pkgsrc/doc/pkgsrc.txt
2004-12-03 12:48:15 +00:00

4732 lines
181 KiB
Text

The pkgsrc guide
Documentation on the NetBSD packages system
Alistair Crooks
<agc@NetBSD.org>
Hubert Feyrer
<hubertf@NetBSD.org>
The pkgsrc Developers
Copyright (C) 1994-2004 The NetBSD Foundation, Inc
$NetBSD: pkgsrc.txt,v 1.9 2004/12/02 22:23:47 dillo Exp $
Abstract
Information about using the NetBSD package system (pkgsrc) from both a user
view for installing packages as well as from a pkgsrc developers' view for
creating new packages.
-------------------------------------------------------------------------------
Table of Contents
1. Introduction
1.1. Introduction
1.2. Overview
1.3. Terminology
1.4. Typography
I. The pkgsrc user's guide
2. Where to get pkgsrc
2.1. As tar file
2.2. Via SUP
2.3. Via CVS
3. Using pkgsrc on systems other than NetBSD
3.1. Bootstrapping pkgsrc
3.2. Platform specific notes
3.2.1. Darwin (Mac OS X)
3.2.2. FreeBSD
3.2.3. Interix
3.2.4. IRIX
3.2.5. OpenBSD
3.2.6. Solaris
4. Using pkgsrc
4.1. Working with binary packages
4.1.1. Where to get binary packages
4.1.2. How to use binary packages
4.1.3. A word of warning
4.2. Building packages from source
4.2.1. Requirements
4.2.2. Fetching distfiles
4.2.3. How to build and install
4.2.4. Selecting the compiler
5. Creating binary packages
5.1. Building a single binary package
5.2. Settings for creation of binary packages
5.3. Doing a bulk build of all packages
5.3.1. Configuration
5.3.2. Other environmental considerations
5.3.3. Operation
5.3.4. What it does
5.3.5. Disk space requirements
5.3.6. Setting up a sandbox for chroot'ed builds
5.3.7. Building a partial set of packages
5.4. Creating a multiple CD-ROM packages collection
5.4.1. Example of cdpack
6. Frequently Asked Questions
6.1. Is there a mailing list for pkg-related discussion?
6.2. Where's the pkgviews documentation?
6.3. Utilities for package management (pkgtools)
6.4. How to use pkgsrc as non-root
6.5. How can I install/use XFree86 from pkgsrc?
6.6. How can I install/use X.org from pkgsrc?
6.7. How to fetch files from behind a firewall
6.8. How do I tell make fetch to do passive FTP?
6.9. How to fetch all distfiles at once
6.10. What does "Don't know how to make /usr/share/tmac/tmac.andoc"
mean?
6.11. What does "Could not find bsd.own.mk" mean?
6.12. Using 'sudo' with pkgsrc
6.13. Configuration files handling and placement
6.14. Automated security checks
II. The pkgsrc developer's guide
7. Package components - files, directories and contents
7.1. Makefile
7.2. distinfo
7.3. patches/*
7.4. Other mandatory files
7.5. Optional files
7.6. work*
7.7. files/*
8. PLIST issues
8.1. RCS ID
8.2. Semi-automatic PLIST generation
8.3. Tweaking output of make print-PLIST
8.4. Variable substitution in PLIST
8.5. Manpage-compression
8.6. Changing PLIST source with PLIST_SRC
8.7. Platform specific and differing PLISTs
8.8. Sharing directories between packages
9. Buildlink methodology
9.1. Converting packages to use buildlink3
9.2. Writing buildlink3.mk files
9.2.1. Anatomy of a buildlink3.mk file
9.2.2. Updating BUILDLINK_DEPENDS.pkg in buildlink3.mk files
9.3. Writing builtin.mk files
9.3.1. Anatomy of a builtin.mk file
9.3.2. Global preferences for native or pkgsrc software
10. Options handling
10.1. Global default options
10.2. Converting packages to use bsd.options.mk
11. The build process
11.1. Program location
11.2. Main targets
11.3. Other helpful targets
12. Notes on fixes for packages
12.1. General operation
12.1.1. How to pull in variables from /etc/mk.conf
12.1.2. Restricted packages
12.1.3. Handling dependencies
12.1.4. Handling conflicts with other packages
12.1.5. Packages that cannot or should not be built
12.1.6. Packages which should not be deleted, once installed
12.1.7. Handling packages with security problems
12.1.8. How to handle compiler bugs
12.1.9. How to handle incrementing versions when fixing an existing
package
12.1.10. Portability of packages
12.2. Possible downloading issues
12.2.1. Packages whose distfiles aren't available for plain
downloading
12.2.2. How to handle modified distfiles with the 'old' name
12.3. Configuration gotchas
12.3.1. Shared libraries - libtool
12.3.2. Using libtool on GNU packages that already support libtool
12.3.3. GNU Autoconf/Automake
12.4. Building considerations
12.4.1. CPP defines
12.5. Package specific actions
12.5.1. Package configuration files
12.5.2. User interaction
12.5.3. Handling licenses
12.5.4. Creating an account from a package
12.5.5. Installing score files
12.5.6. Packages providing login shells
12.5.7. Packages containing perl scripts
12.5.8. Packages with hardcoded paths to other interpreters
12.5.9. Packages installing perl modules
12.5.10. Packages installing info files
12.5.11. Packages installing GConf2 data files
12.5.12. Packages installing scrollkeeper data files
12.5.13. Packages installing X11 fonts
12.5.14. Packages installing GTK2 modules
12.5.15. Packages installing SGML or XML data
12.5.16. Packages installing extensions to the MIME database
12.5.17. Packages using intltool
12.6. Feedback to the author
13. Debugging
14. Submitting and Committing
14.1. Submitting your packages
14.2. Committing: Importing a package into CVS
14.3. Updating a package to a newer version
14.4. Moving a package in pkgsrc
A. A simple example package: bison
A.1. files
A.1.1. Makefile
A.1.2. DESCR
A.1.3. PLIST
A.1.4. Checking a package with pkglint
A.2. Steps for building, installing, packaging
B. Build logs
B.1. Building figlet
B.2. Packaging figlet
C. Layout of the FTP server's package archive
D. Editing guidelines for the pkgsrc guide
D.1. Targets
D.2. Procedure
Chapter 1. Introduction
Table of Contents
1.1. Introduction
1.2. Overview
1.3. Terminology
1.4. Typography
1.1. Introduction
There is a lot of software freely available for Unix based systems, which
usually runs on NetBSD and other Unix-flavoured systems, too, sometimes with
some modifications. The NetBSD Packages Collection (pkgsrc) incorporates any
such changes necessary to make that software run, and makes the installation
(and de-installation) of the software package easy by means of a single
command.
Once the software has been built, it is manipulated with the pkg_* tools so
that installation and de-installation, printing of an inventory of all
installed packages and retrieval of one-line comments or more verbose
descriptions are all simple.
pkgsrc currently contains several thousand packages, including:
* www/apache - The Apache web server
* www/mozilla - The Mozilla web browser
* meta-pkgs/gnome - The GNOME Desktop Environment
* meta-pkgs/kde3 - The K Desktop Environment
...just to name a few.
pkgsrc has built-in support for handling varying dependencies, such as pthreads
and X11, and extended features such as IPv6 support on a range of platforms.
pkgsrc was derived from FreeBSD's ports system, and initially developed for
NetBSD only. Since then, pkgsrc has grown a lot, and now supports the following
platforms:
* Darwin (Mac OS X)
* DragonFlyBSD
* FreeBSD
* Microsoft Windows, via Interix
* IRIX
* Linux
* NetBSD (of course)
* OpenBSD
* Solaris
1.2. Overview
This document is divided into two parts. The first, The pkgsrc user's guide,
describes how one can use one of the packages in the Package Collection, either
by installing a precompiled binary package, or by building one's own copy using
the NetBSD package system. The second part, The pkgsrc developer's guide,
explains how to prepare a package so it can be easily built by other NetBSD
users without knowing about the package's building details.
This document is available in various formats:
* HTML
* PDF
* PS
* TXT
1.3. Terminology
There has been a lot of talk about "ports", "packages", etc. so far. Here is a
description of all the terminology used within this document.
Package
A set of files and building instructions that describe what's necessary to
build a certain piece of software using pkgsrc. Packages are traditionally
stored under /usr/pkgsrc.
The NetBSD package system
This is the former name of "pkgsrc". It is part of the NetBSD operating
system and can be bootstrap to run on non-NetBSD operating systems as well.
It handles building (compiling), installing, and removing of packages.
Distfile
This term describes the file or files that are provided by the author of
the piece of software to distribute his work. All the changes necessary to
build on NetBSD are reflected in the corresponding package. Usually the
distfile is in the form of a compressed tar-archive, but other types are
possible, too. Distfiles are usually stored below /usr/pkgsrc/distfiles.
Port
This is the term used by FreeBSD and OpenBSD people for what we call a
package. In NetBSD terminology, "port" refers to a different architecture.
Precompiled/binary package
A set of binaries built with pkgsrc from a distfile and stuffed together in
a single .tgz file so it can be installed on machines of the same machine
architecture without the need to recompile. Packages are usually generated
in /usr/pkgsrc/packages; there is also an archive on ftp.NetBSD.org.
Sometimes, this is referred to by the term "package" too, especially in the
context of precompiled packages.
Program
The piece of software to be installed which will be constructed from all
the files in the Distfile by the actions defined in the corresponding
package.
1.4. Typography
When giving examples for commands, shell prompts are used to show if the
command should/can be issued as root, or if "normal" user privileges are
sufficient. We use a # for root's shell prompt, and a $ for users' shell
prompt, assuming they use the C-shell or tcsh.
The pkgsrc user's guide
Table of Contents
2. Where to get pkgsrc
2.1. As tar file
2.2. Via SUP
2.3. Via CVS
3. Using pkgsrc on systems other than NetBSD
3.1. Bootstrapping pkgsrc
3.2. Platform specific notes
3.2.1. Darwin (Mac OS X)
3.2.2. FreeBSD
3.2.3. Interix
3.2.4. IRIX
3.2.5. OpenBSD
3.2.6. Solaris
4. Using pkgsrc
4.1. Working with binary packages
4.1.1. Where to get binary packages
4.1.2. How to use binary packages
4.1.3. A word of warning
4.2. Building packages from source
4.2.1. Requirements
4.2.2. Fetching distfiles
4.2.3. How to build and install
4.2.4. Selecting the compiler
5. Creating binary packages
5.1. Building a single binary package
5.2. Settings for creation of binary packages
5.3. Doing a bulk build of all packages
5.3.1. Configuration
5.3.2. Other environmental considerations
5.3.3. Operation
5.3.4. What it does
5.3.5. Disk space requirements
5.3.6. Setting up a sandbox for chroot'ed builds
5.3.7. Building a partial set of packages
5.4. Creating a multiple CD-ROM packages collection
5.4.1. Example of cdpack
6. Frequently Asked Questions
6.1. Is there a mailing list for pkg-related discussion?
6.2. Where's the pkgviews documentation?
6.3. Utilities for package management (pkgtools)
6.4. How to use pkgsrc as non-root
6.5. How can I install/use XFree86 from pkgsrc?
6.6. How can I install/use X.org from pkgsrc?
6.7. How to fetch files from behind a firewall
6.8. How do I tell make fetch to do passive FTP?
6.9. How to fetch all distfiles at once
6.10. What does "Don't know how to make /usr/share/tmac/tmac.andoc" mean?
6.11. What does "Could not find bsd.own.mk" mean?
6.12. Using 'sudo' with pkgsrc
6.13. Configuration files handling and placement
6.14. Automated security checks
Chapter 2. Where to get pkgsrc
Table of Contents
2.1. As tar file
2.2. Via SUP
2.3. Via CVS
There are three ways to get pkgsrc. Either as a tar file, via SUP, or via CVS.
All three ways are described here.
2.1. As tar file
To get pkgsrc going, you need to get the pkgsrc.tar.gz file from ftp.NetBSD.org
and unpack it into /usr/pkgsrc.
2.2. Via SUP
As an alternative to the tar file, you can get pkgsrc via the Software Update
Protocol, SUP. To do so, make sure your supfile has a line
release=pkgsrc
in it, see the examples in /usr/share/examples/supfiles, and that the /usr/
pkgsrc directory exists. Then, simply run sup -v /path/to/your/supfile.
2.3. Via CVS
To get pkgsrc via CVS, make sure you have "cvs" installed. If not present on
your system, it can be found as precompiled binary on ftp.NetBSD.org. To do an
initial (full) checkout of pkgsrc, do the following steps:
% setenv CVSROOT anoncvs@anoncvs.NetBSD.org:/cvsroot
% setenv CVS_RSH ssh
% cd /usr
% cvs checkout -P pkgsrc
This will create the pkgsrc directory in your /usr, and all the package source
will be stored under /usr/pkgsrc. To update pkgsrc after the initial checkout,
make sure you have CVS_RSH set as above, then do:
% cd /usr/pkgsrc
% cvs -q update -dP
Please also note that it is possible to have multiple copies of the pkgsrc
hierarchy in use at any one time - all work is done relatively within the
pkgsrc tree.
Chapter 3. Using pkgsrc on systems other than NetBSD
Table of Contents
3.1. Bootstrapping pkgsrc
3.2. Platform specific notes
3.2.1. Darwin (Mac OS X)
3.2.2. FreeBSD
3.2.3. Interix
3.2.4. IRIX
3.2.5. OpenBSD
3.2.6. Solaris
3.1. Bootstrapping pkgsrc
For Operating Systems other than NetBSD, we provide a bootstrap kit to build
the required tools to use pkgsrc on your platform. Besides support for native
NetBSD, pkgsrc and the bootstrap kit have support for the following operating
systems:
* Darwin (Mac OS X)
* FreeBSD
* Interix (Windows 2000, XP, 2003)
* IRIX
* Linux
* OpenBSD
* Solaris
Support for other platforms is under development.
Installing the bootstrap kit should be as simple as:
# env CVS_RSH=ssh cvs -d anoncvs@anoncvs.NetBSD.org:/cvsroot checkout pkgsrc
# cd pkgsrc/bootstrap
# ./bootstrap
See Chapter 2, Where to get pkgsrc for other ways to get pkgsrc before
bootstrapping. The given bootstrap command will use the defaults of /usr/pkg
for the prefix where programs will be installed in, and /var/db/pkg for the
package database directory where pkgsrc will do it's internal bookkeeping.
However, these can also be set using command-line parameters.
Binary packages for the pkgsrc tools and an initial set of packages is
available for supported platforms. An up-to-date list of these can be found on
www.pkgsrc.org.
3.2. Platform specific notes
Here are some platform-specific notes you should be aware of.
3.2.1. Darwin (Mac OS X)
Darwin 5.x and 6.x are supported. There are two methods of using pkgsrc on Mac
OS X, by using a disk image, or a UFS partition.
Before you start, you will need to download and install the Mac OS X Developer
Tools from Apple's Developer Connection. See http://developer.apple.com/macosx/
for details. Also, make sure you install X11 for Mac OS X and the X11 SDK from
http://www.apple.com/macosx/x11/download/ if you intend to build packages that
use the X11 Window System.
If you already have a UFS partition, or have a spare partition that you can
format as UFS, it is recommended to use that instead of the disk image. It'll
be somewhat faster and will mount automatically at boot time, where you must
manually mount a disk image.
Note
You cannot use a HFS+ file system for pkgsrc, because pkgsrc currently requires
the filesystem to be case-sensitive, and HFS+ is not.
3.2.1.1. Using a disk image
Create the disk image:
# cd pkgsrc/bootstrap
# ./ufsdiskimage create ~/Documents/NetBSD 512 # megabytes - season to taste
# ./ufsdiskimage mount ~/Documents/NetBSD
# sudo chown `id -u`:`id -g` /Volumes/NetBSD
That's it!
3.2.1.2. Using a UFS partition
By default, /usr will be on your root file system, normally HFS+. It is
possible to use the default prefix of /usr/pkg by symlinking /usr/pkg to a
directory on a UFS file system. Obviously, another symlink is required if you
want to place the package database directory outside the prefix. e.g.
# ./bootstrap --pkgdbdir=/usr/pkg/pkgdb --pkgsrcdir=/Volumes/ufs/pkgsrc
If you created your partitions at the time of installing Mac OS X and formatted
the target partition as UFS, it should automatically mount on /Volumes/<volume
name> when the machine boots. If you are (re)formatting a partition as UFS, you
need to ensure that the partition map correctly reflects "Apple_UFS" and not
"Apple_HFS".
The problem is that none of the disk tools will let you touch a disk that is
booted from. You can unmount the partition, but even if you newfs it, the
partition type will be incorrect and the automounter won't mount it. It can be
mounted manually, but it won't appear in Finder.
You'll need to boot off of the OS X Installation (User) CD. When the
Installation program starts, go up to the menu and select Disk Utility. Now,
you will be able to select the partition you want to be UFS, and Format it
Apple UFS. Quit the Disk Utility, quit the installer which will reboot your
machine. The new UFS file system will appear in Finder.
Be aware that the permissions on the new file system will be writable by root
only.
This note is as of 10.2 (Jaguar) and applies to earlier versions. Hopefully
Apple will fix Disk Utility in 10.3 (Panther).
3.2.2. FreeBSD
FreeBSD 4.7 and 5.0 have been tested and are supported, other versions may
work.
Care should be taken so that the tools that this kit installs do not conflict
with the FreeBSD userland tools. There are several steps:
1. FreeBSD stores its ports pkg database in /var/db/pkg. It is therefore
recommended that you choose a different location (e.g. /usr/pkgdb) by using
the --pkgdbdir option to the bootstrap script.
2. If you do not intend to use the FreeBSD ports tools, it's probably a good
idea to move them out of the way to avoid confusion, e.g.
# cd /usr/sbin
# mv pkg_add pkg_add.orig
# mv pkg_create pkg_create.orig
# mv pkg_delete pkg_delete.orig
# mv pkg_info pkg_info.orig
3. An example /etc/mk.conf file will be placed in /etc/mk.conf.example file
when you use the bootstrap script.
3.2.3. Interix
Interix is a POSIX compatible subsystem for the Windows NT kernel, providing a
Unix-like environment with a tighter kernel integration than available with
Cygwin. It is part of the Windows Services for Unix package, available for free
for any licensed copy of Windows 2000, XP, or 2003. SFU can be downloaded from
http://www.microsoft.com/windows/sfu/.
