IS_BUILTIN.foo}
. if defined(BUILTIN_PKG.foo)
. for _depend_ in ${BUILDLINK_API_DEPENDS.foo}
. if !empty(USE_BUILTIN.foo:M[yY][eE][sS])
USE_BUILTIN.foo!= \
if ${PKG_ADMIN} pmatch '${_depend_}' ${BUILTIN_PKG.foo}; then \
${ECHO} "yes"; \
else \
${ECHO} "no"; \
fi
. endif
. endfor
. endif
.endif # USE_BUILTIN.foo
CHECK_BUILTIN.foo?= no
.if !empty(CHECK_BUILTIN.foo:M[nN][oO])
#
# Here we place code that depends on whether USE_BUILTIN.foo is set to
# "yes" or "no".
#
.endif # CHECK_BUILTIN.foo
The first section sets IS_BUILTIN.pkg depending on if pkg really exists in the
base system. This should not be a base system software with similar
functionality to pkg; it should only be "yes" if the actual package is included
as part of the base system. This variable is only used internally within the
builtin.mk file.
The second section sets BUILTIN_PKG.pkg to the version of pkg in the base
system if it exists (if IS_BUILTIN.pkg is "yes"). This variable is only used
internally within the builtin.mk file.
The third section sets USE_BUILTIN.pkg and is required in all builtin.mk files.
The code in this section must make the determination whether the built-in
software is adequate to satisfy the dependencies listed in
BUILDLINK_API_DEPENDS.pkg. This is typically done by comparing BUILTIN_PKG.pkg
against each of the dependencies in BUILDLINK_API_DEPENDS.pkg. USE_BUILTIN.pkg
must be set to the correct value by the end of the builtin.mk file. Note that
USE_BUILTIN.pkg may be "yes" even if IS_BUILTIN.pkg is "no" because we may make
the determination that the built-in version of the software is similar enough
to be used as a replacement.
The last section is guarded by CHECK_BUILTIN.pkg, and includes code that uses
the value of USE_BUILTIN.pkg set in the previous section. This typically
includes, e.g., adding additional dependency restrictions and listing
additional files to symlink into ${BUILDLINK_DIR} (via BUILDLINK_FILES.pkg).
12.3.2. Global preferences for native or pkgsrc software
When building packages, it's possible to choose whether to set a global
preference for using either the built-in (native) version or the pkgsrc version
of software to satisfy a dependency. This is controlled by setting
PREFER_PKGSRC and PREFER_NATIVE. These variables take values of either "yes",
"no", or a list of packages. PREFER_PKGSRC tells pkgsrc to use the pkgsrc
versions of software, while PREFER_NATIVE tells pkgsrc to use the built-in
versions. Preferences are determined by the most specific instance of the
package in either PREFER_PKGSRC or PREFER_NATIVE. If a package is specified in
neither or in both variables, then PREFER_PKGSRC has precedence over
PREFER_NATIVE. For example, to require using pkgsrc versions of software for
all but the most basic bits on a NetBSD system, you can set:
PREFER_PKGSRC= yes
PREFER_NATIVE= getopt skey tcp_wrappers
A package must have a builtin.mk file to be listed in PREFER_NATIVE, otherwise
it is simply ignored in that list.
Chapter 13. The pkginstall framework
Table of Contents
13.1. Files and directories outside the installation prefix
13.1.1. Directory manipulation
13.1.2. File manipulation
13.2. Configuration files
13.2.1. How PKG_SYSCONFDIR is set
13.2.2. Telling the software where configuration files are
13.2.3. Patching installations
13.2.4. Disabling handling of configuration files
13.3. System startup scripts
13.3.1. Disabling handling of system startup scripts
13.4. System users and groups
13.5. System shells
13.5.1. Disabling shell registration
13.6. Fonts
13.6.1. Disabling automatic update of the fonts databases
This chapter describes the framework known as pkginstall, whose key features
are:
* Generic installation and manipulation of directories and files outside the
pkgsrc-handled tree, LOCALBASE.
* Automatic handling of configuration files during installation, provided
that packages are correctly designed.
* Generation and installation of system startup scripts.
* Registration of system users and groups.
* Registration of system shells.
* Automatic updating of fonts databases.
The following sections inspect each of the above points in detail.
You may be thinking that many of the things described here could be easily done
with simple code in the package's post-installation target (post-install). This
is incorrect, as the code in them is only executed when building from source.
Machines using binary packages could not benefit from it at all (as the code
itself could be unavailable). Therefore, the only way to achieve any of the
items described above is by means of the installation scripts, which are
automatically generated by pkginstall.
13.1. Files and directories outside the installation prefix
As you already know, the PLIST file holds a list of files and directories that
belong to a package. The names used in it are relative to the installation
prefix (${PREFIX}), which means that it cannot register files outside this
directory (absolute path names are not allowed). Despite this restriction, some
packages need to install files outside this location; e.g., under ${VARBASE} or
${PKG_SYSCONFDIR}.
The only way to achieve this is to create such files during installation time
by using the installation scripts. These scripts can run arbitrary commands, so
they have the potential to create and manage files anywhere in the file system.
Here is where pkginstall comes into play: it provides generic scripts to
abstract the manipulation of such files and directories based on variables set
in the package's Makefile. The rest of this section describes these variables.
13.1.1. Directory manipulation
The following variables can be set to request the creation of directories
anywhere in the file system:
* MAKE_DIRS and OWN_DIRS contain a list of directories that should be created
and should attempt to be destroyed by the installation scripts. The
difference between the two is that the latter prompts the administrator to
remove any directories that may be left after deinstallation (because they
were not empty), while the former does not.
* MAKE_DIRS_PERMS and OWN_DIRS_PERMS contain a list of tuples describing
which directories should be created and should attempt to be destroyed by
the installation scripts. Each tuple holds the following values, separated
by spaces: the directory name, its owner, its group and its numerical mode.
For example:
MAKE_DIRS_PERMS+= ${VARBASE}/foo/private ${ROOT_USER} ${ROOT_GROUP} 0700
The difference between the two is exactly the same as their non-PERMS
counterparts.
13.1.2. File manipulation
Creating non-empty files outside the installation prefix is tricky because the
PLIST forces all files to be inside it. To overcome this problem, the only
solution is to extract the file in the known place (i.e., inside the
installation prefix) and copy it to the appropriate location during
installation (done by the installation scripts generated by pkginstall). We
will call the former the master file in the following paragraphs, which
describe the variables that can be used to automatically and consistently
handle files outside the installation prefix:
* CONF_FILES and SUPPORT_FILES are pairs of master and target files. During
installation time, the master file is copied to the target one if and only
if the latter does not exist. Upon deinstallation, the target file is
removed provided that it was not modified by the installation.
The difference between the two is that the latter prompts the administrator
to remove any files that may be left after deinstallation (because they
were not empty), while the former does not.
* CONF_FILES_PERMS and SUPPORT_FILES_PERMS contain tuples describing master
files as well as their target locations. For each of them, it also
specifies their owner, their group and their numeric permissions, in this
order. For example:
SUPPORT_FILES_PERMS+= ${PREFIX}/share/somefile ${VARBASE}/somefile ${ROOT_USER} ${ROOT_GROUP} 0700
The difference between the two is exactly the same as their non-PERMS
counterparts.
13.2. Configuration files
Configuration files are special in the sense that they are installed in their
own specific directory, PKG_SYSCONFDIR, and need special treatment during
installation (most of which is automated by pkginstall). The main concept you
must bear in mind is that files marked as configuration files are automatically
copied to the right place (somewhere inside PKG_SYSCONFDIR) during installation
if and only if they didn't exist before. Similarly, they will not be removed if
they have local modifications. This ensures that administrators never lose any
custom changes they may have made.
13.2.1. How PKG_SYSCONFDIR is set
As said before, the PKG_SYSCONFDIR variable specifies where configuration files
shall be installed. Its contents are set based upon the following variables:
* PKG_SYSCONFBASE: The configuration's root directory. Defaults to ${PREFIX}/
etc although it may be overridden by the user to point to his preferred
location (e.g., /etc, /etc/pkg, etc.). Packages must not use it directly.
* PKG_SYSCONFSUBDIR: A subdirectory of PKG_SYSCONFBASE under which the
configuration files for the package being built shall be installed. The
definition of this variable only makes sense in the package's Makefile
(i.e., it is not user-customizable).
As an example, consider the Apache package, www/apache2, which places its
configuration files under the httpd/ subdirectory of PKG_SYSCONFBASE. This
should be set in the package Makefile.
* PKG_SYSCONFVAR: Specifies the name of the variable that holds this
package's configuration directory (if different from PKG_SYSCONFBASE). It
defaults to PKGBASE's value, and is always prefixed with PKG_SYSCONFDIR.
* PKG_SYSCONFDIR.${PKG_SYSCONFVAR}: Holds the directory where the
configuration files for the package identified by PKG_SYSCONFVAR's shall be
placed.
Based on the above variables, pkginstall determines the value of
PKG_SYSCONFDIR, which is the only variable that can be used within a package to
refer to its configuration directory. The algorithm used to set its value is
basically the following:
1. If PKG_SYSCONFDIR.${PKG_SYSCONFVAR} is set, its value is used.
2. If the previous variable is not defined but PKG_SYSCONFSUBDIR is set in the
package's Makefile, the resulting value is ${PKG_SYSCONFBASE}/$
{PKG_SYSCONFSUBDIR}.
3. Otherwise, it is set to ${PKG_SYSCONFBASE}.
It is worth mentioning that ${PKG_SYSCONFDIR} is automatically added to
OWN_DIRS. See Section 13.1.1, "Directory manipulation" what this means.
13.2.2. Telling the software where configuration files are
Given that pkgsrc (and users!) expect configuration files to be in a known
place, you need to teach each package where it shall install its files. In some
cases you will have to patch the package Makefiles to achieve it. If you are
lucky, though, it may be as easy as passing an extra flag to the configuration
script; this is the case of GNU Autoconf- generated files:
CONFIGURE_ARGS+= --sysconfdir=${PKG_SYSCONFDIR}
Note that this specifies where the package has to look for its configuration
files, not where they will be originally installed (although the difference is
never explicit, unfortunately).
13.2.3. Patching installations
As said before, pkginstall automatically handles configuration files. This
means that the packages themselves must not touch the contents of $
{PKG_SYSCONFDIR} directly. Bad news is that many software installation scripts
will, out of the box, mess with the contents of that directory. So what is the
correct procedure to fix this issue?
You must teach the package (usually by manually patching it) to install any
configuration files under the examples hierarchy, share/examples/${PKGBASE}/.
This way, the PLIST registers them and the administrator always has the
original copies available.
Once the required configuration files are in place (i.e., under the examples
hierarchy), the pkginstall framework can use them as master copies during the
package installation to update what is in ${PKG_SYSCONFDIR}. To achieve this,
the variables CONF_FILES and CONF_FILES_PERMS are used. Check out
Section 13.1.2, "File manipulation" for information about their syntax and
their purpose. Here is an example, taken from the mail/mutt package:
EGDIR= ${PREFIX}/share/doc/mutt/samples
CONF_FILES= ${EGDIR}/Muttrc ${PKG_SYSCONFDIR}/Muttrc
Note that the EGDIR variable is specific to that package and has no meaning
outside it.
13.2.4. Disabling handling of configuration files
The automatic copying of config files can be toggled by setting the environment
variable PKG_CONFIG prior to package installation.
13.3. System startup scripts
System startup scripts are special files because they must be installed in a
place known by the underlying OS, usually outside the installation prefix.
Therefore, the same rules described in Section 13.1, "Files and directories
outside the installation prefix" apply, and the same solutions can be used.
However, pkginstall provides a special mechanism to handle these files.
In order to provide system startup scripts, the package has to:
1. Store the script inside ${FILESDIR}, with the .sh suffix appended.
Considering the print/cups package as an example, it has a cupsd.sh in its
files directory.
2. Tell pkginstall to handle it, appending the name of the script, without its
extension, to the RCD_SCRIPTS variable. Continuing the previous example:
RCD_SCRIPTS+= cupsd
Once this is done, pkginstall will do the following steps for each script in an
automated fashion:
1. Process the file found in the files directory applying all the
substitutions described in the FILES_SUBST variable.
2. Copy the script from the files directory to the examples hierarchy, $
{PREFIX}/share/examples/rc.d/. Note that this master file must be
explicitly registered in the PLIST.
3. Add code to the installation scripts to copy the startup script from the
examples hierarchy into the system-wide startup scripts directory.
13.3.1. Disabling handling of system startup scripts
The automatic copying of config files can be toggled by setting the environment
variable PKG_RCD_SCRIPTS prior to package installation. Note that the scripts
will be always copied inside the examples hierarchy, ${PREFIX}/share/examples/
rc.d/, no matter what the value of this variable is.
13.4. System users and groups
If a package needs to create special users and/or groups during installation,
it can do so by using the pkginstall framework.
Users can be created by adding entries to the PKG_USERS variable. Each entry
has the following syntax:
user:group
Further specification of user details may be done by setting per-user
variables. PKG_UID.user is the numeric UID for the user. PKG_GECOS.user is the
user's description or comment. PKG_HOME.user is the user's home directory, and
defaults to /nonexistent if not specified. PKG_SHELL.user is the user's shell,
and defaults to /sbinno/login if not specified.
Similarly, groups can be created by adding entries to the PKG_GROUPS variable,
whose syntax is:
group
The numeric GID of the group may be set by defining PKG_GID.group.
If a package needs to create the users and groups at an earlier stage, then it
can set USERGROUP_PHASE to either configure or build to indicate the phase
before which the users and groups are created. In this case, the numeric UIDs
and GIDs of the created users and groups are automatically hardcoded into the
final installation scripts.
13.5. System shells
Packages that install system shells should register them in the shell database,
/etc/shells, to make things easier to the administrator. This must be done from
the installation scripts to keep binary packages working on any system.
pkginstall provides an easy way to accomplish this task.
When a package provides a shell interpreter, it has to set the PKG_SHELL
variable to its absolute file name. This will add some hooks to the
installation scripts to handle it. Consider the following example, taken from
shells/zsh:
PKG_SHELL= ${PREFIX}/bin/zsh
13.5.1. Disabling shell registration
The automatic registration of shell interpreters can be disabled by the
administrator by setting the PKG_REGISTER_SHELLS environment variable to NO.