Services for Unix 3.5, current as of this writing, has been tested. 3.0 or 3.1
may work, but are not officially supported. (The main difference in 3.0/3.1 is
lack of pthreads.)
3.2.3.1. When installing Interix/SFU
At an absolute minimum, the following packages must be installed from the
Windows Services for Unix 3.5 distribution in order to use pkgsrc:
* Utilities -> Base Utilities
* Interix GNU Components -> (all)
* Remote Connectivity
* Interix SDK
When using pkgsrc on Interix, DO NOT install the Utilities subcomponent "UNIX
Perl". That is Perl 5.6 without shared module support, installed to /usr/local,
and will only cause confusion. Instead, install Perl 5.8 from pkgsrc (or from a
binary package).
The Remote Connectivity subcomponent "Windows Remote Shell Service" does not
need to be installed, but Remote Connectivity itself should be installed in
order to have a working inetd.
Finally, during installation you may be asked whether to enable setuid behavior
for Interix programs, and whether to make pathnames default to case-sensitive.
Setuid should be enabled, and case-sensitivity MUST be enabled. (Without
case-sensitivity, a large number of packages including perl will not build.)
3.2.3.2. What to do if Interix/SFU is already installed
If SFU is already installed and you wish to alter these settings to work with
pkgsrc, note the following things.
* To uninstall UNIX Perl, use Add/Remove Programs, select Microsoft Windows
Services for UNIX, then click Change. In the installer, choose Add or
Remove, then uncheck Utilities->UNIX Perl.
* To enable case-sensitivity for the filesystem, run REGEDIT.EXE, and change
the following registry key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\kernel
Set the DWORD value "obcaseinsensitive" to 0; then reboot.
* To enable setuid binaries (optional), run REGEDIT.EXE, and change the
following registry key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Services for UNIX
Set the DWORD value "EnableSetuidBinaries" to 1; then reboot.
3.2.3.3. Important notes for using pkgsrc
The package imanager (either the pkgsrc "su" user, or the user running
"pkg_add") must be a member of the local Administrators group. Such a user must
also be used to run the bootstrap. This is slightly relaxed from the normal
pkgsrc requirement of "root".
The package manager should use a umask of 002. "make install" will
automatically complain if this is not the case. This ensures that directories
written in /var/db/pkg are Administrators-group writeable.
The popular Interix binary packages from http://www.interopsystems.com/ use an
older version of pkgsrc's pkg_* tools. Ideally, these should NOT be used in
conjunction with pkgsrc. If you choose to use them at the same time as the
pkgsrc packages, ensure that you use the proper pkg_* tools for each type of
binary package.
3.2.4. IRIX
You will need a working C compiler, either gcc or SGI's MIPS and MIPSpro
compiler (cc/c89). Please set the CC environment variable according to your
preference. If you do not have a license for the MIPSpro compiler suite, you
can download a gcc tardist file from http://freeware.sgi.com/.
Please note that you will need IRIX 6.5.17 or higher, as this is the earliest
version of IRIX providing support for if_indextoname(3), if_nametoindex(3),
etc.
At this point in time, pkgsrc only supports one ABI. That is, you can not
switch between the old 32-bit ABI, the new 32-bit ABI and the 64-bit ABI. If
you start out using "abi=n32", that's what all your packages will be built
with.
Therefore, please make sure that you have no conflicting CFLAGS in your
environment or the /etc/mk.conf. Particularly, make sure that you do not try to
link n32 object files with lib64 or vice versa. Check your /etc/
compiler.defaults!
If you have the actual pkgsrc tree mounted via NFS from a different host,
please make sure to set WRKOBJDIR to a local directory, as it appears that IRIX
linker occasionally runs into issues when trying to link over a network mounted
filesystem.
The bootstrapping process should set all the right options for programs such as
imake(1), but you may want to set some options depending on your local setup.
Please see pkgsrc/mk/bsd.pkg.defaults.mk and, of course, your compilers man
pages for details.
3.2.5. OpenBSD
OpenBSD 3.0 and 3.2 are tested and supported.
Care should be taken so that the tools that this kit installs do not conflict
with the OpenBSD userland tools. There are several steps:
1. OpenBSD stores its ports pkg database in /var/db/pkg. It is therefore
recommended that you choose a different location (e.g. /usr/pkgdb) by using
the --pkgdbdir option to the bootstrap script.
2. If you do not intend to use the OpenBSD ports tools, it's probably a good
idea to move them out of the way to avoid confusion, e.g.
# cd /usr/sbin
# mv pkg_add pkg_add.orig
# mv pkg_create pkg_create.orig
# mv pkg_delete pkg_delete.orig
# mv pkg_info pkg_info.orig
3. An example /etc/mk.conf file will be placed in /etc/mk.conf.example file
when you use the bootstrap script. OpenBSD's make program uses /etc/mk.conf
as well. You can work around this by enclosing all the pkgsrc specific
parts of the file with:
.ifdef BSD_PKG_MK
# pkgsrc stuff, e.g. insert bsd.pkg.defaults.mk or similar here
.else
# OpenBSD stuff
.endif
3.2.6. Solaris
Solaris 2.6 through 9 are supported on both x86 and sparc. You will need a
working C compiler. Both gcc 2.95.3 and Sun WorkShop 5 have been tested.
The following packages are required on Solaris 8 for the bootstrap process and
to build packages.
* SUNWsprot
* SUNWarc
* SUNWbtool
* SUNWtoo
* SUNWlibm
Please note the use of GNU binutils on Solaris is not supported.
3.2.6.1. If you are using gcc
It makes life much simpler if you only use the same gcc consistently for
building all packages.
It is recommended that an external gcc be used only for bootstrapping, then
either build gcc from lang/gcc or install a binary gcc package, then remove gcc
used during bootstrapping.
Binary packages of gcc can be found through http://www.sun.com/bigadmin/common/
freewareSearch.html.
3.2.6.2. If you are using Sun WorkShop
You will need at least the following packages installed (from WorkShop 5.0)
* SPROcc - Sun WorkShop Compiler C 5.0
* SPROcpl - Sun WorkShop Compiler C++ 5.0
* SPROild - Sun WorkShop Incremental Linker
* SPROlang - Sun WorkShop Compilers common components
You should set CC, CXX and optionally, CPP in /etc/mk.conf, eg.
CC= cc
CXX= CC
CPP= /usr/ccs/lib/cpp
You may also want to build 64-bit binaries, eg.
CFLAGS= -xtarget=ultra -xarch=v9
Whichever compiler you use, please ensure the compiler tools and your $prefix
are in your PATH. This includes /usr/ccs/{bin,lib} and eg. /usr/pkg/{bin,sbin}.
Chapter 4. Using pkgsrc
Table of Contents
4.1. Working with binary packages
4.1.1. Where to get binary packages
4.1.2. How to use binary packages
4.1.3. A word of warning
4.2. Building packages from source
4.2.1. Requirements
4.2.2. Fetching distfiles
4.2.3. How to build and install
4.2.4. Selecting the compiler
4.1. Working with binary packages
This section describes how to find, retrieve and install a precompiled binary
package that someone else already prepared for your type of machine.
4.1.1. Where to get binary packages
Precompiled packages are stored on ftp.NetBSD.org and its mirrors in the
directory /pub/NetBSD/packages for anonymous FTP access. Please pick the right
subdirectory there as indicated by uname -p. In that directory, there is a
subdirectory for each category plus a subdirectory All which includes the
actual binaries in .tgz files. The category subdirectories use symbolic links
to those files (this is the same directory layout as in /usr/pkgsrc/packages).
This same directory layout applies for CDROM distributions, only that the
directory may be rooted somewhere else, probably somewhere below /cdrom. Please
consult your CDROMs documentation for the exact location.
4.1.2. How to use binary packages
If you have the files on a CDROM or downloaded them to your hard disk, youcan
install them with the following command (be sure tosu to root first):
# pkg_add /path/to/package.tgz
If you have FTP access and you don't want to download the packages via FTP
prior to installation, you can do this automatically by giving pkg_add an FTP
URL:
# pkg_add ftp://ftp.NetBSD.org/pub/NetBSD/packages/<OSvers>/<arch>/All/package.tgz
If there is any doubt, the uname utility can be used to determine the <OSvers>,
and <arch> by running uname -rp.
Also note that any prerequisite packages needed to run the package in question
will be installed, too, assuming they are present where you install from.
After you've installed packages, be sure to have /usr/pkg/bin in your PATH so
you can actually start the just installed program.
4.1.3. A word of warning
Please pay very careful attention to the warnings expressed in the pkg_add(1)
manual page about the inherent dangers of installing binary packages which you
did not create yourself, and the security holes that can be introduced onto
your system by indiscriminate adding of such files.
4.2. Building packages from source
This assumes that the package is already in pkgsrc. If it is not, see Part II,
"The pkgsrc developer's guide".
4.2.1. Requirements
To build packages from source on a NetBSD system the "comp" and the "text"
distribution sets must be installed. If you want to build X11 related packages
the "xbase" and "xcomp" distribution sets are required, too.
4.2.2. Fetching distfiles
The distfile (i.e. the unmodified source) must exist on your system for the
packages system to be able to build it. If it does not exist, pkgsrc will use
ftp(1) to fetch it automatically.
You can overwrite some of the major distribution sites to fit to sites that are
close to your own. Have a look at pkgsrc/mk/bsd.pkg.defaults.mk to find some
examples - in particular, look for the MASTER_SORT, MASTER_SORT_REGEX and
INET_COUNTRY definitions. This may save some of your bandwidth and time.
You can change these settings either in your shell's environment, or, if you
want to keep the settings, by editing the /etc/mk.conf file, and adding the
definitions there.
If you don't have a permanent Internet connection and you want to know which
files to download, make fetch-list will tell you what you'll need. Put these
distfiles into /usr/pkgsrc/distfiles.
4.2.3. How to build and install
Assuming that the distfile has been fetched (see previous section), become root
and change into the relevant directory and running make. For example, type
% cd misc/figlet
% make
at the shell prompt to build the various components of the package, and
# make install
to install the various components into the correct places on your system.
Installing the package on your system requires you to be root. However, pkgsrc
has a just-in-time-su feature, which allows you to only become root for the
actual installation step
Taking the figlet utility as an example, we can install it on our system by
building as shown in Appendix B, Build logs.
The program is installed under the default root of the packages tree - /usr/
pkg. Should this not conform to your tastes, set the LOCALBASE variable in your
environment, and it will use that value as the root of your packages tree. So,
to use /usr/local, set LOCALBASE=/usr/local in your environment. Please note
that you should use a directory which is dedicated to packages and not shared
with other programs (ie, do not try and use LOCALBASE=/usr). Also, you should
not try to add any of your own files or directories (such as src/, obj/, or
pkgsrc/) below the LOCALBASE tree. This is to prevent possible conflicts
between programs and other files installed by the package system and whatever
else may have been installed there.
Some packages look in /etc/mk.conf to alter some configuration options at build
time. Have a look at pkgsrc/mk/bsd.pkg.defaults.mk to get an overview of what
will be set there by default. Environment variables such as LOCALBASE can be
set in /etc/mk.conf to save having to remember to set them each time you want
to use pkgsrc.
Occasionally, people want to "look under the covers" to see what is going on
when a package is building or being installed. This may be for debugging
purposes, or out of simple curiosity. A number of utility values have been
added to help with this.
1. If you invoke the make(1) command with PKG_DEBUG_LEVEL=2, then a huge
amount of information will be displayed. For example,
make patch PKG_DEBUG_LEVEL=2
will show all the commands that are invoked, up to and including the
"patch" stage.
2. If you want to know the value of a certain make(1) definition, then the
VARNAME definition should be used, in conjunction with the show-var target.
e.g. to show the expansion of the make(1) variable DISTFILES:
% make show-var VARNAME=LOCALBASE
/usr/pkg
%
If you want to install a binary package that you've either created yourself
(see next section), that you put into pkgsrc/packages manually or that is
located on a remote FTP server, you can use the "bin-install" target. This
target will install a binary package - if available - via pkg_add(1), else do a
make package. The list of remote FTP sites searched is kept in the variable
BINPKG_SITE, which defaults to ftp.NetBSD.org. Any flags that should be added
to pkg_add(1) can be put into BIN_INSTALL_FLAGS. See pkgsrc/mk/
bsd.pkg.defaults.mk for more details.
A final word of warning: If you setup a system that has a non-standard setting
for LOCALBASE, be sure to set that before any packages are installed, as you
can not use several directories for the same purpose. Doing so will result in
pkgsrc not being able to properly detect your installed packages, and fail
miserably. Note also that precompiled binary packages are usually built with
the default LOCALBASE of /usr/pkg, and that you should not install any if you
use a non-standard LOCALBASE.
4.2.4. Selecting the compiler
By default, pkgsrc will use GCC to build packages. This may be overridden by
setting the following variables in /etc/mk.conf:
PKGSRC_COMPILER:
This is a list of values specifying the chain of compilers to invoke when
building packages. Valid values are:
* distcc: distributed C/C++ (chainable)
* ccache: compiler cache (chainable)
* gcc: GNU C/C++ Compiler
* mipspro: Silicon Graphics, Inc. MIPSpro (n32/n64)
* mipspro: Silicon Graphics, Inc. MIPSpro (o32)
* sunpro: Microsystems, Inc. WorkShip/Forte/Sun ONE Studio
The default is "gcc". You can use ccache and/or distcc with an appropriate
PKGSRC_COMPILER setting, e.g. "ccache gcc". This variable should always be
terminated with a value for a real compiler.
GCC_REQD:
This specifies the minimum version of GCC to use when building packages. If
the system GCC doesn't satisfy this requirement, then pkgsrc will build and
install one of the GCC packages to use instead.
Chapter 5. Creating binary packages
Table of Contents
5.1. Building a single binary package
5.2. Settings for creation of binary packages
5.3. Doing a bulk build of all packages
5.3.1. Configuration
5.3.2. Other environmental considerations
5.3.3. Operation
5.3.4. What it does
5.3.5. Disk space requirements
5.3.6. Setting up a sandbox for chroot'ed builds
5.3.7. Building a partial set of packages
5.4. Creating a multiple CD-ROM packages collection
5.4.1. Example of cdpack
5.1. Building a single binary package
Once you have built and installed a package, you can create a binary package
which can be installed on another system with pkg_add(1) This saves having to
build the same package on a group of hosts and wasting CPU time. It also
provides a simple means for others to install your package, should you
distribute it.
To create a binary package, change into the appropriate directory in pkgsrc,
and run make package:
# cd misc/figlet
# make package
This will build and install your package (if not already done), and then build
a binary package from what was installed. You can then use the pkg_* tools to
manipulate it. Binary packages are created by default in /usr/pkgsrc/packages,
in the form of a gzipped tar file. See Section B.2, "Packaging figlet" for a
continuation of the above misc/figlet example.
See Chapter 14, Submitting and Committing for information on how to submit such
a binary package.
5.2. Settings for creation of binary packages
See Section 11.3, "Other helpful targets".
5.3. Doing a bulk build of all packages
If you want to get a full set of precompiled binary packages, this section
describes how to get them. Beware that the bulk build will remove all currently
installed packages from your system! Having a FTP server configured either on
the machine doing the bulk builds or on a nearby NFS server can help to make
the packages available to everyone. See ftpd(8) for more information. If you
use a remote NFS server's storage, be sure to not actually compile on NFS
storage, as this slows things down a lot.
5.3.1. Configuration
5.3.1.1. /etc/mk.conf
You may want to set things in /etc/mk.conf. Look at pkgsrc/mk/
bsd.pkg.defaults.mk for details of the default settings. You will want to
ensure that ACCEPTABLE_LICENSES meet your local policy. As used in this
example, _ACCEPTABLE=yes accepts all licenses.
PACKAGES?= ${_PKGSRCDIR}/packages/${MACHINE_ARCH}
WRKOBJDIR?= /usr/tmp/pkgsrc # build here instead of in pkgsrc
BSDSRCDIR= /usr/src
BSDXSRCDIR= /usr/xsrc # for x11/xservers
OBJHOSTNAME?= yes # use work.`hostname`
FAILOVER_FETCH= yes # insist on the correct checksum
PKG_DEVELOPER?= yes
_ACCEPTABLE= yes
5.3.1.2. build.conf
In pkgsrc/mk/bulk, copy build.conf-example to build.conf and edit it, following
the comments in that file. This is the config file that determines where log
files are generated after the build, where to mail the build report to, where
your pkgsrc tree is located and which user to su(8) to to do a cvs update.
5.3.1.3. pre-build.local
It is possible to configure the bulk build to perform certain site specific
tasks at the end of the pre-build stage. If the file pre-build.local exists in
/usr/pkgsrc/mk/bulk it will be executed (as a sh(1) script) at the end of the
usual pre-build stage. An example use of pre-build.local is to have the line:
# echo "I do not have enough disk space to build this pig." \
> pkgsrc/games/crafty-book-enormous/$BROKENF
to prevent the system from trying to build a particular package which requires
nearly 3 GB of disk space.
5.3.2. Other environmental considerations
As /usr/pkg will be completely deleted at the start of bulk builds, make sure
your login shell is placed somewhere else. Either drop it into /usr/local/bin
(and adjust your login shell in the passwd file), or (re-)install it via
pkg_add(1) from /etc/rc.local, so you can login after a reboot (remember that
your current process won't die if the package is removed, you just can't start
any new instances of the shell any more). Also, if you use NetBSD earlier than
1.5, or you still want to use the pkgsrc version of ssh for some reason, be
sure to install ssh before starting it from rc.local:
( cd /usr/pkgsrc/security/ssh ; make bulk-install )
if [ -f /usr/pkg/etc/rc.d/sshd ]; then
/usr/pkg/etc/rc.d/sshd
fi
Not doing so will result in you being not able to log in via ssh after the bulk
build is finished or if the machine gets rebooted or crashes. You have been
warned! :)
5.3.3. Operation
Make sure you don't need any of the packages still installed.
Warning
During the bulk build, all packages will be removed!
Be sure to remove all other things that might interfere with builds, like some
libs installed in /usr/local, etc. then become root and type:
# cd /usr/pkgsrc
# sh mk/bulk/build
If for some reason your last build didn't complete (power failure, system
panic, ...), you can continue it by running:
# sh mk/bulk/build restart
At the end of the bulk build, you will get a summary via mail, and find build
logs in the directory specified by FTP in the build.conf file.
5.3.4. What it does
The bulk builds consist of three steps:
1. pre-build
The script updates your pkgsrc tree via (anon)cvs, then cleans out any
broken distfiles, and removes all packages installed.
2. the bulk build
This is basically "make bulk-package" with an optimised order in which
packages will be built. Packages that don't require other packages will be
built first, and packages with many dependencies will be built later.
3. post-build
Generates a report that's placed in the directory specified in the
build.conf file named broken.html, a short version of that report will also
be mailed to the build's admin.
During the build, a list of broken packages will be compiled in /usr/pkgsrc
/.broken (or .../.broken.${MACHINE} if OBJMACHINE is set), individual build
logs of broken builds can be found in the package's directory. These files are
used by the bulk-targets to mark broken builds to not waste time trying to
rebuild them, and they can be used to debug these broken package builds later.
5.3.5. Disk space requirements
Currently, roughly the following requirements are valid for NetBSD 2.0/i386:
* 10 GB - distfiles (NFS ok)
* 8 GB - full set of all binaries (NFS ok)
* 5 GB - temp space for compiling (local disk recommended)
Note that all pkgs will be de-installed as soon as they are turned into a
binary package, and that sources are removed, so there is no excessively huge
demand to disk space. Afterwards, if the package is needed again, it will be
installed via pkg_add(1) instead of building again, so there are no cycles
wasted by recompiling.
5.3.6. Setting up a sandbox for chroot'ed builds
If you don't want all the pkgs nuked from a machine (rendering it useless for
anything but pkg compiling), there is the possibility of doing the pkg bulk
build inside a chroot environment.
The first step to do so is setting up a chroot sandbox, e.g. /usr/sandbox.
After extracting all the sets from a NetBSD installation or doing a make
distribution DESTDIR=/usr/sandbox in /usr/src/etc, be sure the following items
are present and properly configured:
1. Kernel
# cp /netbsd /usr/sandbox
2. /dev/*
# cd /usr/sandbox/dev ; sh MAKEDEV all
3. /etc/resolv.conf (for security/smtpd and mail):
# cp /etc/resolv.conf /usr/sandbox/etc
4. Working(!) mail config (hostname, sendmail.cf):
# cp /etc/mail/sendmail.cf /usr/sandbox/etc/mail
5. /etc/localtime (for security/smtpd):
# ln -sf /usr/share/zoneinfo/UTC /usr/sandbox/etc/localtime
6. /usr/src (system sources, for sysutils/aperture, net/ppp-mppe):
# ln -s ../disk1/cvs .
# ln -s cvs/src-1.6 src
7. Create /var/db/pkg (not part of default install):
# mkdir /usr/sandbox/var/db/pkg
8. Create /usr/pkg (not part of default install):
# mkdir /usr/sandbox/usr/pkg
9. Checkout pkgsrc via cvs into /usr/sandbox/usr/pkgsrc:
# cd /usr/sandbox/usr
# cvs -d anoncvs@anoncvs.NetBSD.org:/cvsroot checkout -d -P pkgsrc
Do not mount/link this to the copy of your pkgsrc tree you do development
in, as this will likely cause problems!
10. Make /usr/sandbox/usr/pkgsrc/packages and .../distfiles point somewhere
appropriate. NFS- and/or nullfs-mounts may come in handy!
11. Edit /etc/mk.conf, see Section 5.3.1.1, "/etc/mk.conf".
12. Adjust mk/bulk/build.conf to suit your needs.
13. If you have set CVS_USER in build.conf, make sure that account exists and
can do a cvs ${CVS_FLAGS} update properly!
When the chroot sandbox is setup, you can start the build with the following
steps:
# cd /usr/sandbox/usr/pkgsrc
# sh mk/bulk/do-sandbox-build
This will just jump inside the sandbox and start building. At the end of the
build, mail will be sent with the results of the build. Created binary pkgs
will be in /usr/sandbox/usr/pkgsrc/packages (wherever that points/mounts to/
from).
5.3.7. Building a partial set of packages
In addition to building a complete set of all packages in pkgsrc, the pkgsrc/mk
/bulk/build script may be used to build a subset of the packages contained in
pkgsrc. By setting defining SPECIFIC_PKGS in /etc/mk.conf, the variables
* SITE_SPECIFIC_PKGS
* HOST_SPECIFIC_PKGS
* GROUP_SPECIFIC_PKGS
* USER_SPECIFIC_PKGS
will define the set of packages which should be built. The bulk build code will
also include any packages which are needed as dependencies for the explicitly
listed packages.
One use of this is to do a bulk build with SPECIFIC_PKGS in a chroot sandbox
periodically to have a complete set of the binary packages needed for your site
available without the overhead of building extra packages that are not needed.
5.4. Creating a multiple CD-ROM packages collection
After your pkgsrc bulk-build has completed, you may wish to create a CD-ROM set
of the resulting binary packages to assist in installing packages on other
machines. The pkgtools/cdpack package provides a simple tool for creating the
ISO 9660 images. cdpack arranges the packages on the CD-ROMs in a way that
keeps all the dependencies for given package on the same CD as that package.
5.4.1. Example of cdpack
Complete documentation for cdpack is found in the cdpack(1) manpage. The
following short example assumes that the binary packages are left in /usr/
pkgsrc/packages/All and that sufficient disk space exists in /u2 to hold the
ISO 9660 images.
# mkdir /u2/images
# pkg_add /usr/pkgsrc/packages/All/cdpack
# cdpack /usr/pkgsrc/packages/All /u2/images
If you wish to include a common set of files (COPYRIGHT, README, etc.) on each
CD in the collection, then you need to create a directory which contains these
files. e.g.
# mkdir /tmp/common
# echo "This is a README" > /tmp/common/README
# echo "Another file" > /tmp/common/COPYING
# mkdir /tmp/common/bin
# echo "#!/bin/sh" > /tmp/common/bin/myscript
# echo "echo Hello world" >> /tmp/common/bin/myscript
# chmod 755 /tmp/common/bin/myscript
Now create the images:
# cdpack -x /tmp/common /usr/pkgsrc/packages/All /u2/images
Each image will contain README, COPYING, and bin/myscript in their root
directories.
Chapter 6. Frequently Asked Questions
Table of Contents
6.1. Is there a mailing list for pkg-related discussion?
6.2. Where's the pkgviews documentation?
6.3. Utilities for package management (pkgtools)
6.4. How to use pkgsrc as non-root
6.5. How can I install/use XFree86 from pkgsrc?
6.6. How can I install/use X.org from pkgsrc?
6.7. How to fetch files from behind a firewall
6.8. How do I tell make fetch to do passive FTP?
6.9. How to fetch all distfiles at once
6.10. What does "Don't know how to make /usr/share/tmac/tmac.andoc" mean?
6.11. What does "Could not find bsd.own.mk" mean?
6.12. Using 'sudo' with pkgsrc
6.13. Configuration files handling and placement
6.14. Automated security checks
This section contains hints, tips & tricks on special things in pkgsrc that we
didn't find a better place for in the previous chapters, and it contains items
for both pkgsrc users and developers.
6.1. Is there a mailing list for pkg-related discussion?
Yes, <tech-pkg@NetBSD.org> is the list for discussing package related issues.
To subscribe do:
% echo subscribe tech-pkg | mail majordomo@NetBSD.org
An archive of the list is available at http://mail-index.NetBSD.org/tech-pkg/.
6.2. Where's the pkgviews documentation?
Pkgviews is tightly integrated with buildlink. You can find a pkgviews User's
guide in pkgsrc/mk/buildlink3/PKGVIEWS_UG.
6.3. Utilities for package management (pkgtools)
The pkgsrc/pkgtools directory pkgtools contains a number of useful utilities
for both users and developers of pkgsrc. This section attempts only to make the
reader aware of the utilities and when they might be useful, and not to
duplicate the documentation that comes with each package.
Utilities used by pkgsrc (automatically installed when needed):
* pkgtools/x11-links: symlinks for use by buildlink
OS tool augmentation (automatically installed when needed):
* pkgtools/digest: calculates SHA1 checksums (and other kinds)
* pkgtools/libnbcompat: compat library for pkg tools
* pkgtools/mtree: installed on non-BSD systems due to lack of native mtree
* pkgtools/pkg_install: up-to-date replacement for /usr/sbin/pkg_install, or
for use on operating systems where pkg_install is not present
Utilities used by pkgsrc (not automatically installed):
* pkgtools/pkg_tarup: create a binary package from an already-installed
package. used by 'make replace' to save the old package
* pkgtools/dfdisk: adds extra functionality to pkgsrc, allowing it to fetch
distfiles from multiple locations. It currently supports the following
methods: multiple CD-ROMs and network FTP/HTTP connections.
* pkgtools/xpkgwedge: put X11 packages someplace else (enabled by default)
* devel/cpuflags: will determine the best compiler flags to optimise code for
your current CPU and compiler.
Utilities for keeping track of installed packages, being up to date, etc:
* pkgtools/pkg_chk: installs pkg_chk, which reports on packages whose
installed versions do not match the latest pkgsrc entries
* pkgtools/pkgdep: makes dependency graphs of packages, to aid in choosing a
strategy for updating
* pkgtools/pkgdepgraph: make graph from above (uses graphviz)
* pkgtools/pkglint: This provides two distinct abilities: check a pkgsrc
entry for correctness (pkglint) check for and remove out-of-date distfiles
and binary packages (lintpkgsrc)
* pkgtools/pkgsurvey: report what packages you have installed
Utilities for people maintaining or creating individual packages:
* pkgtools/pkgdiff: automate making and maintaining patches for a package
(includes pkgdiff, pkgvi, mkpatches, ...)
* pkgtools/rpm2pkg, pkgtools/url2pkg: aids in converting to pkgsrc
* pkgtools/gensolpkg: convert pkgsrc to a Solaris package
Utilities for people maintaining pkgsrc (or more obscure pkg utilities)
* pkgtools/pkgconflict: find packages that conflict but aren't marked as such
* pkgtools/pkg_comp: build packages in a chrooted area
* pkgtools/libkver: spoof kernel version for chrooted cross builds
6.4. How to use pkgsrc as non-root
If you want to use pkgsrc as non-root user, you can set some variables to make
pkgsrc work under these conditions. Please see this message for more details.
6.5. How can I install/use XFree86 from pkgsrc?
If you want to use XFree86 from pkgsrc instead of your system's own X11 (/usr/
X11R6, /usr/openwin, ...), you will have to add the following lines into
mk.conf:
X11_TYPE=XFree86
6.6. How can I install/use X.org from pkgsrc?
If you want to use X.org from pkgsrc instead of your system's own X11 (/usr/
X11R6, /usr/openwin, ...) you will have to add the following lines into
mk.conf:
X11_TYPE=xorg
6.7. How to fetch files from behind a firewall
If you are sitting behind a firewall which does not allow direct connections to
Internet hosts (i.e. non-NAT), you may specify the relevant proxy hosts. This
is done using an environment variable in the form of a URL e.g. in Amdahl, the
machine "orpheus.amdahl.com" is one of the firewalls, and it uses port 80 as
the proxy port number. So the proxy environment variables are:
ftp_proxy=ftp://orpheus.amdahl.com:80/
http_proxy=http://orpheus.amdahl.com:80/
6.8. How do I tell make fetch to do passive FTP?
This depends on which utility is used to retrieve distfiles. From bsd.pkg.mk,
FETCH_CMD is assigned the first available command from the following list:
${LOCALBASE}/bin/ftp
/usr/bin/ftp
On a default NetBSD installation, this will be /usr/bin/ftp, which
automatically tries passive connections first, and falls back to active
connections if the server refuses to do passive. For the other tools, add the
following to your /etc/mk.conf file: PASSIVE_FETCH=1.
Having that option present will prevent /usr/bin/ftp from falling back to
active transfers.
6.9. How to fetch all distfiles at once
You would like to download all the distfiles in a single batch from work or
university, where you can't run a make fetch. There is an archive of distfiles
on ftp.NetBSD.org, but downloading the entire directory may not be appropriate.
The answer here is to do a make fetch-list in /usr/pkgsrc or one of it's
subdirectories, carry the resulting list to your machine at work/school and use
it there If you don't have a NetBSD-compatible ftp(1) (like lukemftp) at work,
don't forget to set FETCH_CMD to something that fetches a URL:
At home:
% cd /usr/pkgsrc
% make fetch-list FETCH_CMD=wget DISTDIR=/tmp/distfiles >/tmp/fetch.sh
% scp /tmp/fetch.sh work:/tmp
At work:
% sh /tmp/fetch.sh
then tar up /tmp/distfiles and take it home.
If you have a machine running NetBSD, and you want to get all distfiles (even
ones that aren't for your machine architecture), you can do so by using the
above-mentioned make fetch-list approach, or fetch the distfiles directly by
running:
% make mirror-distfiles
If you even decide to ignore NO_{SRC,BIN}_ON_{FTP,CDROM}, then you can get
everything by running:
% make fetch NO_SKIP=yes
6.10. What does "Don't know how to make /usr/share/tmac/tmac.andoc" mean?
When compiling the pkgtools/pkg_install package, you get the error from make
that it doesn't know how to make /usr/share/tmac/tmac.andoc? This indicates
that you don't have installed the "text" set on your machine (nroff, ...). It
is recommended to do that to format manpages.
In the case of the pkgtools/pkg_install package, you can get away with setting
NOMAN=YES either in the environment or in /etc/mk.conf.
6.11. What does "Could not find bsd.own.mk" mean?
You didn't install the compiler set, comp.tgz, when you installed your NetBSD
machine. Please get it and install it, by extracting it in /:
# cd /
# tar --unlink -zxvpf .../comp.tgz
comp.tgz is part of every NetBSD release. Get the one that corresponds to your
release (determine via uname -r).
6.12. Using 'sudo' with pkgsrc
When installing packages as non-root user and using the just-in-time su(1)
feature of pkgsrc, it can become annoying to type in the root password for each
required package installed. To avoid this, the sudo package can be used, which
does password caching over a limited time. To use it, install sudo (either as
binary package or from security/sudo) and then put the following into your /etc
/mk.conf:
.if exists(/usr/pkg/bin/sudo)
SU_CMD=/usr/pkg/bin/sudo /bin/sh -c
.endif
6.13. Configuration files handling and placement
The global variable PKG_SYSCONFBASE (and some others) can be set by the system
administrator in /etc/mk.conf to define the place where configuration files get
installed. Therefore, packages must be adapted to support this feature. Keep in
mind that you should only install files that are strictly necessary in the
configuration directory, files that can go to $PREFIX/share should go there.
We will take a look at available variables first (bsd.pkg.mk contains more
information). PKG_SYSCONFDIR is where the configuration files for a package may
be found (that is, the full path, e.g. /etc or /usr/pkg/etc). This value may be
customized in various ways:
1. PKG_SYSCONFBASE is the main config directory under which all package
configuration files are to be found. Users will typically want to set it to
/etc, or accept the default location of $PREFIX/etc.
2. PKG_SYSCONFSUBDIR is the subdirectory of PKG_SYSCONFBASE under which the
configuration files for a particular package may be found. Defaults to $
{SYSCONFBASE}.
3. PKG_SYSCONFVAR is the special suffix used to distinguish any overriding
values for a particular package (see next item). It defaults to ${PKGBASE},
but for a collection of related packages that should all have the same
PKG_SYSCONFDIR value, it can be set in each of the package Makefiles to a
common value.
4. PKG_SYSCONFDIR.${PKG_SYSCONFVAR} overrides the value of ${PKG_SYSCONFDIR}
for packages with the same value for PKG_SYSCONFVAR.
As an example, all the various KDE packages may want to set PKG_SYSCONFVAR
to "kde" so admins can set PKG_SYSCONFDIR.kde in /etc/mk.conf to define
where to install KDE config files.
Programs' configuration directory should be defined during the configure stage.
Packages that use GNU autoconf can usually do this by using the "--sysconfdir"
parameter, but this brings some problems as we will see now. When you change
this pathname in packages, you should not allow them to install files in that
directory directly. Instead they need to install those files under share/
examples/${PKGNAME} so PLIST can register them.
Once you have the required configuration files in place (under the share/
examples directory) the variable CONF_FILES should be set to copy them into
PKG_SYSCONFDIR. The contents of this variable is formed by pairs of filenames;
the first element of the pair specifies the file inside the examples directory
(registered by PLIST) and the second element specifies the target file. This is
done this way to allow binary packages to place files in the right directory
using INSTALL/DEINSTALL scripts which are created automatically. The package
Makefile must also set USE_PKGINSTALL=YES to use these automatically generated
scripts. The automatic copying of config files can be toggled by setting the
environment variable PKG_CONFIG prior to package installation.
Here is an example, taken from mail/mutt/Makefile:
EGDIR= ${PREFIX}/share/doc/mutt/samples
CONF_FILES= ${EGDIR}/Muttrc ${PKG_SYSCONFDIR}/Muttrc
As you can see, this package installs configuration files inside EGDIR, which
are registered by PLIST. After that, the variable CONF_FILES lists the
installed file first and then the target file. Users will also get an automatic
message when files are installed using this method.
6.14. Automated security checks
Please be aware that there can often be bugs in third-party software, and some
of these bugs can leave a machine vulnerable to exploitation by attackers. In
an effort to lessen the exposure, the NetBSD packages team maintains a database
of known-exploits to packages which have at one time been included in pkgsrc.
The database can be downloaded automatically, and a security audit of all
packages installed on a system can take place. To do this, install the security
/audit-packages package. It has two components:
1. "download-vulnerability-list", an easy way to download a list of the
security vulnerabilities information. This list is kept up to date by the
NetBSD security officer and the NetBSD packages team, and is distributed
from the NetBSD ftp server:
ftp://ftp.NetBSD.org/pub/NetBSD/packages/distfiles/pkg-vulnerabilities
2. "audit-packages", an easy way to audit the current machine, checking each
vulnerability which is known. If a vulnerable package is installed, it will
be shown by output to stdout, including a description of the type of
vulnerability, and a URL containing more information.
Use of the audit-packages package is strongly recommended!