13.6. Fonts
Packages that install X11 fonts should update the database files that index the
fonts within each fonts directory. This can easily be accomplished within the
pkginstall framework.
When a package installs X11 fonts, it must list the directories in which fonts
are installed in the FONTS_DIRS.type variables, where type can be one of "ttf",
"type1" or "x11". This will add hooks to the installation scripts to run the
appropriate commands to update the fonts database files within each of those
directories. For convenience, if the directory path is relative, it is taken to
be relative to the package's installation prefix. Consider the following
example, taken from fonts/dbz-ttf:
FONTS_DIRS.ttf= ${PREFIX}/lib/X11/fonts/TTF
13.6.1. Disabling automatic update of the fonts databases
The automatic update of fonts databases can be disabled by the administrator by
setting the PKG_UPDATE_FONTS_DB environment variable to NO.
Chapter 14. Options handling
Table of Contents
14.1. Global default options
14.2. Converting packages to use bsd.options.mk
14.3. Option Names
Many packages have the ability to be built to support different sets of
features. bsd.options.mk is a framework in pkgsrc that provides generic
handling of those options that determine different ways in which the packages
can be built. It's possible for the user to specify exactly which sets of
options will be built into a package or to allow a set of global default
options apply.
14.1. Global default options
Global default options are listed in PKG_DEFAULT_OPTIONS, which is a list of
the options that should be built into every package if that option is
supported. This variable should be set in /etc/mk.conf.
14.2. Converting packages to use bsd.options.mk
The following example shows how bsd.options.mk should be used by the
hypothetical ``wibble'' package, either in the package Makefile, or in a file,
e.g. options.mk, that is included by the main package Makefile.
PKG_OPTIONS_VAR= PKG_OPTIONS.wibble
PKG_SUPPORTED_OPTIONS= wibble-foo ldap
PKG_OPTIONS_OPTIONAL_GROUPS= database
PKG_OPTIONS_GROUP.database= mysql pgsql
PKG_SUGGESTED_OPTIONS= wibble-foo
PKG_OPTIONS_LEGACY_VARS+= WIBBLE_USE_OPENLDAP:ldap
PKG_OPTIONS_LEGACY_OPTS+= foo:wibble-foo
.include "../../mk/bsd.prefs.mk"
# this package was previously named wibble2
.if defined(PKG_OPTIONS.wibble2)
PKG_LEGACY_OPTIONS+= ${PKG_OPTIONS.wibble2}
PKG_OPTIONS_DEPRECATED_WARNINGS+= \
"Deprecated variable PKG_OPTIONS.wibble2 used, use ${PKG_OPTIONS_VAR instead."
.endif
.include "../../mk/bsd.options.mk"
# Package-specific option-handling
###
### FOO support
###
.if !empty(PKG_OPTIONS:Mwibble-foo)
CONFIGURE_ARGS+= --enable-foo
.endif
###
### LDAP support
###
.if !empty(PKG_OPTIONS:Mldap)
. include "../../databases/openldap-client/buildlink3.mk"
CONFIGURE_ARGS+= --enable-ldap=${BUILDLINK_PREFIX.openldap-client}
.endif
###
### database support
###
.if !empty(PKG_OPTIONS:Mmysql)
. include "../../mk/mysql.buildlink3.mk"
.endif
.if !empty(PKG_OPTIONS:Mpgsql)
. include "../../mk/pgsql.buildlink3.mk"
.endif
The first section contains the information about which build options are
supported by the package, and any default options settings if needed.
1. PKG_OPTIONS_VAR is the name of the make(1) variable that the user can set
to override the default options. It should be set to PKG_OPTIONS.pkgbase.
Do not set it to PKG_OPTIONS.${PKGBASE}, since PKGBASE is set after
PKG_OPTIONS_VAR is used.
2. PKG_SUPPORTED_OPTIONS is a list of build options supported by the package.
3. PKG_OPTIONS_OPTIONAL_GROUPS is a list of names of groups of mutually
exclusive options. The options in each group are listed in
PKG_OPTIONS_GROUP.groupname. The most specific setting of any option from
the group takes precedence over all other options in the group. Options
from the groups will be automatically added to PKG_SUPPORTED_OPTIONS.
4. PKG_OPTIONS_REQUIRED_GROUPS is like PKG_OPTIONS_OPTIONAL_GROUPS, but
building the packages will fail if no option from the group is selected.
5. PKG_OPTIONS_NONEMPTY_SETS is a list of names of sets of options. At least
one option from each set must be selected. The options in each set are
listed in PKG_OPTIONS_SET.setname. Options from the sets will be
automatically added to PKG_SUPPORTED_OPTIONS. Building the package will
fail if no option from the set is selected.
6. PKG_SUGGESTED_OPTIONS is a list of build options which are enabled by
default.
7. PKG_OPTIONS_LEGACY_VARS is a list of "USE_VARIABLE:option" pairs that map
legacy /etc/mk.conf variables to their option counterparts. Pairs should be
added with "+=" to keep the listing of global legacy variables. A warning
will be issued if the user uses a legacy variable.
8. PKG_OPTIONS_LEGACY_OPTS is a list of "old-option:new-option" pairs that map
options that have been renamed to their new counterparts. Pairs should be
added with "+=" to keep the listing of global legacy options. A warning
will be issued if the user uses a legacy option.
9. PKG_LEGACY_OPTIONS is a list of options implied by deprecated variables
used. This can be used for cases that neither PKG_OPTIONS_LEGACY_VARS nor
PKG_OPTIONS_LEGACY_OPTS can handle, e. g. when PKG_OPTIONS_VAR is renamed.
10. PKG_OPTIONS_DEPRECATED_WARNINGS is a list of warnings about deprecated
variables or options used, and what to use instead.
A package should never modify PKG_DEFAULT_OPTIONS or the variable named in
PKG_OPTIONS_VAR. These are strictly user-settable. To suggest a default set of
options, use PKG_SUGGESTED_OPTIONS.
PKG_OPTIONS_VAR must be defined before including bsd.options.mk. If none of
PKG_SUPPORTED_OPTIONS, PKG_OPTIONS_OPTIONAL_GROUPS, and
PKG_OPTIONS_REQUIRED_GROUPS are defined (as can happen with platform-specific
options if none of them is supported on the current platform), PKG_OPTIONS is
set to the empty list and the package is otherwise treated as not using the
options framework.
After the inclusion of bsd.options.mk, the variable PKG_OPTIONS contains the
list of selected build options, properly filtered to remove unsupported and
duplicate options.
The remaining sections contain the logic that is specific to each option. The
correct way to check for an option is to check whether it is listed in
PKG_OPTIONS:
.if !empty(PKG_OPTIONS:Moption)
14.3. Option Names
Options that enable similar features in different packages (like optional
support for a library) should use a common name in all packages that support it
(like the name of the library). If another package already has an option with
the same meaning, use the same name.
Options that enable features specific to one package, where it's unlikely that
another (unrelated) package has the same (or a similar) optional feature,
should use a name prefixed with pkgname-.
If a group of related packages share an optional feature specific to that
group, prefix it with the name of the "main" package (e. g.
djbware-errno-hack).
For new options, add a line to mk/defaults/options.description. Lines have two
fields, separated by tab. The first field is the option name, the second its
description. The description should be a whole sentence (starting with an
uppercase letter and ending with a period) that describes what enabling the
option does. E. g. "Enable ispell support." The file is sorted by option names.
Chapter 15. The build process
Table of Contents
15.1. Introduction
15.2. Program location
15.3. Directories used during the build process
15.4. Running a phase
15.5. The fetch phase
15.6. The checksum phase
15.7. The extract phase
15.8. The patch phase
15.9. The tools phase
15.10. The wrapper phase
15.11. The configure phase
15.12. The build phase
15.13. The test phase
15.14. The install phase
15.15. The package phase
15.16. Other helpful targets
15.1. Introduction
This chapter gives a detailed description on how a package is built. Building a
package is separated into different phases (for example fetch, build, install),
all of which are described in the following sections. Each phase is splitted
into so-called stages, which take the name of the containing phase, prefixed by
one of pre-, do- or post-. (Examples are pre-configure, post-build.) Most of
the actual work is done in the do-* stages.
The basic steps for building a program are always the same. First the program's
source (distfile) must be brought to the local system and then extracted. After
any pkgsrc-specific patches to compile properly are applied, the software can
be configured, then built (usually by compiling), and finally the generated
binaries, etc. can be put into place on the system.
15.2. Program location
Before outlining the process performed by the NetBSD package system in the next
section, here's a brief discussion on where programs are installed, and which
variables influence this.
The automatic variable PREFIX indicates where all files of the final program
shall be installed. It is usually set to LOCALBASE (/usr/pkg), or CROSSBASE for
pkgs in the "cross" category. The value of PREFIX needs to be put into the
various places in the program's source where paths to these files are encoded.
See Section 9.3, "patches/*" and Section 17.3.1, "Shared libraries - libtool"
for more details.
When choosing which of these variables to use, follow the following rules:
* PREFIX always points to the location where the current pkg will be
installed. When referring to a pkg's own installation path, use "${PREFIX}
".
* LOCALBASE is where all non-X11 pkgs are installed. If you need to construct
a -I or -L argument to the compiler to find includes and libraries
installed by another non-X11 pkg, use "${LOCALBASE}".
* X11BASE is where the actual X11 distribution (from xsrc, etc.) is
installed. When looking for standard X11 includes (not those installed by a
pkg), use "${X11BASE}".
* X11-based packages are special in that they may be installed in either
X11BASE or LOCALBASE.
Usually, X11 packages should be installed under LOCALBASE whenever
possible. Note that you will need to include ../../mk/x11.buildlink3.mk in
them to request the presence of X11 and to get the right compilation flags.
Even though, there are some packages that cannot be installed under
LOCALBASE: those that come with app-defaults files. These packages are
special and they must be placed under X11BASE. To accomplish this, set
either USE_X11BASE or USE_IMAKE in your package.
Some notes: If you need to find includes or libraries installed by a pkg
that has USE_IMAKE or USE_X11BASE in its pkg Makefile, you need to look in
both ${X11BASE} and ${LOCALBASE}. To force installation of all X11 packages
in LOCALBASE, the pkgtools/xpkgwedge package is enabled by default.
* X11PREFIX should be used to refer to the installed location of an X11
package. X11PREFIX will be set to X11BASE if xpkgwedge is not installed,
and to LOCALBASE if xpkgwedge is installed.
* If xpkgwedge is installed, it is possible to have some packages installed
in X11BASE and some in LOCALBASE. To determine the prefix of an installed
package, the EVAL_PREFIX definition can be used. It takes pairs in the
format "DIRNAME=<package>", and the make(1) variable DIRNAME will be set to
the prefix of the installed package <package>, or "${X11PREFIX}" if the
package is not installed.
This is best illustrated by example.
The following lines are taken from pkgsrc/wm/scwm/Makefile:
EVAL_PREFIX+= GTKDIR=gtk+
CONFIGURE_ARGS+= --with-guile-prefix=${LOCALBASE:Q}
CONFIGURE_ARGS+= --with-gtk-prefix=${GTKDIR:Q}
CONFIGURE_ARGS+= --enable-multibyte
Specific defaults can be defined for the packages evaluated using
EVAL_PREFIX, by using a definition of the form:
GTKDIR_DEFAULT= ${LOCALBASE}
where GTKDIR corresponds to the first definition in the EVAL_PREFIX pair.
* Within ${PREFIX}, packages should install files according to hier(7), with
the exception that manual pages go into ${PREFIX}/man, not ${PREFIX}/share/
man.
15.3. Directories used during the build process
When building a package, a number of directories is used to store source files,
temporary files, pkgsrc-internal files, and so on. These directories are
explained here.
Some of the directory variables contain relative pathnames. There are two
common base directories for these relative directories: PKGSRCDIR/PKGPATH is
used for directories that are pkgsrc-specific. WRKSRC is used for directories
inside the package itself.
PKGSRCDIR
This is an absolute pathname that points to the pkgsrc root directory.
Generally, you don't need it.
PKGPATH
This is a pathname relative to PKGSRCDIR that points to the current
package.
WRKDIR
This is an absolute pathname pointing to the directory where all work takes
place. The distfiles are extraced to this directory. It also contains
temporary directories and log files used by the various pkgsrc frameworks,
like buildlink or the wrappers.
WRKSRC
This is an absolute pathname pointing to the directory where the distfiles
are extracted. It is usually a direct subdirectory of WRKDIR, and often
it's the only directory entry that isn't hidden. This variable may be
changed by a package Makefile.
15.4. Running a phase
You can run a particular phase by typing make phase, where phase is the name of
the phase. This will automatically run all phases that are required for this
phase. The default phase is build, that is, when you run make without
parameters in a package directory, the package will be built, but not
installed.
15.5. The fetch phase
This will check if the file(s) given in the variables DISTFILES and PATCHFILES
(as defined in the package's Makefile) are present on the local system in /usr/
pkgsrc/distfiles. If they are not present, an attempt will be made to fetch
them using commands of the form:
${FETCH_CMD} ${FETCH_BEFORE_ARGS} ${site}${file} ${FETCH_AFTER_ARGS}
where ${site} varies through several possibilities in turn: first,
MASTER_SITE_OVERRIDE is tried, then the sites specified in either SITES.file if
defined, else MASTER_SITES or PATCH_SITES, as applies, then finally the value
of MASTER_SITE_BACKUP. The order of all except the first can be optionally
sorted by the user, via setting either MASTER_SORT_AWK or MASTER_SORT_REGEX.
15.6. The checksum phase
After the distfile(s) are fetched, their checksum is generated and compared
with the checksums stored in the distinfo file. If the checksums don't match,
the build is aborted. This is to ensure the same distfile is used for building,
and that the distfile wasn't changed, e.g. by some malign force, deliberately
changed distfiles on the master distribution site or network lossage.
15.7. The extract phase
When the distfiles are present on the local system, they need to be extracted,
as they usually come in the form of some compressed archive format.
By default, all DISTFILES are extracted. If you only need some of them, you can
set the EXTRACT_ONLY variable to the list of those files.
Extracting the files is usually done by a little program, mk/scripts/extract,
which already knows how to extract various archive formats, so most likely you
will not need to change anything here. But if you need, the following variables
may help you:
EXTRACT_OPTS_{BIN,LHA,PAX,RAR,TAR,ZIP,ZOO}
Use these variables to override the default options for an extract command,
which are defined in mk/scripts/extract.
EXTRACT_USING
This variable can be set to pax, tar or an absolute pathname pointing to
the command with which tar archives should be extracted.
If the extract program doesn't serve your needs, you can also override the
EXTRACT_CMD variable, which holds the command used for extracting the files.
This command is executed in the ${WRKSRC} directory. During execution of this
command, the shell variable extract_file holds the absolute pathname of the
file that is going to be extracted.
And if that still does not suffice, you can override the do-extract target in
the package Makefile.
15.8. The patch phase
After extraction, all the patches named by the PATCHFILES, those present in the
patches subdirectory of the package as well as in $LOCALPATCHES/$PKGPATH (e.g.
/usr/local/patches/graphics/png) are applied. Patchfiles ending in .Z or .gz
are uncompressed before they are applied, files ending in .orig or .rej are
ignored. Any special options to patch(1) can be handed in PATCH_DIST_ARGS. See
Section 9.3, "patches/*" for more details.
By default patch(1) is given special args to make it fail if the patches apply
with some lines of fuzz. Please fix (regen) the patches so that they apply
cleanly. The rationale behind this is that patches that don't apply cleanly may
end up being applied in the wrong place, and cause severe harm there.
15.9. The tools phase
This is covered in Chapter 16, Tools needed for building or running.
15.10. The wrapper phase
This phase creates wrapper programs for the compilers and linkers. The
following variables can be used to tweak the wrappers.
ECHO_WRAPPER_MSG
The command used to print progress messages. Does nothing by default. Set
to ${ECHO} to see the progress messages.
WRAPPER_DEBUG
This variable can be set to yes (default) or no, depending on whether you
want additional information in the wrapper log file.
WRAPPER_UPDATE_CACHE
This variable can be set to yes or no, depending on whether the wrapper
should use its cache, which will improve the speed. The default value is
yes, but is forced to no if the platform does not support it.
WRAPPER_REORDER_CMDS
A list of reordering commands. A reordering command has the form reorder:l:
lib1:lib2. It ensures that that -llib1 occurs before -llib2.
WRAPPER_TRANSFORM_CMDS
A list of transformation commands. [TODO: investigate further]
15.11. The configure phase
Most pieces of software need information on the header files, system calls, and
library routines which are available on the platform they run on. The process
of determining this information is known as configuration, and is usually
automated. In most cases, a script is supplied with the distfiles, and its
invocation results in generation of header files, Makefiles, etc.
If the package contains a configure script, this can be invoked by setting
HAS_CONFIGURE to "yes". If the configure script is a GNU autoconf script, you
should set GNU_CONFIGURE to "yes" instead. What happens in the configure phase
is roughly:
.for d in ${CONFIGURE_DIRS}
cd ${WRKSRC} && cd ${d} && env ${CONFIGURE_ENV} \
${CONFIGURE_SCRIPT} ${CONFIGURE_ARGS}
.endfor
CONFIGURE_DIRS (default: ".") is a list of pathnames relative to WRKSRC. In
each of these directories, the configure script is run with the environment
CONFIGURE_ENV and arguments CONFIGURE_ARGS. The variables CONFIGURE_ENV,
CONFIGURE_SCRIPT (default: "./configure") and CONFIGURE_ARGS may all be changed
by the package.
If the program uses an Imakefile for configuration, the appropriate steps can
be invoked by setting USE_IMAKE to "yes". (If you only want the package
installed in ${X11PREFIX} but xmkmf not being run, set USE_X11BASE instead.)
15.12. The build phase
For building a package, a rough equivalent of the following code is executed.
.for d in ${BUILD_DIRS}
cd ${WRKSRC} && cd ${d} && env ${MAKE_ENV} \
${MAKE_PROGRAM} ${BUILD_MAKE_FLAGS} \
-f ${MAKEFILE} ${BUILD_TARGET}
.endfor
BUILD_DIRS (default: ".") is a list of pathnames relative to WRKSRC. In each of
these directories, MAKE_PROGRAM is run with the environment MAKE_ENV and
arguments BUILD_MAKE_FLAGS. The variables MAKE_ENV, BUILD_MAKE_FLAGS, MAKEFILE
and BUILD_TARGET may all be changed by the package.
The default value of MAKE_PROGRAM is "gmake" if USE_TOOLS contains "gmake",
"make" otherwise. The default value of MAKEFILE is "Makefile", and BUILD_TARGET
defaults to "all".
15.13. The test phase
[TODO]
15.14. The install phase
Once the build stage has completed, the final step is to install the software
in public directories, so users can access the programs and files.
In the install phase, a rough equivalent of the following code is executed.
Additionally, before and after this code, much magic is performed to do
consistency checks, registering the package, and so on.
.for d in ${INSTALL_DIRS}
cd ${WRKSRC} && cd ${d} && env ${MAKE_ENV} \
${MAKE_PROGRAM} ${INSTALL_MAKE_FLAGS} \
-f ${MAKEFILE} ${BUILD_TARGET}
.endfor
The variable's meanings are analogous to the ones in the build phase.
INSTALL_DIRS defaults to BUILD_DIRS. INSTALL_TARGET is "install" by default,
plus "install.man" if USE_IMAKE is defined.
In the install phase, the following variables are useful. They are all
variations of the install(1) command that have the owner, group and permissions
preset. INSTALL is the plain install command. The specialized variants,
together with their intended use, are:
INSTALL_PROGRAM_DIR
directories that contain binaries
INSTALL_SCRIPT_DIR
directories that contain scripts
INSTALL_LIB_DIR
directories that contain shared and static libraries
INSTALL_DATA_DIR
directories that contain data files
INSTALL_MAN_DIR
directories that contain man pages
INSTALL_PROGRAM
binaries that can be stripped from debugging symbols
INSTALL_SCRIPT
binaries that cannot be stripped
INSTALL_GAME
game binaries
INSTALL_LIB
shared and static libraries
INSTALL_DATA
data files
INSTALL_GAME_DATA
data files for games
INSTALL_MAN
man pages
Some other variables are:
INSTALLATION_DIRS
A list of directories relative to PREFIX that are created by pkgsrc at the
beginning of the install phase. If this variable is set, NO_MTREE="yes" is
assumed, which means that the package claims to create all needed
directories itself before installing files to it. Therefore this variable
should only be set in Makefiles that are under control of the package's
author.
15.15. The package phase
[TODO]
15.16. Other helpful targets
pre/post-*
For any of the main targets described in the previous section, two
auxiliary targets exist with "pre-" and "post-" used as a prefix for the
main target's name. These targets are invoked before and after the main
target is called, allowing extra configuration or installation steps be
performed from a package's Makefile, for example, which a program's
configure script or install target omitted.
do-*
Should one of the main targets do the wrong thing, and should there be no
variable to fix this, you can redefine it with the do-* target. (Note that
redefining the target itself instead of the do-* target is a bad idea, as
the pre-* and post-* targets won't be called anymore, etc.) You will not
usually need to do this.
reinstall
If you did a make install and you noticed some file was not installed
properly, you can repeat the installation with this target, which will
ignore the "already installed" flag.
deinstall
This target does a pkg_delete(1) in the current directory, effectively
de-installing the package. The following variables can be used to tune the
behaviour:
PKG_VERBOSE
Add a "-v" to the pkg_delete(1) command.
DEINSTALLDEPENDS
Remove all packages that require (depend on) the given package. This
can be used to remove any packages that may have been pulled in by a
given package, e.g. if make deinstall DEINSTALLDEPENDS=1 is done in
pkgsrc/x11/kde, this is likely to remove whole KDE. Works by adding
"-R" to the pkg_delete(1) command line.
update
This target causes the current package to be updated to the latest version.
The package and all depending packages first get de-installed, then current
versions of the corresponding packages get compiled and installed. This is
similar to manually noting which packages are currently installed, then
performing a series of make deinstall and make install (or whatever
UPDATE_TARGET is set to) for these packages.
You can use the "update" target to resume package updating in case a
previous make update was interrupted for some reason. However, in this
case, make sure you don't call make clean or otherwise remove the list of
dependent packages in WRKDIR. Otherwise, you lose the ability to
automatically update the current package along with the dependent packages
you have installed.
Resuming an interrupted make update will only work as long as the package
tree remains unchanged. If the source code for one of the packages to be
updated has been changed, resuming make update will most certainly fail!
The following variables can be used either on the command line or in /etc/
mk.conf to alter the behaviour of make update:
UPDATE_TARGET
Install target to recursively use for the updated package and the
dependent packages. Defaults to DEPENDS_TARGET if set, "install"
otherwise for make update. e.g. make update UPDATE_TARGET=package
NOCLEAN
Don't clean up after updating. Useful if you want to leave the work
sources of the updated packages around for inspection or other
purposes. Be sure you eventually clean up the source tree (see the
"clean-update" target below) or you may run into troubles with old
source code still lying around on your next make or make update.
REINSTALL
Deinstall each package before installing (making DEPENDS_TARGET). This
may be necessary if the "clean-update" target (see below) was called
after interrupting a running make update.
DEPENDS_TARGET
Allows you to disable recursion and hardcode the target for packages.
The default is "update" for the update target, facilitating a recursive
update of prerequisite packages. Only set DEPENDS_TARGET if you want to
disable recursive updates. Use UPDATE_TARGET instead to just set a
specific target for each package to be installed during make update
(see above).
clean-update
Clean the source tree for all packages that would get updated if make
update was called from the current directory. This target should not be
used if the current package (or any of its depending packages) have already
been de-installed (e.g., after calling make update) or you may lose some
packages you intended to update. As a rule of thumb: only use this target
before the first time you run make update and only if you have a dirty
package tree (e.g., if you used NOCLEAN).
If you are unsure about whether your tree is clean, you can either perform
a make clean at the top of the tree, or use the following sequence of
commands from the directory of the package you want to update (before
running make update for the first time, otherwise you lose all the packages
you wanted to update!):
# make clean-update
# make clean CLEANDEPENDS=YES
# make update
The following variables can be used either on the command line or in /etc/
mk.conf to alter the behaviour of make clean-update:
CLEAR_DIRLIST
After make clean, do not reconstruct the list of directories to update
for this package. Only use this if make update successfully installed
all packages you wanted to update. Normally, this is done automatically
on make update, but may have been suppressed by the NOCLEAN variable
(see above).
info
This target invokes pkg_info(1) for the current package. You can use this
to check which version of a package is installed.
readme
This target generates a README.html file, which can be viewed using a
browser such as www/mozilla or www/links. The generated files contain
references to any packages which are in the PACKAGES directory on the local
host. The generated files can be made to refer to URLs based on
FTP_PKG_URL_HOST and FTP_PKG_URL_DIR. For example, if I wanted to generate
README.html files which pointed to binary packages on the local machine, in
the directory /usr/packages, set FTP_PKG_URL_HOST=file://localhost and
FTP_PKG_URL_DIR=/usr/packages. The ${PACKAGES} directory and its
subdirectories will be searched for all the binary packages.
readme-all
Use this target to create a file README-all.html which contains a list of
all packages currently available in the NetBSD Packages Collection,
together with the category they belong to and a short description. This
file is compiled from the pkgsrc/*/README.html files, so be sure to run
this after a make readme.
cdrom-readme
This is very much the same as the "readme" target (see above), but is to be
used when generating a pkgsrc tree to be written to a CD-ROM. This target
also produces README.html files, and can be made to refer to URLs based on
CDROM_PKG_URL_HOST and CDROM_PKG_URL_DIR.
show-distfiles
This target shows which distfiles and patchfiles are needed to build the
package. (DISTFILES and PATCHFILES, but not patches/*)
show-downlevel
This target shows nothing if the package is not installed. If a version of
this package is installed, but is not the version provided in this version
of pkgsrc, then a warning message is displayed. This target can be used to
show which of your installed packages are downlevel, and so the old
versions can be deleted, and the current ones added.
show-pkgsrc-dir
This target shows the directory in the pkgsrc hierarchy from which the
package can be built and installed. This may not be the same directory as
the one from which the package was installed. This target is intended to be
used by people who may wish to upgrade many packages on a single host, and
can be invoked from the top-level pkgsrc Makefile by using the
"show-host-specific-pkgs" target.
show-installed-depends
This target shows which installed packages match the current package's
DEPENDS. Useful if out of date dependencies are causing build problems.
check-shlibs
After a package is installed, check all its binaries and (on ELF platforms)
shared libraries to see if they find the shared libs they need. Run by
default if PKG_DEVELOPER is set in /etc/mk.conf.
print-PLIST
After a "make install" from a new or upgraded pkg, this prints out an
attempt to generate a new PLIST from a find -newer work/.extract_done. An
attempt is made to care for shared libs etc., but it is strongly
recommended to review the result before putting it into PLIST. On upgrades,
it's useful to diff the output of this command against an already existing
PLIST file.
If the package installs files via tar(1) or other methods that don't update
file access times, be sure to add these files manually to your PLIST, as
the "find -newer" command used by this target won't catch them!
See Section 11.3, "Tweaking output of make print-PLIST" for more
information on this target.
bulk-package
Used to do bulk builds. If an appropriate binary package already exists, no
action is taken. If not, this target will compile, install and package it
(and its depends, if PKG_DEPENDS is set properly. See Section 6.3.1,
"Configuration"). After creating the binary package, the sources, the
just-installed package and its required packages are removed, preserving
free disk space.
Beware that this target may deinstall all packages installed on a system!
bulk-install
Used during bulk-installs to install required packages. If an up-to-date
binary package is available, it will be installed via pkg_add(1). If not,
make bulk-package will be executed, but the installed binary won't be
removed.
A binary package is considered "up-to-date" to be installed via pkg_add(1)
if:
* None of the package's files (Makefile, ...) were modified since it was
built.
* None of the package's required (binary) packages were modified since it
was built.
Beware that this target may deinstall all packages installed on a system!