The following message is displayed as part of the audit-packages installation
procedure:
===========================================================================
$NetBSD: pkgsrc.txt,v 1.9 2004/12/02 22:23:47 dillo Exp $
You may wish to have the vulnerabilities file downloaded daily so that
it remains current. This may be done by adding an appropriate entry
to the root users crontab(5) entry. For example the entry
# download vulnerabilities file
0 3 * * * ${PREFIX}/sbin/download-vulnerability-list >/dev/null 2>&1
will update the vulnerability list every day at 3AM. You may wish to do
this more often than once a day.
In addition, you may wish to run the package audit from the daily
security script. This may be accomplished by adding the following
lines to /etc/security.local
if [ -x ${PREFIX}/sbin/audit-packages ]; then
${PREFIX}/sbin/audit-packages
fi
===========================================================================
The pkgsrc developer's guide
Table of Contents
7. Package components - files, directories and contents
7.1. Makefile
7.2. distinfo
7.3. patches/*
7.4. Other mandatory files
7.5. Optional files
7.6. work*
7.7. files/*
8. PLIST issues
8.1. RCS ID
8.2. Semi-automatic PLIST generation
8.3. Tweaking output of make print-PLIST
8.4. Variable substitution in PLIST
8.5. Manpage-compression
8.6. Changing PLIST source with PLIST_SRC
8.7. Platform specific and differing PLISTs
8.8. Sharing directories between packages
9. Buildlink methodology
9.1. Converting packages to use buildlink3
9.2. Writing buildlink3.mk files
9.2.1. Anatomy of a buildlink3.mk file
9.2.2. Updating BUILDLINK_DEPENDS.pkg in buildlink3.mk files
9.3. Writing builtin.mk files
9.3.1. Anatomy of a builtin.mk file
9.3.2. Global preferences for native or pkgsrc software
10. Options handling
10.1. Global default options
10.2. Converting packages to use bsd.options.mk
11. The build process
11.1. Program location
11.2. Main targets
11.3. Other helpful targets
12. Notes on fixes for packages
12.1. General operation
12.1.1. How to pull in variables from /etc/mk.conf
12.1.2. Restricted packages
12.1.3. Handling dependencies
12.1.4. Handling conflicts with other packages
12.1.5. Packages that cannot or should not be built
12.1.6. Packages which should not be deleted, once installed
12.1.7. Handling packages with security problems
12.1.8. How to handle compiler bugs
12.1.9. How to handle incrementing versions when fixing an existing
package
12.1.10. Portability of packages
12.2. Possible downloading issues
12.2.1. Packages whose distfiles aren't available for plain downloading
12.2.2. How to handle modified distfiles with the 'old' name
12.3. Configuration gotchas
12.3.1. Shared libraries - libtool
12.3.2. Using libtool on GNU packages that already support libtool
12.3.3. GNU Autoconf/Automake
12.4. Building considerations
12.4.1. CPP defines
12.5. Package specific actions
12.5.1. Package configuration files
12.5.2. User interaction
12.5.3. Handling licenses
12.5.4. Creating an account from a package
12.5.5. Installing score files
12.5.6. Packages providing login shells
12.5.7. Packages containing perl scripts
12.5.8. Packages with hardcoded paths to other interpreters
12.5.9. Packages installing perl modules
12.5.10. Packages installing info files
12.5.11. Packages installing GConf2 data files
12.5.12. Packages installing scrollkeeper data files
12.5.13. Packages installing X11 fonts
12.5.14. Packages installing GTK2 modules
12.5.15. Packages installing SGML or XML data
12.5.16. Packages installing extensions to the MIME database
12.5.17. Packages using intltool
12.6. Feedback to the author
13. Debugging
14. Submitting and Committing
14.1. Submitting your packages
14.2. Committing: Importing a package into CVS
14.3. Updating a package to a newer version
14.4. Moving a package in pkgsrc
Chapter 7. Package components - files, directories and contents
Table of Contents
7.1. Makefile
7.2. distinfo
7.3. patches/*
7.4. Other mandatory files
7.5. Optional files
7.6. work*
7.7. files/*
Whenever you're preparing a package, there are a number of files involved which
are described in the following sections.
7.1. Makefile
Building, installation and creation of a binary package are all controlled by
the package's Makefile.
There is a Makefile for each package. This file includes the standard
bsd.pkg.mk file (referenced as ../../mk/bsd.pkg.mk), which sets all the
definitions and actions necessary for the package to compile and install
itself. The mandatory variables are the DISTNAME which specifies the base name
of the distribution file to be downloaded from the site on the Internet,
MASTER_SITES which specifies that site, CATEGORIES which denotes the categories
into which the package falls, PKGNAME which is the name of the package, the
MAINTAINER's name, and the COMMENT variable, which should contain a one-line
description of the package (the package name should not appear, it will be
added automatically). The maintainer variable is there so that anyone who
quibbles with the (always completely correct) decisions taken by the guy who
maintains the package can complain vigorously, or send chocolate as a sign of
appreciation.
The MASTER_SITES may be set to one of the predefined sites:
${MASTER_SITE_APACHE}
${MASTER_SITE_DEBIAN}
${MASTER_SITE_GNOME}
${MASTER_SITE_GNU}
${MASTER_SITE_GNUSTEP}
${MASTER_SITE_IFARCHIVE}
${MASTER_SITE_MOZILLA}
${MASTER_SITE_PERL_CPAN}
${MASTER_SITE_SOURCEFORGE}
${MASTER_SITE_SUNSITE}
${MASTER_SITE_R_CRAN}
${MASTER_SITE_SUSE}
${MASTER_SITE_TEX_CTAN}
${MASTER_SITE_XCONTRIB}
${MASTER_SITE_XEMACS}
If one of these predefined sites is chosen, you may require the ability to
specify a subdirectory of that site. Since these macros may expand to more than
one actual site, you must use the following construct to specify a
subdirectory:
${MASTER_SITE_GNU:=subdirectory/name/}
${MASTER_SITE_SOURCEFORGE:=project_name/}
Note the trailing slash after the subdirectory name.
Note
MASTER_SITE_SUBDIR has been deprecated and should no longer be used.
If the package has multiple DISTFILES or multiple PATCHFILES from different
sites, set SITES_foo to a list of URI's where file "foo" may be found. "foo"
includes the suffix, e.g.
DISTFILES= ${DISTNAME}${EXTRACT_SUFX}
DISTFILES+= foo-file.tar.gz
SITES_foo-file.tar.gz=http://www.somewhere.com/somehow/ \
http://www.somewhereelse.com/mirror/somehow/
Note that the normal default setting of DISTFILES must be made explicit if you
want to add to it (rather than replace it), as you usually would.
Currently the following values are available for CATEGORIES. If more than one
is used, they need to be separated by spaces:
archivers cross geography meta-pkgs security
audio databases graphics misc shells
benchmarks devel ham multimedia sysutils
biology editors inputmethod net textproc
cad emulators lang news time
chat finance mail parallel wm
comms fonts math pkgtools www
converters games mbone print x11
Please pay attention to the following gotchas:
* Add MANCOMPRESSED if manpages are installed in compressed form by the
package; see comment in bsd.pkg.mk.
* Replace /usr/local with "${PREFIX}" in all files (see patches, below).
* If the package installs any info files, see Section 12.5.10, "Packages
installing info files".
* Set MAINTAINER to be yourself. If you really can't maintain the package for
future updates, set it to <tech-pkg@NetBSD.org>.
* If a home page for the software in question exists, add the variable
HOMEPAGE right after MAINTAINER. The value of this variable should be the
URL for the home page.
* Be sure to set the COMMENT variable to a short description of the package,
not containing the pkg's name.
7.2. distinfo
Most important, the mandatory message digest, or checksum, of all the distfiles
needed for the package to compile, confirming they match the original file
distributed by the author. This ensures that the distfile retrieved from the
Internet has not been corrupted during transfer or altered by a malign force to
introduce a security hole. It is generated using the make makesum command. The
digest algorithm used was, at one stage, md5, but that was felt lacking
compared to sha1, and so sha1 is now the default algorithm. The distfile size
is also generated and stored in new distinfo files. The pkgtools/digest utility
calculates all of the digests in the distinfo file, and it provides various
different algorithms. At the current time, the algorithms provided are: md5,
rmd160, sha1, sha256, sha384 and sha512.
Some packages have different sets of distfiles on a per architecture basis, for
example www/navigator). These are kept in the same distinfo file and care
should be taken when upgrading such a package to ensure distfile information is
not lost.
The message digest/checksum for all the official patches found in the patches/
directory (see Section 7.3, "patches/*") for the package is also stored in the
distinfo file. This is a message digest/checksum of all lines in the patch file
except the NetBSD RCS Id. This file is generated by invoking make makepatchsum
(or make mps if you're in a hurry).
7.3. patches/*
This directory contains files that are used by the patch(1) command to modify
the sources as distributed in the distribution file into a form that will
compile and run perfectly on NetBSD. The files are applied successively in
alphabetic order (as returned by a shell "patches/patch-*" glob expansion), so
patch-aa is applied before patch-ab, etc.
The patch-* files should be in diff -bu format, and apply without a fuzz to
avoid problems. (To force patches to apply with fuzz you can set
PATCH_FUZZ_FACTOR=-F2). Furthermore, do not put changes for more than one file
into a single patch-file, as this will make future modifications more
difficult.
Similar, a file should be patched at most once, not several times by several
different patches. If a file needs several patches, they should be combined
into one file.
One important thing to mention is to pay attention that no RCS IDs get stored
in the patch files, as these will cause problems when later checked into the
NetBSD CVS tree. Use the pkgdiff from the pkgtools/pkgdiff package to avoid
these problems.
For even more automation, we recommend using mkpatches from the same package to
make a whole set of patches. You just have to backup files before you edit them
to filename.orig, e.g. with cp -p filename filename.orig or, easier, by using
pkgvi again from the same package. If you upgrade a package this way, you can
easily compare the new set of patches with the previously existing one with
patchdiff.
When you have finished a package, remember to generate the checksums for the
patch files by using the make makepatchsum command, see Section 7.2, "distinfo"
.
Patch files that are distributed by the author or other maintainers can be
listed in $PATCHFILES.
If it is desired to store any patches that should not be committed into pkgsrc,
they can be kept outside the pkgsrc tree in the $LOCALPATCHES directory. The
directory tree there is expected to have the same "category/package" structure
as pkgsrc, and patches are expected to be stored inside these dirs (also known
as $LOCALPATCHES/$PKGPATH). For example if you want to keep a private patch for
pkgsrc/graphics/png, keep it in $LOCALPATCHES/graphics/png/mypatch. All files
in the named directory are expected to be patch files, and they are applied
after pkgsrc patches are applied.
7.4. Other mandatory files
DESCR
A multi-line description of the piece of software. This should include any
credits where they are due. Please bear in mind that others do not share
your sense of humour (or spelling idiosyncrasies), and that others will
read everything that you write here.
PLIST
This file governs the files that are installed on your system: all the
binaries, manual pages, etc. There are other directives which may be
entered in this file, to control the creation and deletion of directories,
and the location of inserted files. See Chapter 8, PLIST issues for more
information.
7.5. Optional files
INSTALL
This shell script is invoked twice by pkg_add(1). First time after package
extraction and before files are moved in place, the second time after the
files to install are moved in place. This can be used to do any custom
procedures not possible with @exec commands in PLIST. See pkg_add(1) and
pkg_create(1) for more information.
DEINSTALL
This script is executed before and after any files are removed. It is this
script's responsibility to clean up any additional messy details around the
package's installation, since all pkg_delete knows is how to delete the
files created in the original distribution. See pkg_delete(1) and
pkg_create(1) for more information.
MESSAGE
Display this file after installation of the package. Useful for things like
legal notices on almost-free software and hints for updating config files
after installing modules for apache, PHP etc. Please note that you can
modify variables in it easily by using MESSAGE_SUBST in the package's
Makefile:
MESSAGE_SUBST+= SOMEVAR="somevalue"
replaces "${SOMEVAR}" with "somevalue" in MESSAGE.
7.6. work*
When you type make the distribution files are unpacked into this directory. It
can be removed by running make clean. Besides the sources, this directory is
also used to keep various timestamp files.
If a package doesn't create a subdirectory for itself (like GNU software does,
for instance), but extracts itself in the current directory, you should set
WRKSRC accordingly, e.g. editors/sam again, but the quick answer is:
WRKSRC= ${WRKDIR}
Please note that the old NO_WRKSUBDIR has been deprecated and should not be
used. Also, if your package doesn't create a subdir with the name of DISTNAME
but some different name, set WRKSRC to point to the proper name in ${WRKDIR}.
See lang/tcl and x11/tk for examples, and here is another one:
WRKSRC= ${WRKDIR}/${DISTNAME}/unix
The name of the working directory created by pkgsrc is work by default. If the
same pkgsrc tree should be used on several different platforms, the variable
OBJMACHINE can be set in /etc/mk.conf to attach the platform to the directory
name, e.g. work.i386 or work.sparc.
7.7. files/*
If you have any files that you wish to be placed in the package prior to
configuration or building, you could place these files here and use a "${CP}"
command in the "pre-configure" target to achieve this. Alternatively, you could
simply diff the file against /dev/null and use the patch mechanism to manage
the creation of this file.
Chapter 8. PLIST issues
Table of Contents
8.1. RCS ID
8.2. Semi-automatic PLIST generation
8.3. Tweaking output of make print-PLIST
8.4. Variable substitution in PLIST
8.5. Manpage-compression
8.6. Changing PLIST source with PLIST_SRC
8.7. Platform specific and differing PLISTs
8.8. Sharing directories between packages
The PLIST file contains a package's "packing list", i.e. a list of files that
belong to the package (relative to the ${PREFIX} directory it's been installed
in) plus some additional statements - see the pkg_create(1) manpage for a full
list. This chapter addresses some issues that need attention when dealing with
the PLIST file (or files, see below!).
8.1. RCS ID
Be sure to add a RCS ID line as the first thing in any PLIST file you write:
@comment $NetBSD: pkgsrc.txt,v 1.9 2004/12/02 22:23:47 dillo Exp $
8.2. Semi-automatic PLIST generation
You can use the make print-PLIST command to output a PLIST that matches any new
files since the package was extracted. See Section 11.3, "Other helpful
targets" for more information on this target.
8.3. Tweaking output of make print-PLIST
If you have used any of the *-dirs packages, as explained in Section 8.8,
"Sharing directories between packages", you may have noticed that make
print-PLIST outputs a set of @comments instead of real @dirrm lines. You can
also do this for specific directories and files, so that the results of that
command are very close to reality. This helps a lot during the update of
packages.
The PRINT_PLIST_AWK variable takes a set of AWK patterns and actions that are
used to filter the output of print-PLIST. You can append any chunk of AWK
scripting you like to it, but be careful with quoting.
For example, to get all files inside the libdata/foo directory removed from the
resulting PLIST:
PRINT_PLIST_AWK+= /^libdata\/foo/ { next; }
And to get all the @dirrm lines referring to a specific (shared) directory
converted to @comments:
PRINT_PLIST_AWK+= /^@dirrm share\/specific/ { print "@comment " $$0; next; }
8.4. Variable substitution in PLIST
A number of variables are substituted automatically in PLISTs when a package is
installed on a system. This includes the following variables:
${MACHINE_ARCH}, ${MACHINE_GNU_ARCH}
Some packages like emacs and perl embed information about which
architecture they were built on into the pathnames where they install their
file. To handle this case, PLIST will be preprocessed before actually used,
and the symbol "${MACHINE_ARCH}" will be replaced by what uname -p gives.
The same is done if the string ${MACHINE_GNU_ARCH} is embedded in PLIST
somewhere - use this on packages that have GNU autoconf created configure
scripts.
Legacy note
There used to be a symbol "$ARCH" that was replaced by the output of uname
-m, but that's no longer supported and has been removed.
${OPSYS}, ${LOWER_OPSYS}, ${OS_VERSION}
Some packages want to embed the OS name and version into some paths. To do
this, use these variables in the PLIST:
* ${OPSYS} - output of "uname -s"
* ${LOWER_OPSYS} - lowercase common name (eg. "solaris")
* ${OS_VERSION} - "uname -r"
${PKGLOCALEDIR}
Packages that install locale files should list them in the PLIST as "$
{PKGLOCALEDIR}/locale/de/LC_MESSAGES/..." instead of "share/locale/de/
LC_MESSAGES/...". This properly handles the fact that different operating
systems expect locale files to be either in share or lib by default.
For a complete list of values which are replaced by default, please look in
bsd.pkg.mk (and search for PLIST_SUBST).
If you want to change other variables not listed above, you can add variables
and their expansions to this variable in the following way, similar to
MESSAGE_SUBST (see Section 7.5, "Optional files"):
PLIST_SUBST+= SOMEVAR="somevalue"
This replaces all occurrences of "${SOMEVAR}" in the PLIST with "somevalue".
8.5. Manpage-compression
Manpages should be installed in compressed form if MANZ is set (in bsd.own.mk),
and uncompressed otherwise. To handle this in the PLIST file, the suffix ".gz"
is appended/removed automatically for manpages according to MANZ and
MANCOMPRESSED being set or not, see above for details. This modification of the
PLIST file is done on a copy of it, not PLIST itself.
8.6. Changing PLIST source with PLIST_SRC
To use one or more files as source for the PLIST used in generating the binary
package, set the variable PLIST_SRC to the names of that file(s). The files are
later concatenated using cat(1), and order of things is important.
8.7. Platform specific and differing PLISTs
Some packages decide to install a different set of files based on the operating
system being used. These differences can be automatically handled by using the
following files:
* PLIST.common
* PLIST.${OPSYS}
* PLIST.common_end
If PLIST.${OPSYS} exists, these files are used instead of PLIST. This allows
packages which behave in this way to be handled gracefully. Manually overriding
PLIST_SRC for other more exotic uses is also possible.
8.8. Sharing directories between packages
A "shared directory" is a directory where multiple (and unrelated) packages
install files. These directories are problematic because you have to add
special tricks in the PLIST to conditionally remove them, or have some
centralized package handle them.
Within pkgsrc, you'll find both approaches. If a directory is shared by a few
unrelated packages, it's often not worth to add an extra package to remove it.
Therefore, one simply does:
@unexec ${RMDIR} %D/path/to/shared/directory 2>/dev/null || ${TRUE}
in the PLISTs of all affected packages, instead of the regular "@dirrm" line.