Chapter 16. Tools needed for building or running
Table of Contents
16.1. Tools for pkgsrc builds
16.2. Tools needed by packages
16.3. Tools provided by platforms
The USE_TOOLS definition is used both internally by pkgsrc and also for
individual packages to define what commands are needed for building a package
(like BUILD_DEPENDS) or for later run-time of an installed packaged (such as
DEPENDS). If the native system provides an adequate tool, then in many cases, a
pkgsrc package will not be used.
When building a package, the replacement tools are made available in a
directory (as symlinks or wrapper scripts) that is early in the executable
search path. Just like the buildlink system, this helps with consistent builds.
A tool may be needed to help build a specific package. For example, perl, GNU
make (gmake) or yacc may be needed.
Also a tool may be needed, for example, because the native system's supplied
tool may be inefficient for building a package with pkgsrc. For example, a
package may need GNU awk, bison (instead of yacc) or a better sed.
The tools used by a package can be listed by running make show-tools.
16.1. Tools for pkgsrc builds
The default set of tools used by pkgsrc is defined in bsd.pkg.mk. This includes
standard Unix tools, such as: cat, awk, chmod, test, and so on. These can be
seen by running: make show-var VARNAME=USE_TOOLS.
If a package needs a specific program to build then the USE_TOOLS variable can
be used to define the tools needed.
16.2. Tools needed by packages
In the following examples, the :pkgsrc means to use the pkgsrc version and not
the native version for a build dependency. And the :run means that it is used
for a run-time dependencies also (and becomes a DEPENDS). The default is a
build dependency which can be set with :build. (So in this example, it is the
same as gmake:build and pkg-config:build.)
USE_TOOLS+= mktemp:pkgsrc
USE_TOOLS+= gmake perl:run pkg-config
When using the tools framework, a TOOLS_PATH.foo variable is defined which
contains the full path to the appropriate tool. For example, TOOLS_PATH.bash
could be "/bin/bash" on Linux systems.
If you always need a pkgsrc version of the tool at run-time, then just use
DEPENDS instead.
16.3. Tools provided by platforms
When improving or porting pkgsrc to a new platform, have a look at (or create)
the corresponding platform specific make file fragment under pkgsrc/mk/tools/
tools.${OPSYS}.mk which defines the name of the common tools. For example:
.if exists(/usr/bin/bzcat)
TOOLS_PLATFORM.bzcat?= /usr/bin/bzcat
.elif exists(/usr/bin/bzip2)
TOOLS_PLATFORM.bzcat?= /usr/bin/bzip2 -cd
.endif
TOOLS_PLATFORM.true?= true # shell builtin
Chapter 17. Making your package work
Table of Contents
17.1. General operation
17.1.1. How to pull in variables from /etc/mk.conf
17.1.2. Where to install documentation
17.1.3. Restricted packages
17.1.4. Handling dependencies
17.1.5. Handling conflicts with other packages
17.1.6. Packages that cannot or should not be built
17.1.7. Packages which should not be deleted, once installed
17.1.8. Handling packages with security problems
17.1.9. How to handle compiler bugs
17.1.10. How to handle incrementing versions when fixing an existing
package
17.1.11. Portability of packages
17.2. Fixing problems in the fetch phase
17.2.1. Packages whose distfiles aren't available for plain downloading
17.2.2. How to handle modified distfiles with the 'old' name
17.3. Fixing problems in the configure phase
17.3.1. Shared libraries - libtool
17.3.2. Using libtool on GNU packages that already support libtool
17.3.3. GNU Autoconf/Automake
17.4. Fixing problems in the build phase
17.4.1. Compiling C and C++ code conditionally
17.5. Package specific actions
17.5.1. User interaction
17.5.2. Handling licenses
17.6. Fixing problems in the install phase
17.6.1. Installing score files
17.6.2. Packages containing perl scripts
17.6.3. Packages with hardcoded paths to other interpreters
17.6.4. Packages installing perl modules
17.6.5. Packages installing info files
17.6.6. Packages installing man pages
17.6.7. Packages installing GConf2 data files
17.6.8. Packages installing scrollkeeper data files
17.6.9. Packages installing X11 fonts
17.6.10. Packages installing GTK2 modules
17.6.11. Packages installing SGML or XML data
17.6.12. Packages installing extensions to the MIME database
17.6.13. Packages using intltool
17.6.14. Packages installing startup scripts
17.6.15. Packages installing TeX modules
17.7. Feedback to the author
17.1. General operation
17.1.1. How to pull in variables from /etc/mk.conf
The problem with package-defined variables that can be overridden via MAKECONF
or /etc/mk.conf is that make(1) expands a variable as it is used, but evaluates
preprocessor-like statements (.if, .ifdef and .ifndef) as they are read. So, to
use any variable (which may be set in /etc/mk.conf) in one of the .if*
statements, the file /etc/mk.conf must be included before that .if* statement.
Rather than having a number of ad-hoc ways of including /etc/mk.conf, should it
exist, or MAKECONF, should it exist, include the pkgsrc/mk/bsd.prefs.mk file in
the package Makefile before any preprocessor-like .if, .ifdef, or .ifndef
statements:
.include "../../mk/bsd.prefs.mk"
.if defined(USE_MENUS)
# ...
.endif
If you wish to set the CFLAGS variable in /etc/mk.conf, please make sure to
use:
CFLAGS+= -your -flags
Using CFLAGS= (i.e. without the "+") may lead to problems with packages that
need to add their own flags. Also, you may want to take a look at the devel/
cpuflags package if you're interested in optimization for the current CPU.
17.1.2. Where to install documentation
Documentation should be installed into ${PREFIX}/share/doc/${PKGBASE} or $
{PREFIX}/share/doc/${PKGNAME} (the latter includes the version number of the
package).
17.1.3. Restricted packages
Some licenses restrict how software may be re-distributed. In order to satisfy
these restrictions, the package system defines five make variables that can be
set to note these restrictions:
* RESTRICTED
This variable should be set whenever a restriction exists (regardless of
its kind). Set this variable to a string containing the reason for the
restriction.
* NO_BIN_ON_CDROM
Binaries may not be placed on CD-ROM. Set this variable to ${RESTRICTED}
whenever a binary package may not be included on a CD-ROM.
* NO_BIN_ON_FTP
Binaries may not be placed on an FTP server. Set this variable to $
{RESTRICTED} whenever a binary package may not not be made available on the
Internet.
* NO_SRC_ON_CDROM
Distfiles may not be placed on CD-ROM. Set this variable to ${RESTRICTED}
if re-distribution of the source code or other distfile(s) is not allowed
on CD-ROMs.
* NO_SRC_ON_FTP
Distfiles may not be placed on FTP. Set this variable to ${RESTRICTED} if
re-distribution of the source code or other distfile(s) via the Internet is
not allowed.
Please note that the use of NO_PACKAGE, IGNORE, NO_CDROM, or other generic make
variables to denote restrictions is deprecated, because they unconditionally
prevent users from generating binary packages!
17.1.4. Handling dependencies
Your package may depend on some other package being present - and there are
various ways of expressing this dependency. pkgsrc supports the BUILD_DEPENDS
and DEPENDS definitions, the USE_TOOLS definition, as well as dependencies via
buildlink3.mk, which is the preferred way to handle dependencies, and which
uses the variables named above. See Chapter 12, Buildlink methodology for more
information.
The basic difference between the two variables is as follows: The DEPENDS
definition registers that pre-requisite in the binary package so it will be
pulled in when the binary package is later installed, whilst the BUILD_DEPENDS
definition does not, marking a dependency that is only needed for building the
package.
This means that if you only need a package present whilst you are building, it
should be noted as a BUILD_DEPENDS.
The format for a BUILD_DEPENDS and a DEPENDS definition is:
<pre-req-package-name>:../../<category>/<pre-req-package>
Please note that the "pre-req-package-name" may include any of the wildcard
version numbers recognized by pkg_info(1).
1. If your package needs another package's binaries or libraries to build or
run, and if that package has a buildlink3.mk file available, use it:
.include "../../graphics/jpeg/buildlink3.mk"
2. If your package needs to use another package to build itself and there is
no buildlink3.mk file available, use the BUILD_DEPENDS definition:
BUILD_DEPENDS+= autoconf-2.13:../../devel/autoconf
3. If your package needs a library with which to link and again there is no
buildlink3.mk file available, this is specified using the DEPENDS
definition. For example:
DEPENDS+= xpm-3.4j:../../graphics/xpm
You can also use wildcards in package dependences:
DEPENDS+= xpm-[0-9]*:../../graphics/xpm
Note that such wildcard dependencies are retained when creating binary
packages. The dependency is checked when installing the binary package and
any package which matches the pattern will be used. Wildcard dependencies
should be used with care.
The "-[0-9]*" should be used instead of "-*" to avoid potentially ambiguous
matches such as "tk-postgresql" matching a "tk-*" DEPENDS.
Wildcards can also be used to specify that a package will only build
against a certain minimum version of a pre-requisite:
DEPENDS+= tiff>=3.5.4:../../graphics/tiff
This means that the package will build against version 3.5.4 of the tiff
library or newer. Such a dependency may be warranted if, for example, the
API of the library has changed with version 3.5.4 and a package would not
compile against an earlier version of tiff.
Please note that such dependencies should only be updated if a package
requires a newer pre-requisite, but not to denote recommendations such as
ABI changes that do not prevent a package from building correctly. Such
recommendations can be expressed using ABI_DEPENDS:
ABI_DEPENDS+= tiff>=3.6.1:../../graphics/tiff
In addition to the above DEPENDS line, this denotes that while a package
will build against tiff>=3.5.4, at least version 3.6.1 is recommended.
ABI_DEPENDS entries will be turned into dependencies unless explicitly
ignored (in which case a warning will be printed).
To ignore these ABI dependency recommendations and just use the required
DEPENDS, set USE_ABI_DEPENDS=NO. This may make it easier and faster to
update packages built using pkgsrc, since older compatible dependencies can
continue to be used. This is useful for people who watch their rebuilds
very carefully; it is not very good as a general-purpose hammer. If you use
it, you need to be mindful of possible ABI changes, including those from
the underlying OS.
Packages that are built with recommendations ignored may not be uploaded to
ftp.NetBSD.org by developers and should not be used across different
systems that may have different versions of binary packages installed.
For security fixes, please update the package vulnerabilities file. See
Section 17.1.8, "Handling packages with security problems" for more
information.
4. If your package needs some executable to be able to run correctly and if
there's no buildlink3.mk file, this is specified using the DEPENDS
variable. The print/lyx package needs to be able to execute the latex
binary from the teTeX package when it runs, and that is specified:
DEPENDS+= teTeX-[0-9]*:../../print/teTeX
The comment about wildcard dependencies from previous paragraph applies
here, too.
If your package needs files from another package to build, add the relevant
distribution files to DISTFILES, so they will be extracted automatically. See
the print/ghostscript package for an example. (It relies on the jpeg sources
being present in source form during the build.)
Please also note the BUILD_USES_MSGFMT and BUILD_USES_GETTEXT_M4 definitions,
which are provided as convenience definitions. The former works out whether
msgfmt(1) is part of the base system, and, if it isn't, installs the devel/
gettext package. The latter adds a build dependency on either an installed
version of an older gettext package, or if it isn't, installs the devel/
gettext-m4 package.
17.1.5. Handling conflicts with other packages
Your package may conflict with other packages a user might already have
installed on his system, e.g. if your package installs the same set of files
like another package in our pkgsrc tree.
In this case you can set CONFLICTS to a space-separated list of packages
(including version string) your package conflicts with.
For example, x11/Xaw3d and x11/Xaw-Xpm install the same shared library, thus
you set in pkgsrc/x11/Xaw3d/Makefile:
CONFLICTS= Xaw-Xpm-[0-9]*
and in pkgsrc/x11/Xaw-Xpm/Makefile:
CONFLICTS= Xaw3d-[0-9]*
Packages will automatically conflict with other packages with the name prefix
and a different version string. "Xaw3d-1.5" e.g. will automatically conflict
with the older version "Xaw3d-1.3".
17.1.6. Packages that cannot or should not be built
There are several reasons why a package might be instructed to not build under
certain circumstances. If the package builds and runs on most platforms, the
exceptions should be noted with NOT_FOR_PLATFORM. If the package builds and
runs on a small handful of platforms, set ONLY_FOR_PLATFORM instead. Both
ONLY_FOR_PLATFORM and NOT_FOR_PLATFORM are OS triples (OS-version-platform)
that can use glob-style wildcards.
If the package should be skipped (for example, because it provides
functionality already provided by the system), set PKG_SKIP_REASON to a
descriptive message. If the package should fail because some preconditions are
not met, set PKG_FAIL_REASON to a descriptive message.
17.1.7. Packages which should not be deleted, once installed
To ensure that a package may not be deleted, once it has been installed, the
PKG_PRESERVE definition should be set in the package Makefile. This will be
carried into any binary package that is made from this pkgsrc entry. A
"preserved" package will not be deleted using pkg_delete(1) unless the "-f"
option is used.
17.1.8. Handling packages with security problems
When a vulnerability is found, this should be noted in localsrc/security/
advisories/pkg-vulnerabilities, and after committing that file, use make upload
in the same directory to update the file on ftp.NetBSD.org.
After fixing the vulnerability by a patch, its PKGREVISION should be increased
(this is of course not necessary if the problem is fixed by using a newer
release of the software).
Also, if the fix should be applied to the stable pkgsrc branch, be sure to
submit a pullup request!
Binary packages already on ftp.NetBSD.org will be handled semi-automatically by
a weekly cron job.
17.1.9. How to handle compiler bugs
Some source files trigger bugs in the compiler, based on combinations of
compiler version and architecture and almost always relation to optimisation
being enabled. Common symptoms are gcc internal errors or never finishing
compiling a file.
Typically, a workaround involves testing the MACHINE_ARCH and compiler version,
disabling optimisation for that file/MACHINE_ARCH/compiler combination, and
documenting it in pkgsrc/doc/HACKS. See that file for a number of examples!
17.1.10. How to handle incrementing versions when fixing an existing package
When making fixes to an existing package it can be useful to change the version
number in PKGNAME. To avoid conflicting with future versions by the original
author, a "nb1", "nb2", ... suffix can be used on package versions by setting
PKGREVISION=1 (2, ...). The "nb" is treated like a "." by the pkg tools. e.g.