However, if the directory is shared across many packages, two different
solutions are available:
1. If the packages have a common dependency, the directory can be removed in
that. For example, see textproc/scrollkeeper, which removes the shared
directory share/omf.
2. If the packages using the directory are not related at all (they have no
common dependencies), a *-dirs package is used.
From now on, we'll discuss the second solution. To get an idea of the *-dirs
packages available, issue:
% cd .../pkgsrc
% ls -d */*-dirs
Their use from other packages is very simple. The USE_DIRS variable takes a
list of package names (without the "-dirs" part) together with the required
version number (always pick the latest one when writting new packages).
For example, if a package installs files under share/applications, it should
have the following line in it:
USE_DIRS+= xdg-1.1
After regenerating the PLIST using make print-PLIST, you should get the right
(commented out) lines.
Note that, even if your package is using $X11BASE, it must not depend on the
*-x11-dirs packages. Just specify the name without that part and pkgsrc (in
particular, mk/dirs.mk) will take care of it.
Chapter 9. Buildlink methodology
Table of Contents
9.1. Converting packages to use buildlink3
9.2. Writing buildlink3.mk files
9.2.1. Anatomy of a buildlink3.mk file
9.2.2. Updating BUILDLINK_DEPENDS.pkg in buildlink3.mk files
9.3. Writing builtin.mk files
9.3.1. Anatomy of a builtin.mk file
9.3.2. Global preferences for native or pkgsrc software
Buildlink is a framework in pkgsrc that controls what headers and libraries are
seen by a package's configure and build processes. This is implemented in a two
step process:
1. Symlink headers and libraries for dependencies into BUILDLINK_DIR, which by
default is a subdirectory of WRKDIR.
2. Create wrapper scripts that are used in place of the normal compiler tools
that translate -I${LOCALBASE}/include and -L${LOCALBASE}/lib into
references to BUILDLINK_DIR. The wrapper scripts also make native compiler
on some operating systems look like GCC, so that packages that expect GCC
won't require modifications to build with those native compilers.
This normalizes the environment in which a package is built so that the package
may be built consistently despite what other software may be installed. Please
note that the normal system header and library paths, e.g. /usr/include, /usr/
lib, etc., are always searched -- buildlink3 is designed to insulate the
package build from non-system-supplied software.
9.1. Converting packages to use buildlink3
The process of converting packages to use the buildlink3 framework
("bl3ifying") is fairly straightforward. The things to keep in mind are:
1. Set USE_BUILDLINK3 to "yes".
2. Ensure that the build always calls the wrapper scripts instead of the
actual toolchain. Some packages are tricky, and the only way to know for
sure is the check ${WRKDIR}/.work.log to see if the wrappers are being
invoked.
3. Don't override PREFIX from within the package Makefile, e.g. Java VMs,
standalone shells, etc., because the code to symlink files into $
{BUILDLINK_DIR} looks for files relative to "pkg_info -qp pkgname".
4. Remember that only the buildlink3.mk files that you list in a package's
Makefile are added as dependencies for that package.
If a dependency on a particular package is required for its libraries and
headers, then we replace:
DEPENDS+= foo>=1.1.0:../../category/foo
with
.include "../../category/foo/buildlink3.mk"
There are several buildlink3.mk files in pkgsrc/mk that handle special package
issues:
* bdb.buildlink3.mk chooses either the native or a pkgsrc Berkeley DB
implementation based on the values of BDB_ACCEPTED and BDB_DEFAULT.
* curses.buildlink3.mk If the system comes with neither Curses nor NCurses,
this will take care to install the devel/ncurses package.
* krb5.buildlink3.mk uses the value of KRB5_ACCEPTED to choose between adding
a dependency on Heimdal or MIT-krb5 for packages that require a Kerberos 5
implementation.
* motif.buildlink3.mk checks for a system-provided Motif installation or adds
a dependency on x11/lesstif or x11/openmotif;
* ossaudio.buildlink3.mk defines several variables that may be used by
packages that use the Open Sound System (OSS) API;
* pgsql.buildlink3.mk will accept either Postgres 7.3 or 7.4, whichever is
found installed. See the file for more information.
* pthread.buildlink3.mk uses the value of PTHREAD_OPTS and checks for native
pthreads or adds a dependency on devel/pth as needed;
* xaw.buildlink3.mk uses the value of XAW_TYPE to choose a particular Athena
widgets library.
The comments in those buildlink3.mk files provide a more complete description
of how to use them properly.
9.2. Writing buildlink3.mk files
A package's buildlink3.mk file is included by Makefiles to indicate the need to
compile and link against header files and libraries provided by the package. A
buildlink3.mk file should always provide enough information to add the correct
type of dependency relationship and include any other buildlink3.mk files that
it needs to find headers and libraries that it needs in turn.
To generate an initial buildlink3.mk file for further editing, Rene Hexel's
pkgtools/createbuildlink package is highly recommended. For most packages, the
following command will generate a good starting point for buildlink3.mk files:
% cd pkgsrc/category/pkgdir
% createbuildlink -3 >buildlink3.mk
9.2.1. Anatomy of a buildlink3.mk file
The following real-life example buildlink3.mk is taken from pkgsrc/graphics/
tiff:
# $NetBSD: pkgsrc.txt,v 1.9 2004/12/02 22:23:47 dillo Exp $
BUILDLINK_DEPTH:= ${BUILDLINK_DEPTH}+
TIFF_BUILDLINK3_MK:= ${TIFF_BUILDLINK3_MK}+
.if !empty(BUILDLINK_DEPTH:M+)
BUILDLINK_DEPENDS+= tiff
.endif
BUILDLINK_PACKAGES:= ${BUILDLINK_PACKAGES:Ntiff}
BUILDLINK_PACKAGES+= tiff
.if !empty(TIFF_BUILDLINK3_MK:M+)
BUILDLINK_DEPENDS.tiff+= tiff>=3.6.1
BUILDLINK_PKGSRCDIR.tiff?= ../../graphics/tiff
.endif # TIFF_BUILDLINK3_MK
.include "../../devel/zlib/buildlink3.mk"
.include "../../graphics/jpeg/buildlink3.mk"
BUILDLINK_DEPTH:= ${BUILDLINK_DEPTH:S/+$//}
The header and footer manipulate BUILDLINK_DEPTH, which is common across all
buildlink3.mk files and is used to track at what depth we are including
buildlink3.mk files.
The first section controls if the dependency on pkg is added. BUILDLINK_DEPENDS
is the global list of packages for which dependencies are added by buildlink3.
The second section advises pkgsrc that the buildlink3.mk file for pkg has been
included at some point. BUILDLINK_PACKAGES is the global list of packages for
which buildlink3.mk files have been included. It must always be appended to
within a buildlink3.mk file.
The third section is protected from multiple inclusion and controls how the
dependency on pkg is added. Several important variables are set in the section:
* BUILDLINK_DEPENDS.pkg is the actual dependency recorded in the installed
package; this should always be set using += to ensure that we're appending
to any pre-existing list of values. This variable should be set to the
first version of the package that had the last change in the major number
of a shared library or that had a major API change.
* BUILDLINK_PKGSRCDIR.pkg is the location of the pkg pkgsrc directory;
* BUILDLINK_DEPMETHOD.pkg (not shown above) controls whether we use
BUILD_DEPENDS or DEPENDS to add the dependency on pkg. The build dependency
is selected by setting BUILDLINK_DEPMETHOD.pkg to "build". By default, the
full dependency is used.
* BUILDLINK_INCDIRS.pkg and BUILDLINK_LIBDIRS. pkg (not shown above) are
lists of subdirectories of ${BUILDLINK_PREFIX.pkg} to add to the header and
library search paths. These default to "include" and "lib" respectively.
* BUILDLINK_CPPFLAGS.pkg (not shown above) is the list of preprocessor flags
to add to CPPFLAGS, which are passed on to the configure and build phases.
The "-I" option should be avoided and instead be handled using
BUILDLINK_INCDIRS.pkg as above.
The following variables are all optionally defined within this second section
(protected against multiple inclusion) and control which package files are
symlinked into ${BUILDLINK_DIR} and how their names are transformed during the
symlinking:
* BUILDLINK_FILES.pkg (not shown above) is a shell glob pattern relative to $
{BUILDLINK_PREFIX.pkg} to be symlinked into ${BUILDLINK_DIR}, e.g. include/
*.h.
* BUILDLINK_FILES_CMD.pkg (not shown above) is a shell pipeline that outputs
to stdout a list of files relative to ${BUILDLINK_PREFIX.pkg}. The
resulting files are to be symlinked into ${BUILDLINK_DIR}. By default, this
takes the +CONTENTS of a pkg and filters it through $
{BUILDLINK_CONTENTS_FILTER.pkg}.
* BUILDLINK_CONTENTS_FILTER.pkg (not shown above) is a filter command that
filters +CONTENTS input into a list of files relative to $
{BUILDLINK_PREFIX.pkg} on stdout. By default for overwrite packages,
BUILDLINK_CONTENTS_FILTER.pkg outputs the contents of the include and lib
directories in the package +CONTENTS, and for pkgviews packages, it outputs
any libtool archives in lib directories.
* BUILDLINK_TRANSFORM.pkg (not shown above) is a list of sed arguments used
to transform the name of the source filename into a destination filename,
e.g. -e "s|/curses.h|/ncurses.h|g".
The last section includes any buildlink3.mk needed for pkg's library
dependencies. Including these buildlink3.mk files means that the headers and
libraries for these dependencies are also symlinked into ${BUILDLINK_DIR}
whenever the pkg buildlink3.mk file is included.
9.2.2. Updating BUILDLINK_DEPENDS.pkg in buildlink3.mk files
There are two situations that require increasing the dependency listed in
BUILDLINK_DEPENDS.pkg after a package update:
1. if the sonames (major number of the library version) of any installed
shared libraries change;
2. if the API or interface to the header files change.
In these cases, BUILDLINK_DEPENDS.pkg should be adjusted to require at least
the new package version. In some cases, the packages that depend on this new
version may need their PKGREVISIONs increased and, if they have buildlink3.mk
files, their BUILDLINK_DEPENDS. pkg adjusted, too. This is needed so that
binary packages made using it will require the correct package dependency and
not settle for an older one which will not contain the necessary shared
libraries.
Please take careful consideration before adjusting BUILDLINK_DEPENDS.pkg as we
don't want to cause unneeded package deletions and rebuilds. In many cases, new
versions of packages work just fine with older dependencies. See Section
12.1.3, "Handling dependencies" and Chapter 9, Buildlink methodology for more
information about dependencies on other packages, including the
BUILDLINK_RECOMMENDED and RECOMMENDED definitions.
9.3. Writing builtin.mk files
Some packages in pkgsrc install headers and libraries that coincide with
headers and libraries present in the base system. Aside from a buildlink3.mk
file, these packages should also include a builtin.mk file that includes the
necessary checks to decide whether using the built-in software or the pkgsrc
software is appropriate.
The only requirements of a builtin.mk file for pkg are:
1. It should set USE_BUILTIN.pkg to either "yes" or "no" after it is included.
2. It should not override any USE_BUILTIN.pkg which is already set before the
builtin.mk file is included.
3. It should be written to allow multiple inclusion. This is very important
and takes careful attention to Makefile coding.
9.3.1. Anatomy of a builtin.mk file
The following is the recommended template for builtin.mk files:
.if !defined(IS_BUILTIN.foo)
#
# IS_BUILTIN.foo is set to "yes" or "no" depending on whether "foo"
# genuinely exists in the system or not.
#
IS_BUILTIN.foo?= no
# BUILTIN_PKG.foo should be set here if "foo" is built-in and its package
# version can be determined.
#
. if !empty(IS_BUILTIN.foo:M[yY][eE][sS])
BUILTIN_PKG.foo?= foo-1.0
. endif
.endif # IS_BUILTIN.foo
.if !defined(USE_BUILTIN.foo)
USE_BUILTIN.foo?= ${IS_BUILTIN.foo}
. if defined(BUILTIN_PKG.foo)
. for _depend_ in ${BUILDLINK_DEPENDS.foo}
. if !empty(USE_BUILTIN.foo:M[yY][eE][sS])
USE_BUILTIN.foo!= \
if ${PKG_ADMIN} pmatch '${_depend_}' ${BUILTIN_PKG.foo}; then \
${ECHO} "yes"; \
else \
${ECHO} "no"; \
fi
. endif
. endfor
. endif
.endif # USE_BUILTIN.foo
CHECK_BUILTIN.foo?= no
.if !empty(CHECK_BUILTIN.foo:M[nN][oO])
#
# Here we place code that depends on whether USE_BUILTIN.foo is set to
# "yes" or "no".
#
.endif # CHECK_BUILTIN.foo
The first section sets IS_BUILTIN.pkg depending on if pkg really exists in the
base system. This should not be a base system software with similar
functionality to pkg; it should only be "yes" if the actual package is included
as part of the base system. This variable is only used internally within the
builtin.mk file.
The second section sets BUILTIN_PKG.pkg to the version of pkg in the base
system if it exists (if IS_BUILTIN.pkg is "yes"). This variable is only used
internally within the builtin.mk file.
The third section sets USE_BUILTIN.pkg and is required in all builtin.mk files.
The code in this section must make the determination whether the built-in
software is adequate to satisfy the dependencies listed in BUILDLINK_DEPENDS.
pkg. This is typically done by comparing BUILTIN_PKG.pkg against each of the
dependencies in BUILDLINK_DEPENDS.pkg. USE_BUILTIN.pkg must be set to the
correct value by the end of the builtin.mk file. Note that USE_BUILTIN.pkg may
be "yes" even if IS_BUILTIN.pkg is "no" because we may make the determination
that the built-in version of the software is similar enough to be used as a
replacement.
The last section is guarded by CHECK_BUILTIN.pkg, and includes code that uses
the value of USE_BUILTIN.pkg set in the previous section. This typically
includes, e.g., adding additional dependency restrictions and listing
additional files to symlink into ${BUILDLINK_DIR} (via BUILDLINK_FILES.pkg).
9.3.2. Global preferences for native or pkgsrc software
When building packages, it's possible to choose whether to set a global
preference for using either the built-in (native) version or the pkgsrc version
of software to satisfy a dependency. This is controlled by setting
PREFER_PKGSRC and PREFER_NATIVE. These variables take values of either "yes",
"no", or a list of packages. PREFER_PKGSRC tells pkgsrc to use the pkgsrc
versions of software, while PREFER_NATIVE tells pkgsrc to use the built-in
versions. Preferences are determined by the most specific instance of the
package in either PREFER_PKGSRC or PREFER_NATIVE. If a package is specified in
neither or in both variables, then PREFER_PKGSRC has precedence over
PREFER_NATIVE. For example, to require using pkgsrc versions of software for
all but the most basic bits on a NetBSD system, you can set:
PREFER_PKGSRC= yes
PREFER_NATIVE= getopt skey tcp_wrappers
A package must have a builtin.mk file to be listed in PREFER_NATIVE, otherwise
it is simply ignored in that list.
Chapter 10. Options handling
Table of Contents
10.1. Global default options
10.2. Converting packages to use bsd.options.mk
Many packages have the ability to be built to support different sets of
features. bsd.options.mk is a framework in pkgsrc that provides generic
handling of those options that determine different ways in which the packages
can be built. It's possible for the user to specify exactly which sets of
options will be built into a package or to allow a set of global default
options apply.
10.1. Global default options
Global default options are listed in PKG_DEFAULT_OPTIONS, which is a list of
the options that should be built into every package if that option is
supported. This variable should be set in /etc/mk.conf.
10.2. Converting packages to use bsd.options.mk
The following example shows how bsd.options.mk should be use in a package
Makefile, or in a file, e.g. options.mk, that is included by the main package
Makefile.
# Global and legacy options
.if defined(WIBBLE_USE_OPENLDAP) && !empty(WIBBLE_USE_OPENLDAP:M[yY][eE][sS])
PKG_DEFAULT_OPTIONS+= ldap
.endif
.if defined(USE_SASL2) && !empty(USE_SASL2:M[yY][eE][sS])
PKG_DEFAULT_OPTIONS+= sasl
.endif
PKG_OPTIONS_VAR= PKG_OPTIONS.wibble
PKG_SUPPORTED_OPTIONS= ldap sasl
#
# Default options for "wibble" package.
#
.if !defined(PKG_OPTIONS.wibble)
PKG_DEFAULT_OPTIONS+= sasl
endif
.include "../../mk/bsd.options.mk"
# Package-specific option-handling
###
### LDAP support
###
.if !empty(PKG_OPTIONS:Mldap)
. include "../../databases/openldap/buildlink3.mk"
CONFIGURE_ARGS+= --enable-ldap=${BUILDLINK_PREFIX.openldap}
.endif
###
### SASL authentication
###
.if !empty(PKG_OPTIONS:Msasl)
. include "../../security/cyrus-sasl2/buildlink3.mk"
CONFIGURE_ARGS+= --enable-sasl=${BUILDLINK_PREFIX.sasl}
.endif
The first section only exists if you are converting a package that had its own
ad-hoc options handling to use bsd.options.mk. It converts global or legacy
options variables into an equivalent PKG_OPTIONS.pkg value. These sections will
be removed over time as the old options are in turn deprecated and removed.
The second section contains the information about which build options are
supported by the package, and any default options settings if needed.
1. PKG_OPTIONS_VAR is a list of the name of the make(1) variables that contain
the options the user wishes to select. The recommended value is
"PKG_OPTIONS.pkg" but any package-specific value may be used. This variable
should be set in a package Makefile.
2. PKG_SUPPORTED_OPTIONS is a list of build options supported by the package.
This variable should be set in a package Makefile.
3. ${PKG_OPTIONS_VAR} (the variables named in PKG_OPTIONS_VAR) are variables
that list the selected build options and override any default options given
in PKG_DEFAULT_OPTIONS. If any of the options begin with a "-", then that
option is always removed from the selected build options, e.g.
PKG_DEFAULT_OPTIONS= kerberos ldap sasl
PKG_OPTIONS_VAR= WIBBLE_OPTIONS
WIBBLE_OPTIONS= ${PKG_DEFAULT_OPTIONS} -sasl
# implies PKG_OPTIONS == "kerberos ldap"
or
PKG_OPTIONS_VAR= WIBBLE_OPTIONS
WIBBLE_OPTIONS= kerberos -ldap ldap
# implies PKG_OPTIONS == "kerberos"
This variable should be set in /etc/mk.conf.