DISTNAME= foo-17.42
PKGREVISION= 9
will result in a PKGNAME of "foo-17.42nb9".
When a new release of the package is released, the PKGREVISION should be
removed, e.g. on a new minor release of the above package, things should be
like:
DISTNAME= foo-17.43
17.1.11. Portability of packages
One appealing feature of pkgsrc is that it runs on many different platforms. As
a result, it is important to ensure, where possible, that packages in pkgsrc
are portable. There are some particular details you should pay attention to
while working on pkgsrc.
17.1.11.1. ${INSTALL}, ${INSTALL_DATA_DIR}, ...
The BSD-compatible install supplied with some operating systems will not
perform more than one operation at a time. As such, you should call "${INSTALL}
", etc. like this:
${INSTALL_DATA_DIR} ${PREFIX}/dir1
${INSTALL_DATA_DIR} ${PREFIX}/dir2
17.2. Fixing problems in the fetch phase
17.2.1. Packages whose distfiles aren't available for plain downloading
If you need to download from a dynamic URL you can set DYNAMIC_MASTER_SITES and
a make fetch will call files/getsite.sh with the name of each file to download
as an argument, expecting it to output the URL of the directory from which to
download it. graphics/ns-cult3d is an example of this usage.
If the download can't be automated, because the user must submit personal
information to apply for a password, or must pay for the source, or whatever,
you can set FETCH_MESSAGE to a list of lines that are displayed to the user
before aborting the build. Example:
FETCH_MESSAGE= "Please download the files"
FETCH_MESSAGE+= " "${DISTFILES:Q}
FETCH_MESSAGE+= "manually from "${MASTER_SITES:Q}"."
17.2.2. How to handle modified distfiles with the 'old' name
Sometimes authors of a software package make some modifications after the
software was released, and they put up a new distfile without changing the
package's version number. If a package is already in pkgsrc at that time, the
checksum will no longer match. The contents of the new distfile should be
compared against the old one before changing anything, to make sure the
distfile was really updated on purpose, and that no trojan horse or so crept
in. Then, the correct way to work around this is to set DIST_SUBDIR to a unique
directory name, usually based on PKGNAME_NOREV. In case this happens more
often, PKGNAME can be used (thus including the nbX suffix) or a date stamp can
be appended, like ${PKGNAME_NOREV}-YYYYMMDD. Do not forget regenerating the
distinfo file after that, since it contains the DIST_SUBDIR path in the
filenames. Furthermore, a mail to the package's authors seems appropriate
telling them that changing distfiles after releases without changing the file
names is not good practice.
17.3. Fixing problems in the configure phase
17.3.1. Shared libraries - libtool
pkgsrc supports many different machines, with different object formats like
a.out and ELF, and varying abilities to do shared library and dynamic loading
at all. To accompany this, varying commands and options have to be passed to
the compiler, linker, etc. to get the Right Thing, which can be pretty annoying
especially if you don't have all the machines at your hand to test things. The
devel/libtool pkg can help here, as it just "knows" how to build both static
and dynamic libraries from a set of source files, thus being
platform-independent.
Here's how to use libtool in a pkg in seven simple steps:
1. Add USE_LIBTOOL=yes to the package Makefile.
2. For library objects, use "${LIBTOOL} --mode=compile ${CC}" in place of "$
{CC}". You could even add it to the definition of CC, if only libraries are
being built in a given Makefile. This one command will build both PIC and
non-PIC library objects, so you need not have separate shared and
non-shared library rules.
3. For the linking of the library, remove any "ar", "ranlib", and "ld
-Bshareable" commands, and instead use:
${LIBTOOL} --mode=link ${CC} -o ${.TARGET:.a=.la} ${OBJS:.o=.lo} \
-rpath ${PREFIX}/lib -version-info major:minor
Note that the library is changed to have a .la extension, and the objects
are changed to have a .lo extension. Change OBJS as necessary. This
automatically creates all of the .a, .so.major.minor, and ELF symlinks (if
necessary) in the build directory. Be sure to include "-version-info",
especially when major and minor are zero, as libtool will otherwise strip
off the shared library version.
From the libtool manual:
So, libtool library versions are described by three integers:
CURRENT
The most recent interface number that this library implements.
REVISION
The implementation number of the CURRENT interface.
AGE
The difference between the newest and oldest interfaces that
this library implements. In other words, the library implements
all the interface numbers in the range from number `CURRENT -
AGE' to `CURRENT'.
If two libraries have identical CURRENT and AGE numbers, then the
dynamic linker chooses the library with the greater REVISION number.
The "-release" option will produce different results for a.out and ELF
(excluding symlinks) in only one case. An ELF library of the form
"libfoo-release.so.x.y" will have a symlink of "libfoo.so.x.y" on an a.out
platform. This is handled automatically.
The "-rpath argument" is the install directory of the library being built.
In the PLIST, include only the .la file, the other files will be added
automatically.
4. When linking shared object (.so) files, i.e. files that are loaded via
dlopen(3), NOT shared libraries, use "-module -avoid-version" to prevent
them getting version tacked on.
The PLIST file gets the foo.so entry.
5. When linking programs that depend on these libraries before they are
installed, preface the cc(1) or ld(1) line with "${LIBTOOL} --mode=link",
and it will find the correct libraries (static or shared), but please be
aware that libtool will not allow you to specify a relative path in -L
(such as "-L../somelib"), because it expects you to change that argument to
be the .la file. e.g.
${LIBTOOL} --mode=link ${CC} -o someprog -L../somelib -lsomelib
should be changed to:
${LIBTOOL} --mode=link ${CC} -o someprog ../somelib/somelib.la
and it will do the right thing with the libraries.
6. When installing libraries, preface the install(1) or cp(1) command with "$
{LIBTOOL} --mode=install", and change the library name to .la. e.g.
${LIBTOOL} --mode=install ${BSD_INSTALL_DATA} ${SOMELIB:.a=.la} ${PREFIX}/lib
This will install the static .a, shared library, any needed symlinks, and
run ldconfig(8).
7. In your PLIST, include only the .la file (this is a change from previous
behaviour).
17.3.2. Using libtool on GNU packages that already support libtool
Add USE_LIBTOOL=yes to the package Makefile. This will override the package's
own libtool in most cases. For older libtool using packages, libtool is made by
ltconfig script during the do-configure step; you can check the libtool script
location by doing make configure; find work*/ -name libtool.
LIBTOOL_OVERRIDE specifies which libtool scripts, relative to WRKSRC, to
override. By default, it is set to "libtool */libtool */*/libtool". If this
does not match the location of the package's libtool script(s), set it as
appropriate.
If you do not need *.a static libraries built and installed, then use
SHLIBTOOL_OVERRIDE instead.
If your package makes use of the platform-independent library for loading
dynamic shared objects, that comes with libtool (libltdl), you should include
devel/libltdl/buildlink3.mk.
Some packages use libtool incorrectly so that the package may not work or build
in some circumstances. Some of the more common errors are:
* The inclusion of a shared object (-module) as a dependent library in an
executable or library. This in itself isn't a problem if one of two things
has been done:
1. The shared object is named correctly, i.e. libfoo.la, not foo.la
2. The -dlopen option is used when linking an executable.
* The use of libltdl without the correct calls to initialisation routines.
The function lt_dlinit() should be called and the macro
LTDL_SET_PRELOADED_SYMBOLS included in executables.
17.3.3. GNU Autoconf/Automake
If a package needs GNU autoconf or automake to be executed to regenerate the
configure script and Makefile.in makefile templates, then they should be
executed in a pre-configure target.
For packages that need only autoconf:
AUTOCONF_REQD= 2.50 # if default version is not good enough
USE_TOOLS+= autoconf # use "autoconf213" for autoconf-2.13
...
pre-configure:
cd ${WRKSRC}; autoconf
...
and for packages that need automake and autoconf:
AUTOMAKE_REQD= 1.7.1 # if default version is not good enough
USE_TOOLS+= automake # use "automake14" for automake-1.4
...
pre-configure:
cd ${WRKSRC}; \
aclocal; autoheader; \
automake -a --foreign -i; autoconf
...
Packages which use GNU Automake will almost certainly require GNU Make.
There are times when the configure process makes additional changes to the
generated files, which then causes the build process to try to re-execute the
automake sequence. This is prevented by touching various files in the configure
stage. If this causes problems with your package you can set AUTOMAKE_OVERRIDE=
NO in the package Makefile.
17.4. Fixing problems in the build phase
The most common failures when building a package are that some platforms do not
provide certain header files, functions or libraries, or they provide the
functions in a library that the original package author didn't know. To work
around this, you can rewrite the source code in most cases so that it does not
use the missing functions or provides a replacement function.
17.4.1. Compiling C and C++ code conditionally
If a package already comes with a GNU configure script, the preferred way to
fix the build failure is to change the configure script, not the code. In the
other cases, you can utilize the C preprocessor, which defines certain macros
depending on the operating system and hardware architecture it compiles for.
These macros can be queried using for example #if defined(__i386). Almost every
operating system, hardware architecture and compiler has its own macro. For
example, if the macros __GNUC__, __i386__ and __NetBSD__ are all defined, you
know that you are using NetBSD on an i386 compatible CPU, and your compiler is
GCC.
The list of the following macros for hardware and operating system depends on
the compiler that is used. For example, if you want to conditionally compile
code on Solaris, don't use __sun__, as the SunPro compiler does not define it.
Use __sun instead.
17.4.1.1. C preprocessor macros to identify the operating system
To distinguish between 4.4 BSD-derived systems and the rest of the world, you
should use the following code.
#include <sys/param.h>
#if (defined(BSD) && BSD >= 199306)
/* BSD-specific code goes here */
#else
/* non-BSD-specific code goes here */
#endif
If this distinction is not fine enough, you can also test for the following
macros.
FreeBSD __FreeBSD__
DragonFly __DragonFly__
Interix __INTERIX
Linux linux, __linux, __linux__
NetBSD __NetBSD__
OpenBSD __OpenBSD__
Solaris sun, __sun
17.4.1.2. C preprocessor macros to identify the hardware architecture
i386 i386, __i386, __i386__
MIPS __mips
SPARC sparc, __sparc
17.4.1.3. C preprocessor macros to identify the compiler
GCC __GNUC__ (major version), __GNUC_MINOR__
SunPro __SUNPRO_C (0x570 for version 5.7)
17.5. Package specific actions
17.5.1. User interaction
Occasionally, packages require interaction from the user, and this can be in a
number of ways:
* help in fetching the distfiles
* help to configure the package before it is built
* help during the build process
* help during the installation of a package
The INTERACTIVE_STAGE definition is provided to notify the pkgsrc mechanism of
an interactive stage which will be needed, and this should be set in the
package's Makefile, e.g.:
INTERACTIVE_STAGE= build
Multiple interactive stages can be specified:
INTERACTIVE_STAGE= configure install
17.5.2. Handling licenses
A package may be covered by a license which the user has or has not agreed to
accept. For these cases, pkgsrc contains a mechanism to note that a package is
covered by a particular license, and the package cannot be built unless the
user has accepted the license. (Installation of binary packages are not
currently subject to this mechanism.) Packages with licenses that are either
Open Source according to the Open Source Initiative or Free according to the
Free Software Foundation will not be marked with a license tag. Packages with
licenses that have not been determined to meet either definition will be marked
with a license tag referring to the license. This will prevent building unless
pkgsrc is informed that the license is acceptable, and enables displaying the
license.
The license tag mechanism is intended to address copyright-related issues
surrounding building, installing and using a package, and not to address
redistribution issues (see RESTRICTED and NO_SRC_ON_FTP, etc.). However, the
above definition of licenses for which tags are not needed implies that
packages with redistribution restrictions should have tags.
Denoting that a package is covered by a particular license is done by placing
the license in pkgsrc/licenses and setting the LICENSE variable to a string
identifying the license, e.g. in graphics/xv:
LICENSE= xv-license
When trying to build, the user will get a notice that the package is covered by
a license which has not been accepted:
% make
===> xv-3.10anb9 has an unacceptable license: xv-license.
===> To view the license, enter "/usr/bin/make show-license".
===> To indicate acceptance, add this line to your /etc/mk.conf:
===> ACCEPTABLE_LICENSES+=xv-license
*** Error code 1
The license can be viewed with make show-license, and if it is considered
appropriate, the line printed above can be added to /etc/mk.conf to indicate
acceptance of the particular license:
ACCEPTABLE_LICENSES+=xv-license
When adding a package with a new license, the license text should be added to
pkgsrc/licenses for displaying. A list of known licenses can be seen in this
directory as well as by looking at the list of (commented out)
ACCEPTABLE_LICENSES variable settings in pkgsrc/mk/defaults/mk.conf.
The use of LICENSE=shareware, LICENSE=no-commercial-use, and similar language
is deprecated because it does not crisply refer to a particular license text.
Another problem with such usage is that it does not enable a user to denote
acceptance of the license for a single package without accepting the same
license text for another package. In particular, this can be inappropriate when
e.g. one accepts a particular license to indicate to pkgsrc that a fee has been
paid.
17.6. Fixing problems in the install phase
17.6.1. Installing score files
Certain packages, most of them in the games category, install a score file that
allows all users on the system to record their highscores. In order for this to
work, the binaries need to be installed setgid and the score files owned by the
appropriate group and/or owner (traditionally the "games" user/group). The
following variables, documented in more detail in mk/defaults/mk.conf, control
this behaviour: SETGIDGAME, GAMEDATAMODE, GAMEGRP, GAMEMODE, GAMEOWN.
Note that per default, setgid installation of games is disabled; setting
SETGIDGAME=YES will set all the other variables accordingly.
A package should therefor never hard code file ownership or access permissions
but rely on INSTALL_GAME and INSTALL_GAME_DATA to set these correctly.
17.6.2. Packages containing perl scripts
If your package contains interpreted perl scripts, set REPLACE_PERL to ensure
that the proper interpreter path is set. REPLACE_PERL should contain a list of
scripts, relative to WRKSRC, that you want adjusted.
17.6.3. Packages with hardcoded paths to other interpreters
Your package may also contain scripts with hardcoded paths to other
interpreters besides (or as well as) perl. To correct the full pathname to the
script interpreter, you need to set the following definitions in your Makefile
(we shall use tclsh in this example):
REPLACE_INTERPRETER+= tcl
REPLACE.tcl.old= .*/bin/tclsh
REPLACE.tcl.new= ${PREFIX}/bin/tclsh
REPLACE_FILES.tcl= # list of tcl scripts which need to be fixed,
# relative to ${WRKSRC}, just as in REPLACE_PERL
Note
Before March 2006, these variables were called _REPLACE.* and _REPLACE_FILES.*.
17.6.4. Packages installing perl modules
Makefiles of packages providing perl5 modules should include the Makefile
fragment ../../lang/perl5/module.mk. It provides a do-configure target for the
standard perl configuration for such modules as well as various hooks to tune
this configuration. See comments in this file for details.
Perl5 modules will install into different places depending on the version of
perl used during the build process. To address this, pkgsrc will append lines
to the PLIST corresponding to the files listed in the installed .packlist file
generated by most perl5 modules. This is invoked by defining PERL5_PACKLIST to
a space-separated list of paths to packlist files, e.g.:
PERL5_PACKLIST= ${PERL5_SITEARCH}/auto/Pg/.packlist
The variables PERL5_SITELIB, PERL5_SITEARCH, and PERL5_ARCHLIB represent the
three locations in which perl5 modules may be installed, and may be used by
perl5 packages that don't have a packlist. These three variables are also
substituted for in the PLIST.
17.6.5. Packages installing info files
Some packages install info files or use the "makeinfo" or "install-info"
commands. INFO_FILES should be defined in the package Makefile so that INSTALL
and DEINSTALL scripts will be generated to handle registration of the info
files in the Info directory file. The "install-info" command used for the info
files registration is either provided by the system, or by a special purpose
package automatically added as dependency if needed.
PKGINFODIR is the directory under ${PREFIX} where info files are primarily
located. PKGINFODIR defaults to "info" and can be overridden by the user.
The info files for the package should be listed in the package PLIST; however
any split info files need not be listed.
A package which needs the "makeinfo" command at build time must add "makeinfo"
to USE_TOOLS in its Makefile. If a minimum version of the "makeinfo" command is
needed it should be noted with the TEXINFO_REQD variable in the package
Makefile. By default, a minimum version of 3.12 is required. If the system does
not provide a makeinfo command or if it does not match the required minimum, a
build dependency on the devel/gtexinfo package will be added automatically.
The build and installation process of the software provided by the package
should not use the install-info command as the registration of info files is
the task of the package INSTALL script, and it must use the appropriate
makeinfo command.
To achieve this goal, the pkgsrc infrastructure creates overriding scripts for
the install-info and makeinfo commands in a directory listed early in PATH.
The script overriding install-info has no effect except the logging of a
message. The script overriding makeinfo logs a message and according to the
value of TEXINFO_REQD either runs the appropriate makeinfo command or exit on
error.
17.6.6. Packages installing man pages
Many packages install manual pages. The man pages are installed under ${PREFIX}
/${PKGMANDIR} which is /usr/pkg/man by default. PKGMANDIR defaults to "man".
For example, you can set PKGMANDIR to "share/man" to have man pages install
under /usr/pkg/share/man/ by default.
Note
The support for a custom PKGMANDIR is not complete.
The PLIST files can just use man/ as the top level directory for the man page
file entries and the pkgsrc framework will convert as needed.
Packages that are configured with GNU_CONFIGURE set as "yes", by default will
use the ./configure --mandir switch to set where the man pages should be
installed. The path is GNU_CONFIGURE_MANDIR which defaults to ${PREFIX}/$
{PKGMANDIR}.
Packages that use GNU_CONFIGURE but do not use --mandir, can set
CONFIGURE_HAS_MANDIR to "no". Or if the ./configure script uses a non-standard
use of --mandir, you can set GNU_CONFIGURE_MANDIR as needed.
See Section 11.5, "Man page compression" for information on installation of
compressed manual pages.
17.6.7. Packages installing GConf2 data files
If a package installs .schemas or .entries files, used by GConf2, you need to
take some extra steps to make sure they get registered in the database:
1. Include ../../devel/GConf2/schemas.mk instead of its buildlink3.mk file.
This takes care of rebuilding the GConf2 database at installation and
deinstallation time, and tells the package where to install GConf2 data
files using some standard configure arguments. It also disallows any access
to the database directly from the package.
2. Ensure that the package installs its .schemas files under ${PREFIX}/share/
gconf/schemas. If they get installed under ${PREFIX}/etc, you will need to
manually patch the package.
3. Check the PLIST and remove any entries under the etc/gconf directory, as
they will be handled automatically. See Section 7.14, "How do I change the
location of configuration files?" for more information.
4. Define the GCONF2_SCHEMAS variable in your Makefile with a list of all
.schemas files installed by the package, if any. Names must not contain any
directories in them.
5. Define the GCONF2_ENTRIES variable in your Makefile with a list of all
.entries files installed by the package, if any. Names must not contain any
directories in them.
17.6.8. Packages installing scrollkeeper data files
If a package installs .omf files, used by scrollkeeper, you need to take some
extra steps to make sure they get registered in the database:
1. Include ../../textproc/scrollkeeper/omf.mk instead of its buildlink3.mk
file. This takes care of rebuilding the scrollkeeper database at
installation and deinstallation time, and disallows any access to it
directly from the package.
2. Check the PLIST and remove any entries under the libdata/scrollkeeper
directory, as they will be handled automatically.
3. Remove the share/omf directory from the PLIST. It will be handled by
scrollkeeper.
17.6.9. Packages installing X11 fonts
If a package installs font files, you will need to rebuild the fonts database
in the directory where they get installed at installation and deinstallation
time. This can be automatically done by using the pkginstall framework.
You can list the directories where fonts are installed in the FONTS_DIRS.type
variables, where type can be one of "ttf", "type1" or "x11". Also make sure
that the database file fonts.dir is not listed in the PLIST.
Note that you should not create new directories for fonts; instead use the
standard ones to avoid that the user needs to manually configure his X server
to find them.
17.6.10. Packages installing GTK2 modules
If a package installs GTK2 immodules or loaders, you need to take some extra
steps to get them registered in the GTK2 database properly:
1. Include ../../x11/gtk2/modules.mk instead of its buildlink3.mk file. This
takes care of rebuilding the database at installation and deinstallation
time.
2. Set GTK2_IMMODULES=YES if your package installs GTK2 immodules.
3. Set GTK2_LOADERS=YES if your package installs GTK2 loaders.
4. Patch the package to not touch any of the GTK2 databases directly. These
are:
* libdata/gtk-2.0/gdk-pixbuf.loaders
* libdata/gtk-2.0/gtk.immodules
5. Check the PLIST and remove any entries under the libdata/gtk-2.0 directory,
as they will be handled automatically.
17.6.11. Packages installing SGML or XML data
If a package installs SGML or XML data files that need to be registered in
system-wide catalogs (like DTDs, sub-catalogs, etc.), you need to take some
extra steps:
1. Include ../../textproc/xmlcatmgr/catalogs.mk in your Makefile, which takes
care of registering those files in system-wide catalogs at installation and
deinstallation time.
2. Set SGML_CATALOGS to the full path of any SGML catalogs installed by the
package.
3. Set XML_CATALOGS to the full path of any XML catalogs installed by the
package.
4. Set SGML_ENTRIES to individual entries to be added to the SGML catalog.
These come in groups of three strings; see xmlcatmgr(1) for more
information (specifically, arguments recognized by the 'add' action). Note
that you will normally not use this variable.
5. Set XML_ENTRIES to individual entries to be added to the XML catalog. These
come in groups of three strings; see xmlcatmgr(1) for more information
(specifically, arguments recognized by the 'add' action). Note that you
will normally not use this variable.
17.6.12. Packages installing extensions to the MIME database
If a package provides extensions to the MIME database by installing .xml files
inside ${PREFIX}/share/mime/packages, you need to take some extra steps to
ensure that the database is kept consistent with respect to these new files:
1. Include ../../databases/shared-mime-info/mimedb.mk (avoid using the
buildlink3.mk file from this same directory, which is reserved for
inclusion from other buildlink3.mk files). It takes care of rebuilding the
MIME database at installation and deinstallation time, and disallows any
access to it directly from the package.
2. Check the PLIST and remove any entries under the share/mime directory,
except for files saved under share/mime/packages. The former are handled
automatically by the update-mime-database program, but the latter are
package-dependent and must be removed by the package that installed them in
the first place.
3. Remove any share/mime/* directories from the PLIST. They will be handled by
the shared-mime-info package.
17.6.13. Packages using intltool
If a package uses intltool during its build, include the ../../textproc/
intltool/buildlink3.mk file, which forces it to use the intltool package
provided by pkgsrc, instead of the one bundled with the distribution file.
This tracks intltool's build-time dependencies and uses the latest available
version; this way, the package benefits of any bug fixes that may have appeared
since it was released.
17.6.14. Packages installing startup scripts
If a package contains a rc.d script, it won't be copied into the startup
directory by default, but you can enable it, by adding the option
PKG_RCD_SCRIPTS=YES in /etc/mk.conf. This option will copy the scripts into /
etc/rc.d when a package is installed, and it will automatically remove the
scripts when the package is deinstalled.
17.6.15. Packages installing TeX modules
If a package installs TeX packages into the texmf tree, the ls-R database of
the tree needs to be updated.
Note
Except the main TeX packages such as teTeX-texmf, packages should install files
into PKG_LOCALTEXMFPREFIX, not PKG_TEXMFPREFIX.
1. Include ../../print/teTeX/module.mk instead of ../../mk/tex.buildlink3.mk.
This takes care of rebuilding the ls-R database at installation and
deinstallation time.
2. If your package installs files into a texmf tree other than the one at
PKG_LOCALTEXMFPREFIX, set TEXMFDIRS to the list of all texmf trees that
need database update.
If your package also installs font map files that need to be registered
using updmap, set TEX_FONTMAPS to the list of all such font map files. Then
updmap will be run automatically at installation/deinstallation to enable/
disable font map files for TeX output drivers.
3. Make sure that none of ls-R databases are included in PLIST, as they will
be removed only by the teTeX-bin package.
17.7. Feedback to the author
If you have found any bugs in the package you make available, if you had to do
special steps to make it run under NetBSD or if you enhanced the software in
various other ways, be sure to report these changes back to the original author
of the program! With that kind of support, the next release of the program can
incorporate these fixes, and people not using the NetBSD packages system can
win from your efforts.
Support the idea of free software!
Chapter 18. Debugging
To check out all the gotchas when building a package, here are the steps that I
do in order to get a package working. Please note this is basically the same as
what was explained in the previous sections, only with some debugging aids.
* Be sure to set PKG_DEVELOPER=1 in /etc/mk.conf
* Install pkgtools/url2pkg, create a directory for a new package, change into
it, then run url2pkg:
% mkdir /usr/pkgsrc/category/examplepkg
% cd /usr/pkgsrc/category/examplepkg
% url2pkg http://www.example.com/path/to/distfile.tar.gz
* Edit the Makefile as requested.
* Fill in the DESCR file
* Run make configure
* Add any dependencies glimpsed from documentation and the configure step to
the package's Makefile.
* Make the package compile, doing multiple rounds of
% make
% pkgvi ${WRKSRC}/some/file/that/does/not/compile
% mkpatches
% patchdiff
% mv ${WRKDIR}/.newpatches/* patches
% make mps
% make clean
Doing as non-root user will ensure that no files are modified that
shouldn't be, especially during the build phase. mkpatches, patchdiff and
pkgvi are from the pkgtools/pkgdiff package.
* Look at the Makefile, fix if necessary; see Section 9.1, "Makefile".
* Generate a PLIST:
# make install
# make print-PLIST >PLIST
# make deinstall
# make install
# make deinstall
You usually need to be root to do this. Look if there are any files left:
# make print-PLIST
If this reveals any files that are missing in PLIST, add them.
* Now that the PLIST is OK, install the package again and make a binary
package:
# make reinstall
# make package
* Delete the installed package:
# pkg_delete blub
* Repeat the above make print-PLIST command, which shouldn't find anything
now:
# make print-PLIST
* Reinstall the binary package:
# pkgadd .../blub.tgz
* Play with it. Make sure everything works.
* Run pkglint from pkgtools/pkglint, and fix the problems it reports:
# pkglint
* Submit (or commit, if you have cvs access); see Chapter 19, Submitting and
Committing.
Chapter 19. Submitting and Committing
Table of Contents
19.1. Submitting binary packages
19.2. Submitting source packages (for non-NetBSD-developers)
19.3. General notes when adding, updating, or removing packages
19.4. Committing: Importing a package into CVS
19.5. Updating a package to a newer version
19.6. Moving a package in pkgsrc
19.1. Submitting binary packages
Our policy is that we accept binaries only from pkgsrc developers to guarantee
that the packages don't contain any trojan horses etc. This is not to annoy
anyone but rather to protect our users! You're still free to put up your
home-made binary packages and tell the world where to get them. NetBSD
developers doing bulk builds and wanting to upload them please see
Section 6.3.8, "Uploading results of a bulk build".
19.2. Submitting source packages (for non-NetBSD-developers)
First, check that your package is complete, compiles and runs well; see
Chapter 18, Debugging and the rest of this document. Next, generate an
uuencoded gzipped tar(1) archive, preferably with all files in a single
directory. Finally, send-pr with category "pkg", a synopsis which includes the
package name and version number, a short description of your package (contents
of the COMMENT variable or DESCR file are OK) and attach the archive to your
PR.
If you want to submit several packages, please send a separate PR for each one,
it's easier for us to track things that way.
Alternatively, you can also import new packages into pkgsrc-wip ("pkgsrc
work-in-progress"); see the homepage at http://pkgsrc-wip.sourceforge.net/ for
details.
19.3. General notes when adding, updating, or removing packages
Please note all package additions, updates, moves, and removals in pkgsrc/doc/
CHANGES. It's very important to keep this file up to date and conforming to the
existing format, because it will be used by scripts to automatically update
pages on www.NetBSD.org and other sites. Additionally, check the pkgsrc/doc/
TODO file and remove the entry for the package you updated or removed, in case
it was mentioned there.