After the inclusion of bsd.options.mk, the following variables are set:
* PKG_OPTIONS contains the list of the selected build options, properly
filtered to remove unsupported and duplicate options.
The remaining sections contain the logic that is specific to each option. There
should be a check for every option listed in PKG_SUPPORTED_OPTIONS, and there
should be clear documentation on what turning on the option will do in the
comments preceding each section. The correct way to check for an option is to
check whether it is listed in PKG_OPTIONS.
Chapter 11. The build process
Table of Contents
11.1. Program location
11.2. Main targets
11.3. Other helpful targets
The basic steps for building a program are always the same. First the program's
source (distfile) must be brought to the local system and then extracted. After
any patches to compile properly on NetBSD are applied, the software can be
configured, then built (usually by compiling), and finally the generated
binaries, etc. can be put into place on the system. These are exactly the steps
performed by the NetBSD package system, which is implemented as a series of
targets in a central Makefile, pkgsrc/mk/bsd.pkg.mk.
11.1. Program location
Before outlining the process performed by the NetBSD package system in the next
section, here's a brief discussion on where programs are installed, and which
variables influence this.
The automatic variable PREFIX indicates where all files of the final program
shall be installed. It is usually set to LOCALBASE (/usr/pkg), or CROSSBASE for
pkgs in the "cross" category. The value of PREFIX needs to be put into the
various places in the program's source where paths to these files are encoded.
See Section 7.3, "patches/*" and Section 12.3.1, "Shared libraries - libtool"
for more details.
When choosing which of these variables to use, follow the following rules:
* PREFIX always points to the location where the current pkg will be
installed. When referring to a pkg's own installation path, use "${PREFIX}
".
* LOCALBASE is where all non-X11 pkgs are installed. If you need to construct
a -I or -L argument to the compiler to find includes and libraries
installed by another non-X11 pkg, use "${LOCALBASE}".
* X11BASE is where the actual X11 distribution (from xsrc, etc.) is
installed. When looking for standard X11 includes (not those installed by a
pkg), use "${X11BASE}".
* X11 based are special in that they may be installed in either X11BASE or
LOCALBASE.
Usually, X11 packages should be installed under LOCALBASE whenever
possible. Note that you will need to set USE_X11 in them to request the
presence of X11 and to get the right compilation flags.
Even though, there are some packages that cannot be installed under
LOCALBASE: those that come with app-defaults files. These packages are
special and they must be placed under X11BASE. To accomplish this, set
either USE_X11BASE or USE_IMAKE in your package.
Some notes: USE_X11 and USE_X11BASE are mutually exclusive. If you need to
find includes or libraries installed by a pkg that has USE_IMAKE or
USE_X11BASE in its pkg Makefile, you need to use both ${X11BASE} and $
{LOCALBASE}. To force installation of all X11 packages in LOCALBASE, the
pkgtools/xpkgwedge is enabled by default.
* X11PREFIX should be used to refer to the installed location of an X11
package. X11PREFIX will be set to X11BASE if xpkgwedge is not installed,
and to LOCALBASE if xpkgwedge is installed.
* If xpkgwedge is installed, it is possible to have some packages installed
in X11BASE and some in LOCALBASE. To determine the prefix of an installed
package, the EVAL_PREFIX definition can be used. It takes pairs in the
format "DIRNAME=<package>", and the make(1) variable DIRNAME will be set to
the prefix of the installed package <package>, or "${X11PREFIX}" if the
package is not installed.
This is best illustrated by example.
The following lines are taken from pkgsrc/wm/scwm/Makefile:
EVAL_PREFIX+= GTKDIR=gtk+
CONFIGURE_ARGS+= --with-guile-prefix=${LOCALBASE} \
--with-gtk-prefix="${GTKDIR}" \
--enable-multibyte
Specific defaults can be defined for the packages evaluated using
EVAL_PREFIX, by using a definition of the form:
GTKDIR_DEFAULT= ${LOCALBASE}
where GTKDIR corresponds to the first definition in the EVAL_PREFIX pair.
* Within ${PREFIX}, packages should install files according to hier(7), with
the exception that manual pages go into ${PREFIX}/man, not ${PREFIX}/share/
man.
11.2. Main targets
The main targets used during the build process defined in bsd.pkg.mk are:
fetch
This will check if the file(s) given in the variables DISTFILES and
PATCHFILES (as defined in the package's Makefile) are present on the local
system in /usr/pkgsrc/distfiles. If they are not present, an attempt will
be made to fetch them using commands of the form:
${FETCH_CMD} ${FETCH_BEFORE_ARGS} ${site}${file} ${FETCH_AFTER_ARGS}
where ${site} varies through several possibilities in turn: first,
MASTER_SITE_OVERRIDE is tried, then the sites specified in either
SITES_file if defined, else MASTER_SITES or PATCH_SITES, as applies, then
finally the value of MASTER_SITE_BACKUP. The order of all except the first
can be optionally sorted by the user, via setting either MASTER_SORT_AWK or
MASTER_SORT_REGEX.
checksum
After the distfile(s) are fetched, their checksum is generated and compared
with the checksums stored in the distinfo file. If the checksums don't
match, the build is aborted. This is to ensure the same distfile is used
for building, and that the distfile wasn't changed, e.g. by some malign
force, deliberately changed distfiles on the master distribution site or
network lossage.
extract
When the distfiles are present on the local system, they need to be
extracted, as they are usually in the form of some compressed archive
format, most commonly .tar.gz.
If only some of the distfiles need to be uncompressed, the files to be
uncompressed should be put into EXTRACT_ONLY.
If the distfiles are not in .tar.gz format, they can be extracted by
setting either EXTRACT_SUFX, or EXTRACT_CMD, EXTRACT_BEFORE_ARGS and
EXTRACT_AFTER_ARGS. In the former case, pkgsrc knows how to extract a
number of suffixes (.tar.gz, .tgz, .tar.gz2, .tbz, .tar.Z, .tar, .shar.gz,
.shar.bz2, .shar.Z, .shar, .Z, .bz2 and .gz; see the definition of the
various DECOMPRESS_CMD variables bsd.pkg.mk for a complete list). Here's an
example on how to use the other variables for a program that comes with a
compressed shell archive whose name ends in .msg.gz:
EXTRACT_SUFX= .msg.gz
EXTRACT_CMD= zcat
EXTRACT_BEFORE_ARGS=
EXTRACT_AFTER_ARGS= |sh
patch
After extraction, all the patches named by the PATCHFILES, those present in
the patches subdirectory of the package as well as in $LOCALPATCHES/
$PKGPATH (e.g. /usr/local/patches/graphics/png) are applied. Patchfiles
ending in .Z or .gz are uncompressed before they are applied, files ending
in .orig or .rej are ignored. Any special options to patch(1) can be handed
in PATCH_DIST_ARGS. See Section 7.3, "patches/*" for more details.
By default patch(1) is given special args to make it fail if the patches
apply with some lines of fuzz. Please fix (regen) the patches so that they
apply cleanly. The rationale behind this is that patches that don't apply
cleanly may end up being applied in the wrong place, and cause severe harm
there.
configure
Most pieces of software need information on the header files, system calls,
and library routines which are available in NetBSD. This is the process
known as configuration, and is usually automated. In most cases, a script
is supplied with the source, and its invocation results in generation of
header files, Makefiles, etc.
If the program's distfile contains its own configure script, this can be
invoked by setting HAS_CONFIGURE. If the configure script is a GNU autoconf
script, GNU_CONFIGURE should be specified instead. In either case, any
arguments to the configure script can be specified in the CONFIGURE_ARGS
variable, and the configure script's name can be set in CONFIGURE_SCRIPT if
it differs from the default "configure". Here's an example from the
sysutils/top package:
HAS_CONFIGURE= yes
CONFIGURE_SCRIPT= Configure
CONFIGURE_ARGS+= netbsd13
If the program uses an Imakefile for configuration, the appropriate steps
can be invoked by setting USE_IMAKE to "YES". (If you only want the package
installed in $X11PREFIX but xmkmf not being run, set USE_X11BASE instead!)
build
Once configuration has taken place, the software will be built by invoking
$MAKE_PROGRAM on $MAKEFILE with $BUILD_TARGET as the target to build. The
default MAKE_PROGRAM is "gmake" if USE_GNU_TOOLS contains "make", "make"
otherwise. MAKEFILE is set to "Makefile" by default, and BUILD_TARGET
defaults to "all". Any of these variables can be set in the package's
Makefile to change the default build process.
install
Once the build stage has completed, the final step is to install the
software in public directories, so users can access the programs and files.
As in the build-target, $MAKE_PROGRAM is invoked on $MAKEFILE here, but
with the $INSTALL_TARGET instead, the latter defaulting to "install" (plus
"install.man", if USE_IMAKE is set).
If no target is specified, the default is "build". If a subsequent stage is
requested, all prior stages are made: e.g. make build will also perform the
equivalent of:
make fetch
make checksum
make extract
make patch
make configure
make build
11.3. Other helpful targets
pre/post-*
For any of the main targets described in the previous section, two
auxiliary targets exist with "pre-" and "post-" used as a prefix for the
main target's name. These targets are invoked before and after the main
target is called, allowing extra configuration or installation steps be
performed from a package's Makefile, for example, which a program's
configure script or install target omitted.
do-*
Should one of the main targets do the wrong thing, and should there be no
variable to fix this, you can redefine it with the do-* target. (Note that
redefining the target itself instead of the do-* target is a bad idea, as
the pre-* and post-* targets won't be called anymore, etc.) You will not
usually need to do this.
reinstall
If you did a make install and you noticed some file was not installed
properly, you can repeat the installation with this target, which will
ignore the "already installed" flag.
deinstall
This target does a pkg_delete(1) in the current directory, effectively
de-installing the package. The following variables can be used to tune the
behaviour:
PKG_VERBOSE
Add a "-v" to the pkg_delete(1) command.
DEINSTALLDEPENDS
Remove all packages that require (depend on) the given package. This
can be used to remove any packages that may have been pulled in by a
given package, e.g. if make deinstall DEINSTALLDEPENDS=1 is done in
pkgsrc/x11/kde, this is likely to remove whole KDE. Works by adding
"-R" to the pkg_delete(1) command line.
update
This target causes the current package to be updated to the latest version.
The package and all depending packages first get de-installed, then current
versions of the corresponding packages get compiled and installed. This is
similar to manually noting which packages are currently installed, then
performing a series of make deinstall and make install (or whatever
UPDATE_TARGET is set to) for these packages.
You can use the "update" target to resume package updating in case a
previous make update was interrupted for some reason. However, in this
case, make sure you don't call make clean or otherwise remove the list of
dependent packages in WRKDIR. Otherwise you lose the ability to
automatically update the current package along with the dependent packages
you have installed.
Resuming an interrupted make update will only work as long as the package
tree remains unchanged. If the source code for one of the packages to be
updated has been changed, resuming make update will most certainly fail!
The following variables can be used either on the command line or in /etc/
mk.conf to alter the behaviour of make update:
UPDATE_TARGET
Install target to recursively use for the updated package and the
dependent packages. Defaults to DEPENDS_TARGET if set, "install"
otherwise for make update. e.g. make update UPDATE_TARGET=package
NOCLEAN
Don't clean up after updating. Useful if you want to leave the work
sources of the updated packages around for inspection or other
purposes. Be sure you eventually clean up the source tree (see the
"clean-update" target below) or you may run into troubles with old
source code still lying around on your next make or make update.
REINSTALL
Deinstall each package before installing (making DEPENDS_TARGET). This
may be necessary if the "clean-update" target (see below) was called
after interrupting a running make update.
DEPENDS_TARGET
Allows you to disable recursion and hardcode the target for packages.
The default is "update" for the update target, facilitating a recursive
update of prerequisite packages. Only set DEPENDS_TARGET if you want to
disable recursive updates. Use UPDATE_TARGET instead to just set a
specific target for each package to be installed during make update
(see above).
clean-update
Clean the source tree for all packages that would get updated if make
update was called from the current directory. This target should not be
used if the current package (or any of its depending packages) have already
been de-installed (e.g., after calling make update) or you may lose some
packages you intended to update. As a rule of thumb: only use this target
before the first time you run make update and only if you have a dirty
package tree (e.g., if you used NOCLEAN).
If you unsure about whether your tree is clean you can either perform a
make clean at the top of the tree, or use the following sequence of
commands from the directory of the package you want to update (before
running make update for the first time, otherwise you lose all the packages
you wanted to update!):
# make clean-update
# make clean CLEANDEPENDS=YES
# make update
The following variables can be used either on the command line or in /etc/
mk.conf to alter the behaviour of make clean-update:
CLEAR_DIRLIST
After make clean, do not reconstruct the list of directories to update
for this package. Only use this if make update successfully installed
all packages you wanted to update. Normally, this is done automatically
on make update, but may have been suppressed by the NOCLEAN variable
(see above).
info
This target invokes pkg_info(1) for the current package. You can use this
to check which version of a package is installed.
readme
This target generates a README.html file, which can be viewed using a
browser such as www/mozilla or www/links. The generated files contain
references to any packages which are in the PACKAGES directory on the local
host. The generated files can be made to refer to URLs based on
FTP_PKG_URL_HOST and FTP_PKG_URL_DIR. For example, if I wanted to generate
README.html files which pointed to binary packages on the local machine, in
the directory /usr/packages, set FTP_PKG_URL_HOST=file://localhost and
FTP_PKG_URL_DIR=/usr/packages. The ${PACKAGES} directory and its
subdirectories will be searched for all the binary packages.
readme-all
Use this target to create a file README-all.html which contains a list of
all packages currently available in the NetBSD Packages Collection,
together with the category they belong to and a short description. This
file is compiled from the pkgsrc/*/README.html files, so be sure to run
this after a make readme.
cdrom-readme
This is very much the same as the "readme" target (see above), but is to be
used when generating a pkgsrc tree to be written to a CD-ROM. This target
also produces README.html files, and can be made to refer to URLs based on
CDROM_PKG_URL_HOST and CDROM_PKG_URL_DIR.
show-distfiles
This target shows which distfiles and patchfiles are needed to build the
package. (DISTFILES and PATCHFILES, but not patches/*)
show-downlevel
This target shows nothing if the package is not installed. If a version of
this package is installed, but is not the version provided in this version
of pkgsrc, then a warning message is displayed. This target can be used to
show which of your installed packages are downlevel, and so the old
versions can be deleted, and the current ones added.
show-pkgsrc-dir
This target shows the directory in the pkgsrc hierarchy from which the
package can be built and installed. This may not be the same directory as
the one from which the package was installed. This target is intended to be
used by people who may wish to upgrade many packages on a single host, and
can be invoked from the top-level pkgsrc Makefile by using the
"show-host-specific-pkgs" target.
show-installed-depends
This target shows which installed packages match the current package's
DEPENDS. Useful if out of date dependencies are causing build problems.
check-shlibs
After a package is installed, check all its binaries and (on ELF platforms)
shared libraries to see if they find the shared libs they need. Run by
default if PKG_DEVELOPER is set in /etc/mk.conf.
print-PLIST
After a "make install" from a new or upgraded pkg, this prints out an
attempt to generate a new PLIST from a find -newer work/.extract_done. An
attempt is made to care for shared libs etc., but it is strongly
recommended to review the result before putting it into PLIST. On upgrades,
it's useful to diff the output of this command against an already existing
PLIST file.
If the package installs files via tar(1) or other methods that don't update
file access times, be sure to add these files manually to your PLIST, as
the "find -newer" command used by this target won't catch them!
See Section 8.3, "Tweaking output of make print-PLIST" for more information
on this target.
bulk-package
Used to do bulk builds. If an appropriate binary package already exists, no
action is taken. If not, this target will compile, install and package it
(and it's depends, if PKG_DEPENDS is set properly. See Section 5.3.1,
"Configuration". After creating the binary package, the sources, the
just-installed package and it's required packages are removed, preserving
free disk space.
Beware that this target may deinstall all packages installed on a system!
bulk-install
Used during bulk-installs to install required packages. If an upto-date
binary package is available, it will be installed via pkg_add(1). If not,
make bulk-package will be executed, but the installed binary not be
removed.
A binary package is considered "upto-date" to be installed via pkg_add(1)
if:
* None of the package's files (Makefile, ...) were modified since it was
built.
* None of the package's required (binary) packages were modified since it
was built.
Beware that this target may deinstall all packages installed on a system!
Chapter 12. Notes on fixes for packages
Table of Contents
12.1. General operation
12.1.1. How to pull in variables from /etc/mk.conf
12.1.2. Restricted packages
12.1.3. Handling dependencies
12.1.4. Handling conflicts with other packages
12.1.5. Packages that cannot or should not be built
12.1.6. Packages which should not be deleted, once installed
12.1.7. Handling packages with security problems
12.1.8. How to handle compiler bugs
12.1.9. How to handle incrementing versions when fixing an existing package
12.1.10. Portability of packages
12.2. Possible downloading issues
12.2.1. Packages whose distfiles aren't available for plain downloading
12.2.2. How to handle modified distfiles with the 'old' name
12.3. Configuration gotchas
12.3.1. Shared libraries - libtool
12.3.2. Using libtool on GNU packages that already support libtool
12.3.3. GNU Autoconf/Automake
12.4. Building considerations
12.4.1. CPP defines
12.5. Package specific actions
12.5.1. Package configuration files
12.5.2. User interaction
12.5.3. Handling licenses
12.5.4. Creating an account from a package
12.5.5. Installing score files
12.5.6. Packages providing login shells
12.5.7. Packages containing perl scripts
12.5.8. Packages with hardcoded paths to other interpreters
12.5.9. Packages installing perl modules
12.5.10. Packages installing info files
12.5.11. Packages installing GConf2 data files
12.5.12. Packages installing scrollkeeper data files
12.5.13. Packages installing X11 fonts
12.5.14. Packages installing GTK2 modules
12.5.15. Packages installing SGML or XML data
12.5.16. Packages installing extensions to the MIME database
12.5.17. Packages using intltool
12.6. Feedback to the author
12.1. General operation
12.1.1. How to pull in variables from /etc/mk.conf
The problem with package-defined variables that can be overridden via MAKECONF
or /etc/mk.conf is that make(1) expands a variable as it is used, but evaluates
preprocessor like statements (.if, .ifdef and .ifndef) as they are read. So, to
use any variable (which may be set in /etc/mk.conf) in one of the .if*
statements, the file /etc/mk.conf must be included before that .if* statement.
Rather than have a number of ad-hoc ways of including /etc/mk.conf, should it
exist, or MAKECONF, should it exist, include the pkgsrc/mk/bsd.prefs.mk file in
the package Makefile before any preprocessor-like .if, .ifdef, or .ifndef
statements:
.include "../../mk/bsd.prefs.mk"
.if defined(USE_MENUS)
...
.endif
If you wish to set the CFLAGS variable in /etc/mk.conf please make sure to use:
CFLAGS+= -your -flags
Using CFLAGS= (i.e. without the "+") may lead to problems with packages that
need to add their own flags. Also, you may want to take a look at the devel/
cpuflags package if you're interested in optimization for the current CPU.
12.1.2. Restricted packages
Some licenses restrict how software may be re-distributed. In order to satisfy
these restrictions, the package system defines five make variables that can be
set to note these restrictions:
* RESTRICTED
This variable should be set whenever a restriction exists (regardless of
its kind). Set this variable to a string containing the reason for the
restriction.
* NO_BIN_ON_CDROM
Binaries may not be placed on CD-ROM. Set this variable to ${RESTRICTED}
whenever a binary package may not be included on a CD-ROM.
* NO_BIN_ON_FTP
Binaries may not be placed on an FTP server. Set this variable to $
{RESTRICTED} whenever a binary package may not not be made available on the
Internet.
* NO_SRC_ON_CDROM
Distfiles may not be placed on CD-ROM. Set this variable to ${RESTRICTED}
if re-distribution of the source code or other distfile(s) is not allowed
on CD-ROMs.
* NO_SRC_ON_FTP
Distfiles may not be placed on FTP. Set this variable to ${RESTRICTED} if
re-distribution of the source code or other distfile(s) via the Internet is
not allowed.
Please note that the use of NO_PACKAGE, IGNORE, NO_CDROM, or other generic make
variables to denote restrictions is deprecated, because they unconditionally
prevent users from generating binary packages!
12.1.3. Handling dependencies
Your package may depend on some other package being present - and there are
various ways of expressing this dependency. pkgsrc supports the BUILD_DEPENDS
and DEPENDS definitions, as well as dependencies via buildlink3.mk, which is
the preferred way to handle dependencies, and which uses the variables named
above. See Chapter 9, Buildlink methodology for more information.
The basic difference between the two variables is as follows: The DEPENDS
definition registers that pre-requisite in the binary package so it will be
pulled in when the binary package is later installed, whilst the BUILD_DEPENDS
definition does not, marking a dependency that is only needed for building the
package.
This means that if you only need a package present whilst you are building, it
should be noted as a BUILD_DEPENDS.
The format for a BUILD_DEPENDS and a DEPENDS definition is:
<pre-req-package-name>:../../<category>/<pre-req-package>
Please note that the "pre-req-package-name" may include any of the wildcard
version numbers recognised by pkg_info(1).
1. If your package needs another package's binaries or libraries to build or
run, and if that package has a buildlink3.mk file available, use it:
.include "../../graphics/jpeg/buildlink3.mk"
2. If your package needs to use another package to build itself and there is
no buildlink3.mk file available, use the BUILD_DEPENDS definition:
BUILD_DEPENDS+= autoconf-2.13:../../devel/autoconf
3. If your package needs a library with which to link and again there is no
buildlink3.mk file available, this is specified using the DEPENDS
definition. An example of this is the print/lyx package, which uses the xpm
library, version 3.4j to build:
DEPENDS+= xpm-3.4j:../../graphics/xpm
You can also use wildcards in package dependences:
DEPENDS+= xpm-[0-9]*:../../graphics/xpm
Note that such wildcard dependencies are retained when creating binary
packages. The dependency is checked when installing the binary package and
any package which matches the pattern will be used. Wildcard dependencies
should be used with care.
The "-[0-9]*" should be used instead of "-*" to avoid potentially ambiguous
matches such as "tk-postgresql" matching a "tk-*" DEPENDS.
Wildcards can also be used to specify that a package will only build
against a certain minimum version of a pre-requisite:
DEPENDS+= tiff>=3.5.4:../../graphics/tiff
This means that the package will build against version 3.5.4 of the tiff
library or newer. Such a dependency may be warranted if, for example, the
API of the library has changed with version 3.5.4 and a package would not
compile against an earlier version of tiff.
Please note that such dependencies should only be updated if a package
requires a newer pre-requisite, but not to denote recommendations such as
security updates or ABI changes that do not prevent a package from building
correctly. Such recommendations can be expressed using RECOMMENDED:
RECOMMENDED+= tiff>=3.6.1:../../graphics/tiff
In addition to the above DEPENDS line, this denotes that while a package
will build against tiff>=3.5.4, at least version 3.6.1 is recommended.
RECOMMENDED entries will be turned into dependencies unless explicitly
ignored (in which case a warning will be printed). Packages that are built
with recommendations ignored may not be uploaded to ftp.NetBSD.org by
developers and should not be used across different systems that may have
different versions of binary packages installed.
For security fixes, please update the package vulnerabilities file as well
as setting RECOMMENDED, see Section 12.1.7, "Handling packages with
security problems" for more information.
4. If your package needs some executable to be able to run correctly and if
there's agail no buildlink3.mk file, this is specified using the DEPENDS
variable. The print/lyx package needs to be able to execute the latex
binary from the teTeX package when it runs, and that is specified:
DEPENDS+= teTeX-[0-9]*:../../print/teTeX
The comment about wildcard dependencies from previous paragraph applies
here, too.
If your package needs files from another package to build, see the first part
of the "do-configure" target print/ghostscript5 package (it relies on the jpeg
sources being present in source form during the build):
if [ ! -e ${_PKGSRCDIR}/graphics/jpeg/${WRKDIR:T}/jpeg-6b ]; then \
cd ${_PKGSRCDIR}/../../graphics/jpeg && ${MAKE} extract; \
fi
If you build any other packages that way, please make sure the working files
are deleted too when this package's working files are cleaned up. The easiest
way to do so is by adding a pre-clean target:
pre-clean:
cd ${_PKGSRCDIR}/../../graphics/jpeg && ${MAKE} clean
Please also note the BUILD_USES_MSGFMT and BUILD_USES_GETTEXT_M4 definitions,
which are provided as convenience definitions. The former works out whether
msgfmt(1) is part of the base system, and, if it isn't, installs the devel/
gettext package. The latter adds a build dependency on either an installed
version of an older gettext package, or if it isn't, installs the devel/
gettext-m4 package.
12.1.4. Handling conflicts with other packages
Your package may conflict with other packages a user might already have
installed on his system, e.g. if your package installs the same set of files
like another package in our pkgsrc tree.
In this case you can set CONFLICTS to a space separated list of packages
(including version string) your package conflicts with.
For example x11/Xaw3d and x11/Xaw-Xpm install provide the same shared library,
thus you set in pkgsrc/x11/Xaw3d/Makefile:
CONFLICTS= Xaw-Xpm-[0-9]*
and in pkgsrc/x11/Xaw-Xpm/Makefile:
CONFLICTS= Xaw3d-[0-9]*
Packages will automatically conflict with other packages with the name prefix
and a different version string. "Xaw3d-1.5" e.g. will automatically conflict
with the older version "Xaw3d-1.3".
12.1.5. Packages that cannot or should not be built
There are several reasons why a package might be instructed to not build under
certain circumstances. If the package builds and runs on most platforms, the
exceptions should be noted with NOT_FOR_PLATFORM. If the package builds and
runs on a small handful of platforms, set ONLY_FOR_PLATFORM instead. If the
package should be skipped (for example, because it provides functionality
already provided by the system), set PKG_SKIP_REASON to a descriptive message.
If the package should fail because some preconditions are not met, set
PKG_FAIL_REASON to a descriptive message.
IGNORE is deprecated because it didn't provide enough information to determine
whether the build should fail.
12.1.6. Packages which should not be deleted, once installed
To ensure that a package may not be deleted, once it has been installed, the
PKG_PRESERVE definition should be set in the package Makefile. This will be
carried into any binary package that is made from this pkgsrc entry. A
"preserved" package will not be deleted using pkg_delete(1) unless the "-f"
option is used.
12.1.7. Handling packages with security problems
When a vulnerability is found, this should be noted in localsrc/security/
advisories/pkg-vulnerabilities, and after the commit of that file, it should be
copied to both /pub/NetBSD/packages/distfiles/pkg-vulnerabilities and /pub/
NetBSD/packages/distfiles/vulnerabilities on ftp.NetBSD.org using localsrc/
security/advisories/Makefile. In addition, if a buildlink3.mk file exists for
an affected package, bumping PKGREVISION and creating a corresponding
BUILDLINK_RECOMMENDED.pkg entry should be considered. See Chapter 9, Buildlink
methodology for more information about writing buildlink3.mk files and
BUILDLINK_* definitions.
Also, if the fix should be applied to the stable pkgsrc branch, be sure to
submit a pullup request!
12.1.8. How to handle compiler bugs
Some source files trigger bugs in the compiler, based on combinations of
compiler version and architecture and almost always relation to optimisation
being enabled. Common symptoms are gcc internal errors or never finishing
compiling a file.
Typically a workaround involves testing the MACHINE_ARCH and compiler version,
disabling optimisation for that file/MACHINE_ARCH/compiler combination, and
documenting it in pkgsrc/doc/HACKS. See that file for a number of examples!
12.1.9. How to handle incrementing versions when fixing an existing package
When making fixes to an existing package it can be useful to change the version
number in PKGNAME. To avoid conflicting with future versions by the original
author, a "nb1", "nb2", ... suffix can be used on package versions by setting
PKGREVISION=1 (2, ...). The "nb" is treated like a "." by the pkg tools. e.g.
DISTNAME= foo-17.42
PKGREVISION= 9
will result in a PKGNAME of "foo-17.42nb9".
When a new release of the package is released, the PKGREVISION should be
removed. e.g. on a new minor release of the above package, things should be
like:
DISTNAME= foo-17.43
12.1.10. Portability of packages
One appealing feature of pkgsrc is that it runs on many different platforms. As
a result, it is important to ensure, where possible, that packages in pkgsrc
are portable. There are some particular details you should pay attention to
while working on pkgsrc.
12.1.10.1. ${INSTALL}, ${INSTALL_DATA_DIR}, ...
The BSD-compatible install supplied with some operating systems will not
perform more than one operation at a time. As such, you should call "${INSTALL}
", etc. like this:
${INSTALL_DATA_DIR} ${PREFIX}/dir1
${INSTALL_DATA_DIR} ${PREFIX}/dir2
12.2. Possible downloading issues
12.2.1. Packages whose distfiles aren't available for plain downloading
If you need to download from a dynamic URL you can set DYNAMIC_MASTER_SITES and
a make fetch will call files/getsite.sh with the name of each file to download
as an argument, expecting it to output the URL of the directory from which to
download it. graphics/ns-cult3d is an example of this usage.
If the download can't be automated, because the user must submit personal
information to apply for a password, or must pay for the source, or whatever,
you can set _FETCH_MESSAGE to a macro which displays a message explaining the
situation. _FETCH_MESSAGE must be executable shell commands, not just a
message. (Generally, it executes ${ECHO}). As of this writing, the following
packages use this: audio/realplayer, cad/simian, devel/ipv6socket, emulators/
vmware-module, fonts/acroread-jpnfont, sysutils/storage-manager, www/
ap-aolserver, www/openacs. Try to be consistent with them.
12.2.2. How to handle modified distfiles with the 'old' name
Sometimes authors of a software package make some modifications after the
software was released, and they put up a new distfile without changing the
package's version number. If a package is already in pkgsrc at that time, the
md5 checksum will no longer match. The correct way to work around this is to
update the package's md5 checksum to match the package on the master site
(beware, any mirrors may not be up to date yet!), and to remove the old
distfile from ftp.NetBSD.org's /pub/NetBSD/packages/distfiles directory.
Furthermore, a mail to the package's author seems appropriate making sure the
distfile was really updated on purpose, and that no trojan horse or so crept
in.
12.3. Configuration gotchas
12.3.1. Shared libraries - libtool
pkgsrc supports many different machines, with different object formats like
a.out and ELF, and varying abilities to do shared library and dynamic loading
at all. To accompany this, varying commands and options have to be passed to
the compiler, linker, etc. to get the Right Thing, which can be pretty annoying
especially if you don't have all the machines at your hand to test things. The
devel/libtool pkg can help here, as it just "knows" how to build both static
and dynamic libraries from a set of source files, thus being platform
independent.
Here's how to use libtool in a pkg in seven simple steps:
1. Add USE_LIBTOOL=yes to the package Makefile.
2. For library objects, use "${LIBTOOL} --mode=compile ${CC}" in place of "$
{CC}". You could even add it to the definition of CC, if only libraries are
being built in a given Makefile. This one command will build both PIC and
non-PIC library objects, so you need not have separate shared and
non-shared library rules.
3. For the linking of the library, remove any "ar", "ranlib", and "ld
-Bshareable" commands, and instead use:
${LIBTOOL} --mode=link ${CC} -o ${.TARGET:.a=.la} ${OBJS:.o=.lo} -rpath ${PREFIX}/lib -version-info major:minor
Note that the library is changed to have a .la extension, and the objects
are changed to have a .lo extension. Change OBJS as necessary. This
automatically creates all of the .a, .so.major.minor, and ELF symlinks (if
necessary) in the build directory. Be sure to include "-version-info",
especially when major and minor are zero, as libtool will otherwise strip
off the shared library version.
From the libtool manual:
So, libtool library versions are described by three integers:
CURRENT
The most recent interface number that this library implements.
REVISION
The implementation number of the CURRENT interface.
AGE
The difference between the newest and oldest interfaces that this
library implements. In other words, the library implements all the
interface numbers in the range from number `CURRENT - AGE' to
`CURRENT'.
If two libraries have identical CURRENT and AGE numbers, then the
dynamic linker chooses the library with the greater REVISION number.
The "-release" option will produce different results for a.out and ELF
(excluding symlinks) in only one case. An ELF library of the form
"libfoo-release.so.x.y" will have a symlink of "libfoo.so.x.y" on an a.out
platform. This is handled automatically.
The "-rpath argument" is the install directory of the library being built.
In the PLIST, include all of the .a, .la, and .so, .so.major and .so.major.
minor files.
4. When linking shared object (.so) files, i.e. files that are loaded via
dlopen(3), NOT shared libraries, use "-module -avoid-version" to prevent
them getting version tacked on.
The PLIST file gets the foo.so entry.
5. When linking programs that depend on these libraries before they are
installed, preface the cc(1) or ld(1) line with "${LIBTOOL} --mode=link",
and it will find the correct libraries (static or shared), but please be
aware that libtool will not allow you to specify a relative path in -L
(such as "-L../somelib"), because it expects you to change that argument to
be the .la file. e.g.
${LIBTOOL} --mode=link ${CC} -o someprog -L../somelib -lsomelib
should be changed to:
${LIBTOOL} --mode=link ${CC} -o someprog ../somelib/somelib.la
and it will do the right thing with the libraries.
6. When installing libraries, preface the install(1) or cp(1) command with "$
{LIBTOOL} --mode=install", and change the library name to .la. e.g.
${LIBTOOL} --mode=install ${BSD_INSTALL_DATA} ${SOMELIB:.a=.la} ${PREFIX}/lib
This will install the static .a, shared library, any needed symlinks, and
run ldconfig(8).
7. In your PLIST, include all of the .a, .la, and .so, .so.CURRENT and
.so.CURRENT.REVISION files (this is a change from the previous behaviour).
12.3.2. Using libtool on GNU packages that already support libtool
Add USE_LIBTOOL=yes to the package Makefile. This will override the package's
own libtool in most cases. For older libtool using packages, libtool is made by
ltconfig script during the do-configure step; you can check the libtool script
location by doing make configure; find work*/ -name libtool.
LIBTOOL_OVERRIDE specifies which libtool scripts, relative to WRKSRC, to
override. By default, it is set to "libtool */libtool */*/libtool". If this
does not match the location of the package's libtool script(s), set it as
appropriate.
If you do not need *.a static libraries built and installed, then use
SHLIBTOOL_OVERRIDE instead.
If your package makes use of the platform independent library for loading
dynamic shared objects, that comes with libtool (libltdl), you should include
the libtool buildlink3.mk (and set USE_BUILDLINK3=YES).
Some packages use libtool incorrectly so that the package may not work or build
in some circumstances. Some of the more common errors are:
* The inclusion of a shared object (-module) as a dependent library in an
executable or library. This in itself isn't a problem if one of two things
has been done:
1. The shared object is named correctly, i.e. libfoo.la, not foo.la
2. The -dlopen option is used when linking an executable.
* The use of libltdl without the correct calls to initialisation routines.
The function lt_dlinit() should be called and the macro
LTDL_SET_PRELOADED_SYMBOLS included in executables.
12.3.3. GNU Autoconf/Automake
If a package needs GNU autoconf or automake to be executed to regenerate the
configure script and Makefile.in makefile templates, then they should be
executed in a pre-configure target. Two Makefile fragments are provided in
pkgsrc/mk/autoconf.mk and pkgsrc/mk/automake.mk to help dealing with these
tools. See comments in these files for details.
For packages that need only autoconf:
AUTOCONF_REQD= 2.50 # if default version is not good enough
...
pre-configure:
cd ${WRKSRC}; ${AUTOCONF}
...
.include "../../mk/autoconf.mk"
and for packages that need automake and autoconf:
AUTOMAKE_REQD= 1.7.1 # if default version is not good enough
...
pre-configure:
cd ${WRKSRC}; \
${ACLOCAL}; \
${AUTOHEADER}; \
${AUTOMAKE} -a --foreign -i; \
${AUTOCONF}
...
.include "../mk/automake.mk"
Packages which use GNU Automake will almost certainly require GNU Make, but
that's automatically provided for you in mk/automake.mk.
There are times when the configure process makes additional changes to the
generated files, which then causes the build process to try to re-execute the
automake sequence. This is prevented by touching various files in the configure
stage. If this causes problems with your package you can set AUTOMAKE_OVERRIDE=
NO in the package Makefile.