When the PKGREVISION of a package is bumped, the change should appear in pkgsrc
/doc/CHANGES if it is security related or otherwise relevant. Mass bumps that
result from a dependency being updated should not be mentioned. In all other
cases it's the developer's decision.
There is a make target that helps in creating proper CHANGES entries: make
changes-entry. It uses the optional CTYPE and NETBSD_LOGIN_NAME variables. The
general usage is to first make sure that your CHANGES file is up-to-date (to
avoid having to resolve conflicts later-on) and then to cd to the package
directory. For package updates, make changes-entry is enough. For new packages,
or package moves or removals, set the CTYPE variable on the command line to
"Added", "Moved", or "Removed". You can set NETBSD_LOGIN_NAME in /etc/mk.conf
if your local login name is not the same as your NetBSD login name. Don't
forget to commit the changes to pkgsrc/doc/CHANGES!
19.4. Committing: Importing a package into CVS
This section is only of interest for pkgsrc developers with write access to the
pkgsrc repository. Please remember that cvs imports files relative to the
current working directory, and that the pathname that you give the cvs import
command is so that it knows where to place the files in the repository. Newly
created packages should be imported with a vendor tag of "TNF" and a release
tag of "pkgsrc-base", e.g:
$ cd .../pkgsrc/category/pkgname
$ cvs import pkgsrc/category/pkgname TNF pkgsrc-base
Remember to move the directory from which you imported out of the way, or cvs
will complain the next time you "cvs update" your source tree. Also don't
forget to add the new package to the category's Makefile.
The commit message of the initial import should include part of the DESCR file,
so people reading the mailing lists know what the package is/does.
For new packages, "cvs import" is preferred to "cvs add" because the former
gets everything with a single command, and provides a consistent tag.
19.5. Updating a package to a newer version
Please always put a concise, appropriate and relevant summary of the changes
between old and new versions into the commit log when updating a package. There
are various reasons for this:
* A URL is volatile, and can change over time. It may go away completely or
its information may be overwritten by newer information.
* Having the change information between old and new versions in our CVS
repository is very useful for people who use either cvs or anoncvs.
* Having the change information between old and new versions in our CVS
repository is very useful for people who read the pkgsrc-changes mailing
list, so that they can make tactical decisions about when to upgrade the
package.
Please also recognize that, just because a new version of a package has been
released, it should not automatically be upgraded in the CVS repository. We
prefer to be conservative in the packages that are included in pkgsrc -
development or beta packages are not really the best thing for most places in
which pkgsrc is used. Please use your judgement about what should go into
pkgsrc, and bear in mind that stability is to be preferred above new and
possibly untested features.
19.6. Moving a package in pkgsrc
1. Make a copy of the directory somewhere else.
2. Remove all CVS dirs.
Alternatively to the first two steps you can also do:
% cvs -d user@cvs.NetBSD.org:/cvsroot export -D today pkgsrc/category/package
and use that for further work.
3. Fix CATEGORIES and any DEPENDS paths that just did "../package" instead of
"../../category/package".
4. cvs import the modified package in the new place.
5. Check if any package depends on it:
% cd /usr/pkgsrc
% grep /package */*/Makefile* */*/buildlink*
6. Fix paths in packages from step 5 to point to new location.
7. cvs rm (-f) the package at the old location.
8. Remove from oldcategory/Makefile.
9. Add to newcategory/Makefile.
10. Commit the changed and removed files:
% cvs commit oldcategory/package oldcategory/Makefile newcategory/Makefile
(and any packages from step 5, of course).
Chapter 20. Frequently Asked Questions
This section contains the answers to questions that may arise when you are
writing a package. If you don't find your question answered here, first have a
look in the other chapters, and if you still don't have the answer, ask on the
pkgsrc-users mailing list.
20.1. What is the difference between MAKEFLAGS, .MAKEFLAGS and MAKE_FLAGS?
20.2. What is the difference between MAKE, GMAKE and MAKE_PROGRAM?
20.3. What is the difference between CC, PKG_CC and PKGSRC_COMPILER?
20.4. What is the difference between BUILDLINK_LDFLAGS, BUILDLINK_LDADD and
BUILDLINK_LIBS?
20.5. Why does make show-var VARNAME=BUILDLINK_PREFIX.foo say it's empty?
20.1. What is the difference between MAKEFLAGS, .MAKEFLAGS and MAKE_FLAGS?
MAKEFLAGS are the flags passed to the pkgsrc-internal invocations of make
(1), while MAKE_FLAGS are the flags that are passed to the MAKE_PROGRAM
when building the package. [FIXME: What is .MAKEFLAGS for?]
20.2. What is the difference between MAKE, GMAKE and MAKE_PROGRAM?
MAKE is the path to the make(1) program that is used in the pkgsrc
infrastructure. GMAKE is the path to GNU Make, but you need to say
USE_TOOLS+=gmake to use that. MAKE_PROGRAM is the path to the Make
program that is used for building the package.
20.3. What is the difference between CC, PKG_CC and PKGSRC_COMPILER?
CC is the path to the real C compiler, which can be configured by the
pkgsrc user. PKG_CC is the path to the compiler wrapper. PKGSRC_COMPILER
is not a path to a compiler, but the type of compiler that should be
used. See mk/compiler.mk for more information about the latter variable.
20.4. What is the difference between BUILDLINK_LDFLAGS, BUILDLINK_LDADD and
BUILDLINK_LIBS?
[FIXME]
20.5. Why does make show-var VARNAME=BUILDLINK_PREFIX.foo say it's empty?
For optimization reasons, some variables are only available in the
"wrapper" phase and later. To "simulate" the wrapper phase, append
PKG_PHASE=wrapper to the above command.
Part III. The pkgsrc infrastructure internals
This part of the guide deals with everything from the infrastructure that is
behind the interfaces described in the developer's guide. A casual package
maintainer should not need anything from this part.
Table of Contents
21. Design of the pkgsrc infrastructure
21.1. Variable evaluation
21.1.1. At load time
21.1.2. At runtime
21.2. Designing interfaces for Makefile fragments
21.2.1. Procedures with parameters
21.2.2. Actions taken on behalf of parameters
22. Regression tests
22.1. The regression tests framework
22.2. Running the regression tests
22.3. Adding a new regression test
22.3.1. Overridable functions
22.3.2. Helper functions
23. Porting pkgsrc
23.1. Porting pkgsrc to a new operating system
23.2. Adding support for a new compiler
Chapter 21. Design of the pkgsrc infrastructure
Table of Contents
21.1. Variable evaluation
21.1.1. At load time
21.1.2. At runtime
21.2. Designing interfaces for Makefile fragments
21.2.1. Procedures with parameters
21.2.2. Actions taken on behalf of parameters
The pkgsrc infrastructure consists of many small Makefile fragments. Each such
fragment needs a properly specified interface. This chapter explains how such
an interface looks like.
21.1. Variable evaluation
21.1.1. At load time
Variable evaluation takes place either at load time or at runtime, depending on
the context in which they occur. The contexts where variables are evaluated at
load time are:
* The right hand side of the := and != operators,
* Make directives like .if or .for,
* Dependency lines.
A special exception are references to the iteration variables of .for loops,
which are expanded inline, no matter in which context they appear.
As the values of variables may change during load time, care must be taken not
to evaluate them by accident. Typical examples for variables that should not be
evaluated at load time are DEPENDS and CONFIGURE_ARGS. To make the effect more
clear, here is an example:
CONFIGURE_ARGS= # none
CFLAGS= -O
CONFIGURE_ARGS+= CFLAGS=${CFLAGS:Q}
CONFIGURE_ARGS:= ${CONFIGURE_ARGS}
CFLAGS+= -Wall
This code shows how the use of the := operator can quickly lead to unexpected
results. The first paragraph is fairly common code. The second paragraph
evaluates the CONFIGURE_ARGS variable, which results in CFLAGS=-O. In the third
paragraph, the -Wall is appended to the CFLAGS, but this addition will not
appear in CONFIGURE_ARGS. In actual code, the three paragraphs from above
typically occur in completely unrelated files.
21.1.2. At runtime
After all the files have been loaded, the values of the variables cannot be
changed anymore. Variables that are used in the shell commands are expanded at
this point.
21.2. Designing interfaces for Makefile fragments
Most of the .mk files fall into one of the following classes. Cases where a
file falls into more than one class should be avoided as it often leads to
subtle bugs.
21.2.1. Procedures with parameters
In a traditional imperative programming language some of the .mk files could be
described as procedures. They take some input parameters and?after inclusion?
provide a result in output parameters. Since all variables in Makefiles have
global scope care must be taken not to use parameter names that have already
another meaning. For example, PKGNAME is a bad choice for a parameter name.
Procedures are completely evaluated at preprocessing time. That is, when
calling a procedure all input parameters must be completely resolvable. For
example, CONFIGURE_ARGS should never be an input parameter since it is very
likely that further text will be added after calling the procedure, which would
effectively apply the procedure to only a part of the variable. Also,
references to other variables wit will be modified after calling the procedure.
A procedure can declare its output parameters either as suitable for use in
preprocessing directives or as only available at runtime. The latter
alternative is for variables that contain references to other runtime
variables.
Procedures shall be written such that it is possible to call the procedure more
than once. That is, the file must not contain multiple-inclusion guards.
Examples for procedures are mk/bsd.options.mk and mk/buildlink3/bsd.builtin.mk.
To express that the parameters are evaluated at load time, they should be
assigned using the := operator, which should be used only for this purpose.
21.2.2. Actions taken on behalf of parameters
Action files take some input parameters and may define runtime variables. They
shall not define loadtime variables. There are action files that are included
implicitly by the pkgsrc infrastructure, while other must be included
explicitly.
An example for action files is mk/subst.mk.
Chapter 22. Regression tests
Table of Contents
22.1. The regression tests framework
22.2. Running the regression tests
22.3. Adding a new regression test
22.3.1. Overridable functions
22.3.2. Helper functions
The pkgsrc infrastructure consists of a large codebase, and there are many
corners where every little bit of a file is well thought out, making pkgsrc
likely to fail as soon as anything is changed near those parts. To prevent most
changes from breaking anything, a suite of regression tests should go along
with every important part of the pkgsrc infrastructure. This chapter describes
how regression tests work in pkgsrc and how you can add new tests.
22.1. The regression tests framework
22.2. Running the regression tests
You first need to install the pkgtools/pkg_regress package, which provides the
pkg_regress command. Then you can simply run that command, which will run all
tests in the regress category.
22.3. Adding a new regression test
Every directory in the regress category that contains a file called spec is
considered a regression test. This file is a shell program that is included by
the pkg_regress command. The following functions can be overridden to suit your
needs.
22.3.1. Overridable functions
These functions do not take any parameters. They are all called in "set -e"
mode, so you should be careful to check the exitcodes of any commands you run
in the test.
do_setup()
This function prepares the environment for the test. By default it does
nothing.
do_test()
This function runs the actual test. By default, it calls TEST_MAKE with the
arguments MAKEARGS_TEST and writes its output including error messages into
the file TEST_OUTFILE.
check_result()
This function is run after the test and is typically used to compare the
actual output from the one that is expected. It can make use of the various
helper functions from the next section.
do_cleanup()
This function cleans everything up after the test has been run. By default
it does nothing.
22.3.2. Helper functions
exit_status(expected)
This function compares the exitcode of the do_test() function with its
first parameter. If they differ, the test will fail.
output_require(regex...)
This function checks for each of its parameters if the output from do_test
() matches the extended regular expression. If it does not, the test will
fail.
output_prohibit(regex...)
This function checks for each of its parameters if the output from do_test
() does not match the extended regular expression. If any of the regular
expressions matches, the test will fail.
Chapter 23. Porting pkgsrc
Table of Contents
23.1. Porting pkgsrc to a new operating system
23.2. Adding support for a new compiler
The pkgsrc system has already been ported to many operating systems, hardware
architectures and compilers. This chapter explains the necessary steps to make
pkgsrc even more portable.
23.1. Porting pkgsrc to a new operating system
To port pkgsrc to a new operating system (called MyOS in this example), you
need to touch the following files:
bootstrap/mods/mk/MyOS.sys.mk
This file contains some basic definitions, for example the name of the C
compiler.
mk/bsd.prefs.mk
Insert code that defines the variables OPSYS, OS_VERSION, LOWER_OS_VERSION,
LOWER_VENDOR, MACHINE_ARCH, OBJECT_FMT, APPEND_ELF, and the other variables
that appear in this file.
mk/platform/MyOS.mk
This file contains the platform-specific definitions that are used by
pkgsrc. Start by copying one of the other files and edit it to your needs.
mk/platform/MyOS.pkg.dist
This file contains a list of directories, together with their permission
bits and ownership. These directories will be created automatically with
every package that does not explicitly set NO_MTREE. There have been some
discussions about whether this file is needed at all, but with no result.
mk/platform/MyOS.x11.dist
Just copy one of the pre-existing x11.dist files to your MyOS.x11.dist.
mk/tools/bootstrap.mk
On some operating systems, the tools that are provided with the base system
are not good enough for pkgsrc. For example, there are many versions of sed
(1) that have a narrow limit on the line length they can process. Therefore
pkgsrc brings its own tools, which can be enabled here.
mk/tools/MyOS.mk
This file defines the paths to all the tools that are needed by one or the
other package in pkgsrc, as well as by pkgsrc itself. Find out where these
tools are on your platform and add them.
Now, you should be able to build some basic packages, like lang/perl5, shells/
bash.
23.2. Adding support for a new compiler
TODO
Appendix A. A simple example package: bison
Table of Contents
A.1. files
A.1.1. Makefile
A.1.2. DESCR
A.1.3. PLIST
A.1.4. Checking a package with pkglint
A.2. Steps for building, installing, packaging
We checked to find a piece of software that wasn't in the packages collection,
and picked GNU bison. Quite why someone would want to have bison when Berkeley
yacc is already present in the tree is beyond us, but it's useful for the
purposes of this exercise.
A.1. files
A.1.1. Makefile
# $NetBSD$
#
DISTNAME= bison-1.25
CATEGORIES= devel
MASTER_SITES= ${MASTER_SITE_GNU}
MAINTAINER= thorpej@NetBSD.org
HOMEPAGE= http://www.gnu.org/software/bison/bison.html
COMMENT= GNU yacc clone
GNU_CONFIGURE= yes
INFO_FILES= bison.info
.include "../../mk/bsd.pkg.mk"
A.1.2. DESCR
GNU version of yacc. Can make re-entrant parsers, and numerous other
improvements. Why you would want this when Berkeley yacc(1) is part
of the NetBSD source tree is beyond me.
A.1.3. PLIST
@comment $NetBSD$
bin/bison
man/man1/bison.1.gz
share/bison.simple
share/bison.hairy
A.1.4. Checking a package with pkglint
The NetBSD package system comes with pkgtools/pkglint which helps to check the
contents of these files. After installation it is quite easy to use, just
change to the directory of the package you wish to examine and execute pkglint:
$ pkglint
looks fine.
Depending on the supplied command line arguments (see pkglint(1)), more checks
will be performed. Use e.g. pkglint -Call -Wall for a very thorough check.
A.2. Steps for building, installing, packaging
Create the directory where the package lives, plus any auxiliary directories:
# cd /usr/pkgsrc/lang
# mkdir bison
# cd bison
# mkdir patches
Create Makefile, DESCR and PLIST (see Chapter 9, Package components - files,
directories and contents) then continue with fetching the distfile:
# make fetch
>> bison-1.25.tar.gz doesn't seem to exist on this system.
>> Attempting to fetch from ftp://prep.ai.mit.edu/pub/gnu//.
Requesting ftp://prep.ai.mit.edu/pub/gnu//bison-1.25.tar.gz (via ftp://orpheus.amdahl.com:80/)
ftp: Error retrieving file: 500 Internal error
>> Attempting to fetch from ftp://wuarchive.wustl.edu/systems/gnu//.
Requesting ftp://wuarchive.wustl.edu/systems/gnu//bison-1.25.tar.gz (via ftp://orpheus.amdahl.com:80/)
ftp: Error retrieving file: 500 Internal error
>> Attempting to fetch from ftp://ftp.freebsd.org/pub/FreeBSD/distfiles//.
Requesting ftp://ftp.freebsd.org/pub/FreeBSD/distfiles//bison-1.25.tar.gz (via ftp://orpheus.amdahl.com:80/)
Successfully retrieved file.
Generate the checksum of the distfile into distinfo:
# make makesum
Now compile:
# make
>> Checksum OK for bison-1.25.tar.gz.
===> Extracting for bison-1.25
===> Patching for bison-1.25
===> Ignoring empty patch directory
===> Configuring for bison-1.25
creating cache ./config.cache
checking for gcc... cc
checking whether we are using GNU C... yes
checking for a BSD compatible install... /usr/bin/install -c -o bin -g bin
checking how to run the C preprocessor... cc -E
checking for minix/config.h... no
checking for POSIXized ISC... no
checking whether cross-compiling... no
checking for ANSI C header files... yes
checking for string.h... yes
checking for stdlib.h... yes
checking for memory.h... yes
checking for working const... yes
checking for working alloca.h... no
checking for alloca... yes
checking for strerror... yes
updating cache ./config.cache
creating ./config.status
creating Makefile
===> Building for bison-1.25
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g LR0.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g allocate.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g closure.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g conflicts.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g derives.c
cc -c -DXPFILE=\"/usr/pkg/share/bison.simple\" -DXPFILE1=\"/usr/pkg/share/bison.hairy\" -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -g ./files.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g getargs.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g gram.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g lalr.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g lex.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g main.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g nullable.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g output.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g print.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g reader.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g reduce.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g symtab.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g warshall.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g version.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g getopt.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g getopt1.c
cc -g -o bison LR0.o allocate.o closure.o conflicts.o derives.o files.o getargs.o gram.o lalr.o lex.o main.o nullable.o output.o print.o reader.o reduce.o symtab.o warshall.o version.o getopt.o getopt1.o
./files.c:240: warning: mktemp() possibly used unsafely, consider using mkstemp()
rm -f bison.s1
sed -e "/^#line/ s|bison|/usr/pkg/share/bison|" < ./bison.simple > bison.s1
Everything seems OK, so install the files:
# make install
>> Checksum OK for bison-1.25.tar.gz.
===> Installing for bison-1.25
sh ./mkinstalldirs /usr/pkg/bin /usr/pkg/share /usr/pkg/info /usr/pkg/man/man1
rm -f /usr/pkg/bin/bison
cd /usr/pkg/share; rm -f bison.simple bison.hairy
rm -f /usr/pkg/man/man1/bison.1 /usr/pkg/info/bison.info*
install -c -o bin -g bin -m 555 bison /usr/pkg/bin/bison
/usr/bin/install -c -o bin -g bin -m 644 bison.s1 /usr/pkg/share/bison.simple
/usr/bin/install -c -o bin -g bin -m 644 ./bison.hairy /usr/pkg/share/bison.hairy
cd .; for f in bison.info*; do /usr/bin/install -c -o bin -g bin -m 644 $f /usr/pkg/info/$f; done
/usr/bin/install -c -o bin -g bin -m 644 ./bison.1 /usr/pkg/man/man1/bison.1
===> Registering installation for bison-1.25
You can now use bison, and also - if you decide so - remove it with pkg_delete
bison. Should you decide that you want a binary package, do this now:
# make package
>> Checksum OK for bison-1.25.tar.gz.
===> Building package for bison-1.25
Creating package bison-1.25.tgz
Registering depends:.
Creating gzip'd tar ball in '/u/pkgsrc/lang/bison/bison-1.25.tgz'
Now that you don't need the source and object files any more, clean up:
# make clean
===> Cleaning for bison-1.25
Appendix B. Build logs
Table of Contents
B.1. Building figlet
B.2. Packaging figlet
B.1. Building figlet
# make
===> Checking for vulnerabilities in figlet-2.2.1nb2
=> figlet221.tar.gz doesn't seem to exist on this system.
=> Attempting to fetch figlet221.tar.gz from ftp://ftp.figlet.org/pub/figlet/program/unix/.
=> [172219 bytes]
Connected to ftp.plig.net.
220 ftp.plig.org NcFTPd Server (licensed copy) ready.
331 Guest login ok, send your complete e-mail address as password.
230-You are user #5 of 500 simultaneous users allowed.
230-
230- ___ _ _ _
230- | _| |_ ___ ___| |_|___ ___ ___ ___
230- | _| _| . |_| . | | | . |_| . | _| . |
230- |_| |_| | _|_| _|_|_|_ |_|___|_| |_ |
230- |_| |_| |___| |___|
230-
230-** Welcome to ftp.plig.org **
230-
230-Please note that all transfers from this FTP site are logged. If you
230-do not like this, please disconnect now.
230-
230-This arhive is available via
230-
230-HTTP: http://ftp.plig.org/
230-FTP: ftp://ftp.plig.org/ (max 500 connections)
230-RSYNC: rsync://ftp.plig.org/ (max 30 connections)
230-
230-Please email comments, bug reports and requests for packages to be
230-mirrored to ftp-admin@plig.org.
230-
230-
230 Logged in anonymously.
Remote system type is UNIX.
Using binary mode to transfer files.
200 Type okay.
250 "/pub" is new cwd.
250-"/pub/figlet" is new cwd.
250-
250-Welcome to the figlet archive at ftp.figlet.org
250-
250- ftp://ftp.figlet.org/pub/figlet/
250-
250-The official FIGlet web page is:
250- http://www.figlet.org/
250-
250-If you have questions, please mailto:info@figlet.org. If you want to
250-contribute a font or something else, you can email us.
250
250 "/pub/figlet/program" is new cwd.
250 "/pub/figlet/program/unix" is new cwd.
local: figlet221.tar.gz remote: figlet221.tar.gz
502 Unimplemented command.
227 Entering Passive Mode (195,40,6,41,246,104)
150 Data connection accepted from 84.128.86.72:65131; transfer starting for figlet221.tar.gz (172219 bytes).
38% |************** | 65800 64.16 KB/s 00:01 ETA
226 Transfer completed.
172219 bytes received in 00:02 (75.99 KB/s)
221 Goodbye.
=> Checksum OK for figlet221.tar.gz.
===> Extracting for figlet-2.2.1nb2
===> Required installed package ccache-[0-9]*: ccache-2.3nb1 found
===> Patching for figlet-2.2.1nb2
===> Applying pkgsrc patches for figlet-2.2.1nb2
===> Overriding tools for figlet-2.2.1nb2
===> Creating toolchain wrappers for figlet-2.2.1nb2
===> Configuring for figlet-2.2.1nb2
===> Building for figlet-2.2.1nb2
gcc -O2 -DDEFAULTFONTDIR=\"/usr/pkg/share/figlet\" -DDEFAULTFONTFILE=\"standard.flf\" figlet.c zipio.c crc.c inflate.c -o figlet
chmod a+x figlet
gcc -O2 -o chkfont chkfont.c
=> Unwrapping files-to-be-installed.
#
# make install
===> Checking for vulnerabilities in figlet-2.2.1nb2
===> Installing for figlet-2.2.1nb2
install -d -o root -g wheel -m 755 /usr/pkg/bin
install -d -o root -g wheel -m 755 /usr/pkg/man/man6
mkdir -p /usr/pkg/share/figlet
cp figlet /usr/pkg/bin
cp chkfont /usr/pkg/bin
chmod 555 figlist showfigfonts
cp figlist /usr/pkg/bin
cp showfigfonts /usr/pkg/bin
cp fonts/*.flf /usr/pkg/share/figlet
cp fonts/*.flc /usr/pkg/share/figlet
cp figlet.6 /usr/pkg/man/man6
===> Registering installation for figlet-2.2.1nb2
#
B.2. Packaging figlet
# make package
===> Checking for vulnerabilities in figlet-2.2.1nb2
===> Packaging figlet-2.2.1nb2
===> Building binary package for figlet-2.2.1nb2
Creating package /home/cvs/pkgsrc/packages/i386/All/figlet-2.2.1nb2.tgz
Using SrcDir value of /usr/pkg
Registering depends:.
#
Appendix C. Directory layout of the pkgsrc FTP server
Table of Contents
C.1. bootstrap-pkgsrc: Bootstrap kits
C.2. distfiles: The distributed source files
C.3. iso: Currently empty
C.4. misc: Miscellaneous things
C.5. packages*: Binary packages
C.6. current, 200xQy: source packages
As in other big projects, the directory layout of pkgsrc is quite complex for
newbies. This chapter explains where you find things on the FTP server. The
base directory on ftp.NetBSD.org is /pub/pkgsrc. This directory contains some
subdirectories, which are explained below.
C.1. bootstrap-pkgsrc: Bootstrap kits
For those who only want to manage binary packages on systems other than NetBSD,
we provide the package management tools in a separate, small tar file.
C.2. distfiles: The distributed source files
The directory distfiles contains lots of archive files from all pkgsrc
packages, which are mirrored here. The subdirectories are called after their
package names and are used when the distributed files have names that don't
explicitly contain a version number or are otherwise too generic (for example
release.tar.gz).
C.3. iso: Currently empty
This directory is currently not in use.
C.4. misc: Miscellaneous things
This directory contains things that individual pkgsrc developers find worth
publishing.
C.5. packages*: Binary packages
These directories contain binary packages. Those directories that have a branch
name (200xQy) contain packages from that particular branch. The directory
packages contains binary packages from pkgsrc-current. (However, this does not
necessarily mean that the packages are still current anymore.)
Below the packages* directories are directories that distinguish the packages
by operating system and version, the next directory level specifies the
hardware architecture.
In each of the platform-specific directories, there is a whole binary packages
collection. It has a directory called All which contains all binary packages.
Besides that, there are various category directories that contain symbolic
links to the real binary packages.
C.6. current, 200xQy: source packages
These directories contain the "real" pkgsrc, that is the files that define how
to create binary packages from source archives.
The directory pkgsrc contains a snapshot of the CVS repository, which is
updated on a regularly basis. The file pkgsrc.tar.gz contains the same as the
directory, ready to be downloaded as a whole.
In the directories for the quarterly branches, there is an additional file
called pkgsrc-200xQy.tar.gz, which contains the state of pkgsrc when it was
branched.
Appendix D. Editing guidelines for the pkgsrc guide
Table of Contents
D.1. Targets
D.2. Procedure
This section contains information on editing the pkgsrc guide itself.
D.1. Targets
The pkgsrc guide's source code is stored in pkgsrc/doc/guide/files, and several
files are created from it:
* pkgsrc/doc/pkgsrc.txt
* pkgsrc/doc/pkgsrc.html
* http://www.NetBSD.org/Documentation/pkgsrc/: the documentation on the
NetBSD website will be built from pkgsrc and kept up to date on the web
server itself. This means you must make sure that your changes haven't
broken the build!
* http://www.NetBSD.org/Documentation/pkgsrc/pkgsrc.pdf: PDF version of the
pkgsrc guide.
* http://www.NetBSD.org/Documentation/pkgsrc/pkgsrc.ps: PostScript version of
the pkgsrc guide.
D.2. Procedure
The procedure to edit the pkgsrc guide is:
* Make sure you have the packages needed to re-generate the pkgsrc guide (and
other XML-based NetBSD documentation) installed. These are "netbsd-doc" for
creating the ASCII and HTML versions, and "netbsd-doc-print" for the
PostScript and PDF versions. You will need both packages installed, to make
sure documentation is consistent across all formats. The packages can be
found in pkgsrc/meta-pkgs/netbsd-doc and pkgsrc/meta-pkgs/netbsd-doc-print.
* Edit the XML file(s) in pkgsrc/doc/guide/files.
* Run make extract && make do-lint in pkgsrc/doc/guide to check the XML
syntax, and fix it if needed.
* Run make in pkgsrc/doc/guide to build the HTML and ASCII version.
* If all is well, run make install-doc to put the generated files into pkgsrc
/doc.
* cvs commit pkgsrc/doc/guide/files
* cvs commit -m re-generate pkgsrc/doc/pkgsrc.{html,txt}
* Until the webserver on www.NetBSD.org is really updated automatically to
pick up changes to the pkgsrc guide automatically, also run make
install-htdocs HTDOCSDIR=../../../htdocs (or similar, adjust HTDOCSDIR!).
* cvs commit htdocs/Documentation/pkgsrc