12.4. Building considerations
12.4.1. CPP defines
To port an application to NetBSD, it's usually necessary for the compiler to be
able to judge the system on which it's compiling, and we use definitions so
that the C pre-processor can do this.
To test whether you are working on a 4.4 BSD-derived system, you should use the
BSD definition, which is defined in <sys/param.h> on said systems.
#include <sys/param.h>
and then you can surround the BSD-specific parts of your package's C/C++ code
using this conditional:
#if (defined(BSD) && BSD >= 199306)
...
#endif
Please use the "__NetBSD__" definition sparingly - it should only apply to
features of NetBSD that are not present in other 4.4-lite derived BSDs.
12.5. Package specific actions
12.5.1. Package configuration files
Packages should be taught to look for their configuration files in $
{PKG_SYSCONFDIR}, which is passed through to the configure and build processes.
PKG_SYSCONFDIR may be customized in various ways by setting other make
variables:
* PKG_SYSCONFBASE is the main config directory under which all package
configuration files are to be found. This defaults to ${PREFIX}/etc, but
may be overridden in /etc/mk.conf.
* PKG_SYSCONFSUBDIR is the subdirectory of PKG_SYSCONFBASE under which the
configuration files for a particular package may be found, e.g. the Apache
configuration files may all be found under the httpd/ subdirectory of $
{PKG_SYSCONFBASE}. This should be set in the package Makefile.
* By default, PKG_SYSCONFDIR is set to ${PKG_SYSCONFBASE}/$
{PKG_SYSCONFSUBDIR}, but this may be overridden by setting PKG_SYSCONFDIR.$
{PKG_SYSCONFVAR} for a particular package, where PKG_SYSCONFVAR defaults to
${PKGBASE}. This is not meant to be set by a package Makefile, but is
reserved for users who wish to override the PKG_SYSCONFDIR setting for a
particular package with a special location.
The only variables that users should customize are PKG_SYSCONFBASE and
PKG_SYSCONFDIR.${PKG_SYSCONFVAR}. Users will typically want to set
PKG_SYSCONFBASE to /etc, or to accept the default location of ${PREFIX}/etc.
12.5.2. User interaction
Occasionally, packages require interaction from the user, and this can be in a
number of ways:
* help in fetching the distfiles
* help to configure the package before it is built
* help during the build process
* help during the installation of a package
The INTERACTIVE_STAGE definition is provided to notify the pkgsrc mechanism of
an interactive stage which will be needed, and this should be set in the
package's Makefile. e.g.
INTERACTIVE_STAGE= build
Multiple interactive stages can be specified:
INTERACTIVE_STAGE= configure install
12.5.3. Handling licenses
A package may underly a license which the user has or has not agreed to accept.
Usually, packages that underly well-known Open Source licenses (e.g. the GNU
Public License, GPL) won't have any special license tags added in pkgsrc which
require special action by the user of such packages, but there are quite a
number of other licenses out there that pkgsrc users may not be able to follow,
for whatever reasons. For these cases, pkgsrc contains a mechanism to note that
a package underlies a certain license, and the user has to accept the license
before the package can be installed.
Placing a certain package under a certain license works by setting the LICENSE
variable to a string identifying the license, e.g. in graphics/graphviz:
LICENSE= graphviz-license
When trying to build, the user will get a notice that the package underlies a
license which he hasn't accepted (yet):
% make
===> graphviz-1.12 has an unacceptable license: graphviz-license.
===> To build this package, add this line to your /etc/mk.conf:
===> ACCEPTABLE_LICENSES+=graphviz-license
===> To view the license, enter "/usr/bin/make show-license".
*** Error code 1
The license can be viewed with make show-license, and if it is considered
appropriate, the line printed above can be added to /etc/mk.conf to indicate
acceptance of the particular license:
ACCEPTABLE_LICENSES+=graphviz-license
When adding a package with a new license, the license text should be added to
pkgsrc/licenses for displaying. A list of known licenses can be seen in this
directory as well as by looking at the list of (commented out)
ACCEPTABLE_LICENSES variable settings in pkgsrc/mk/bsd.pkg.defaults.mk.
Is there is a really pressing need to accept all licenses at once, like when
trying to download or mirror all distfiles or doing a bulk build to test if all
packages in pkgsrc build, this can be done by setting _ACCEPTABLE=yes.
12.5.4. Creating an account from a package
There are two make variables used to control the creation of package-specific
groups and users at pre-install time. The first is PKG_GROUPS, which is a list
of group[:groupid] elements, where the groupid is optional. The second is
PKG_USERS, which is a list of elements of the form:
user:group[:[userid][:[description][:[home][:shell]]]]
where only the user and group are required, the rest being optional. A simple
example is:
PKG_GROUPS= foogroup
PKG_USERS= foouser:foogroup
A more complex example is that creates two groups and two users is:
PKG_GROUPS= group1 group2:1005
PKG_USERS= first:group1::First\\ User \
second:group2::Second\\ User:/home/second:${SH}
By default, a new user will have home directory /nonexistent, and login shell /
sbin/nologin unless they are specified as part of the user element.
The package Makefile must also set USE_PKGINSTALL=YES. This will cause the
users and groups to be created at pre-install time, and the admin will be
prompted to remove them at post-deinstall time. Automatic creation of the users
and groups can be toggled on and off by setting the PKG_CREATE_USERGROUP
variable prior to package installation.
12.5.5. Installing score files
Certain packages, most of them in the games category, install a score file that
allows all users on the system to record their highscores. In order for this to
work, the binaries need to be installed setgid and the score files owned by the
appropriate group and/or owner (traditionally the "games" user/group). The
following variables, documented in more detail in mk/bsd.pkg.defaults.mk,
control this behaviour: SETGIDGAME, GAMEDATAMODE, GAMEGRP, GAMEMODE, GAMEOWN.
Note that per default, setgid installation of games is disabled; setting
SETGIDGAME=YES will set all the other variables accordingly.
A package should therefor never hard code file ownership or access permissions
but rely on INSTALL_GAME and INSTALL_GAME_DATA to set these correctly.
12.5.6. Packages providing login shells
If the purpose of the package is to provide a login shell, the variable
PKG_SHELL should contain the full pathname of the shell executable installed by
this package. The package Makefile must also set USE_PKGINSTALL=YES to use the
automatically generated INSTALL/DEINSTALL scripts.
An example taken from shells/zsh:
USE_PKGINSTALL= YES
PKG_SHELL= ${PREFIX}/bin/zsh
The shell is registered into /etc/shells file automatically in the post-install
target by the generated INSTALL script and removed in the deinstall target by
the DEINSTALL script.
12.5.7. Packages containing perl scripts
If your package contains interpreted perl scripts, set REPLACE_PERL to ensure
that the proper interpreter path is set. REPLACE_PERL should contain a list of
scripts, relative to WRKSRC, that you want adjusted.
12.5.8. Packages with hardcoded paths to other interpreters
Your package may also contain scripts with hardcoded paths to other
interpreters besides (or as well as) perl. To correct the full pathname to the
script interpreter, you need to set the following definitions in your Makefile
(we shall use tclsh in this example):
REPLACE_INTERPRETER+= tcl
_REPLACE.tcl.old= .*/bin/tclsh
_REPLACE.tcl.new= ${PREFIX}/bin/tclsh
_REPLACE_FILES.tcl= ...list of tcl scripts which need to be fixed,
relative to ${WRKSRC}, just as in REPLACE_PERL
12.5.9. Packages installing perl modules
Makefiles of packages providing perl5 modules should include the Makefile
fragment ../../lang/perl5/module.mk. It provides a do-configure target for the
standard perl configuration for such modules as well as various hooks to tune
this configuration. See comments in this file for details.
Perl5 modules will install into different places depending on the version of
perl used during the build process. To address this, pkgsrc will append lines
to the PLIST corresponding to the files listed in the installed .packlist file
generated by most perl5 modules. This is invoked by defining PERL5_PACKLIST to
a space-separated list of paths to packlist files, e.g.:
PERL5_PACKLIST= ${PERL5_SITEARCH}/auto/Pg/.packlist
The variables PERL5_SITELIB, PERL5_SITEARCH, and PERL5_ARCHLIB represent the
three locations in which perl5 modules may be installed, and may be used by
perl5 packages that don't have a packlist. These three variables are also
substituted for in the PLIST.
12.5.10. Packages installing info files
Some packages install info files or use the "makeinfo" or "install-info"
commands. Each of the info files:
* is considered to be installed in the directory ${PREFIX}/${INFO_DIR},
* is registered in the Info directory file ${PREFIX}/${INFO_DIR}/dir,
* and must be listed as a filename in the INFO_FILES variable in the package
Makefile.
INFO_DIR defaults to "info" and can be overridden in the package Makefile.
INSTALL and DEINSTALL scripts will be generated to handle registration of the
info files in the Info directory file. The "install-info" command used for the
info files registration is either provided by the system, or by a special
purpose package automatically added as dependency if needed.
A package which needs the "makeinfo" command at build time must define the
variable USE_MAKEINFO in its Makefile. If a minimum version of the "makeinfo"
command is needed it should be noted with the TEXINFO_REQD variable in the
package Makefile. By default, a minimum version of 3.12 is required. If the
system does not provide a makeinfo command or if it does not match the required
minimum, a build dependency on the devel/gtexinfo package will be added
automatically.
The build and installation process of the software provided by the package
should not use the install-info command as the registration of info files is
the task of the package INSTALL script, and it must use the appropriate
makeinfo command.
To achieve this goal the pkgsrc infrastructure creates overriding scripts for
the install-info and makeinfo commands in a directory listed early in PATH.
The script overriding install-info has no effect except the logging of a
message. The script overriding makeinfo logs a message and according to the
value of USE_MAKEINFO and TEXINFO_REQD either run the appropriate makeinfo
command or exit on error.
12.5.11. Packages installing GConf2 data files
If a package installs .schemas or .entries files, used by GConf2, you need to
take some extra steps to make sure they get registered in the database:
1. Include ../../devel/GConf2/schemas.mk instead of its buildlink3.mk file.
This takes care of rebuilding the GConf2 database at installation and
deinstallation time, and tells the package where to install GConf2 data
files using some standard configure arguments. It also disallows any access
to the database directly from the package.
2. Ensure that the package installs its .schemas files under ${PREFIX}/share/
gconf/schemas. If they get installed under ${PREFIX}/etc, you will need to
manually patch the package.
3. Check the PLIST and remove any entries under the etc/gconf directory, as
they will be handled automatically. See Section 6.13, "Configuration files
handling and placement" for more information.
4. Define the GCONF2_SCHEMAS variable in your Makefile with a list of all
.schemas files installed by the package, if any. Names must not contain any
directories in them.
5. Define the GCONF2_ENTRIES variable in your Makefile with a list of all
.entries files installed by the package, if any. Names must not contain any
directories in them.
12.5.12. Packages installing scrollkeeper data files
If a package installs .omf files, used by scrollkeeper, you need to take some
extra steps to make sure they get registered in the database:
1. Include ../../textproc/scrollkeeper/omf.mk instead of its buildlink3.mk
file. This takes care of rebuilding the scrollkeeper database at
installation and deinstallation time, and disallows any access to it
directly from the package.
2. Check the PLIST and remove any entries under the libdata/scrollkeeper
directory, as they will be handled automatically.
3. Remove the share/omf directory from the PLIST. It will be handled by
scrollkeeper.
12.5.13. Packages installing X11 fonts
If a package installs font files, you will need to rebuild the fonts database
in the directory where they get installed at installation and deinstallation
time. This can be automatically done by using mk/fonts.mk, which you need to
include in your Makefile.
When the file is included, you can list the directories where fonts are
installed in the FONTS_type_DIRS variables, where type can be one of "TTF",
"TYPE1" or "X11". Also make sure that the database file fonts.dir is not listed
in the PLIST.
Note that you should not create new directories for fonts; instead use the
standard ones to avoid that the user needs to manually configure his X server
to find them.
12.5.14. Packages installing GTK2 modules
If a package installs gtk2 immodules or loaders, you need to take some extra
steps to get them registered in the GTK2 database properly:
1. Include ../../x11/gtk2/modules.mk instead of its buildlink3.mk file. This
takes care of rebuilding the database at installation and deinstallation
time.
2. Set GTK2_IMMODULES=YES if your package installs GTK2 immodules.
3. Set GTK2_LOADERS=YES if your package installs GTK2 loaders.
4. Patch the package to not touch any of the gtk2 databases directly. These
are:
* libdata/gtk-2.0/gdk-pixbuf.loaders
* libdata/gtk-2.0/gtk.immodules
5. Check the PLIST and remove any entries under the libdata/gtk-2.0 directory,
as they will be handled automatically.
12.5.15. Packages installing SGML or XML data
If a package installs SGML or XML data files that need to be registered in
system-wide catalogs (like DTDs, sub-catalogs, etc.), you need to take some
extra steps:
1. Include ../../textproc/xmlcatmgr/catalogs.mk in your Makefile, which takes
care of registering those files in system-wide catalogs at installation and
deinstallation time.
2. Set SGML_CATALOGS to the full path of any SGML catalogs installed by the
package.
3. Set XML_CATALOGS to the full path of any XML catalogs installed by the
package.
4. Set SGML_ENTRIES to individual entries to be added to the SGML catalog.
These come in groups of three strings; see xmlcatmgr(1) for more
information (specifically, arguments recognized by the 'add' action). Note
that you will normally not use this variable.
5. Set XML_ENTRIES to individual entries to be added to the XML catalog. These
come in groups of three strings; see xmlcatmgr(1) for more information
(specifically, arguments recognized by the 'add' action). Note that you
will normally not use this variable.
12.5.16. Packages installing extensions to the MIME database
If a package provides extensions to the MIME database by installing .xml files
inside ${PREFIX}/share/mime/packages, you need to take some extra steps to
ensure that the database is kept consistent with respect to these new files:
1. Include ../../databases/shared-mime-info/mimedb.mk (avoid using the
buildlink3.mk file from this same directory, which is reserved for
inclusion from other buildlink3.mk files). It takes care of rebuilding the
MIME database at installation and deinstallation time, and disallows any
access to it directly from the package.
2. Check the PLIST and remove any entries under the share/mime directory,
except for files saved under share/mime/packages. The former are handled
automatically by the update-mime-database program, but the later are
package-dependent and must be removed by the package that installed them in
the first place.
3. Remove any share/mime/* directories from the PLIST. They will be handled by
the shared-mime-info package.
12.5.17. Packages using intltool
If a package uses intltool during its build, include the ../../textproc/
intltool/buildlink3.mk file, which forces it to use the intltool package
provided by pkgsrc, instead of the one bundled with the distribution file.
This tracks intltool's build-time dependencies and uses the latest available
version; this way, the package benefits of any bug fixes that may have appeared
since it was released.
12.6. Feedback to the author
If you have found any bugs in the package you make available, if you had to do
special steps to make it run under NetBSD or if you enhanced the software in
various other ways, be sure to report these changes back to the original author
of the program! With that kind of support, the next release of the program can
incorporate these fixes, and people not using the NetBSD packages system can
win from your efforts.
Support the idea of free software!
Chapter 13. Debugging
To check out all the gotchas when building a package, here are the steps that I
do in order to get a package working. Please note this is basically the same as
what was explained in the previous sections, only with some debugging aids.
* Be sure to set PKG_DEVELOPER=1 in /etc/mk.conf
* Install pkgtools/url2pkg, create a directory for a new package, change into
it, then run url2pkg:
% mkdir /usr/pkgsrc/category/examplepkg
% cd /usr/pkgsrc/category/examplepkg
% url2pkg http://www.example.com/path/to/distfile.tar.gz
* Edit the Makefile as requested.
* Fill in the DESCR file
* Run make configure
* Add any dependencies glimpsed from documentation and the configure step to
the package's Makefile.
* Make the package compile, doing multiple rounds of
% make
% pkgvi ${WRKSRC}/some/file/that/does/not/compile
% mkpatches
% patchdiff
% mv ${WRKDIR}/.newpatches/* patches
% make mps
% make clean
Doing as non-root user will ensure that no files are modified that
shouldn't be, especially during the build phase. mkpatches, patchdiff and
pkgvi are from the pkgtools/pkgdiff package.
* Look at the Makefile, fix if necessary; see Section 7.1, "Makefile".
* Generate a PLIST:
# make install
# make print-PLIST >PLIST
# make deinstall
# make install
# make deinstall
You usually need to be root to do this. Look if there are any files left:
# make print-PLIST
If this reveals any files that are missing in PLIST, add them.
* Now that the PLIST is OK, install the package again and make a binary
package:
# make reinstall
# make package
* Delete the installed package:
# pkg_delete blub
* Repeat the above make print-PLIST command, which shouldn't find anything
now:
# make print-PLIST
* Reinstall the binary package:
# pkgadd .../blub.tgz
* Play with it. Make sure everything works.
* Run pkglint from pkgtools/pkglint, and fix the problems it reports:
# pkglint
* Submit (or commit, if you have cvs access); see Chapter 14, Submitting and
Committing.
Chapter 14. Submitting and Committing
Table of Contents
14.1. Submitting your packages
14.2. Committing: Importing a package into CVS
14.3. Updating a package to a newer version
14.4. Moving a package in pkgsrc
14.1. Submitting your packages
You have to separate between binary and "normal" (source) packages here:
* precompiled binary packages
Our policy is that we accept binaries only from pkgsrc developers to
guarantee that the packages don't contain any trojan horses etc. This is
not to piss anyone off but rather to protect our users! You're still free
to put up your home-made binary packages and tell the world where to get
them.
* packages
First, check that your package is complete, compiles and runs well; see
Chapter 13, Debugging and the rest of this document. Next, generate an
uuencoded gzipped tar(1) archive, preferably with all files in a single
directory. Finally, send-pr with category "pkg", a synopsis which includes
the package name and version number, a short description of your package
(contents of the COMMENT variable or DESCR file are OK) and attach the
archive to your PR.
If you want to submit several packages, please send a separate PR for each
one, it's easier for us to track things that way.
Alternatively, you can also import new packages into pkgsrc-wip ("pkgsrc
work-in-progress"); see the homepage at http://pkgsrc-wip.sourceforge.net/
for details.
14.2. Committing: Importing a package into CVS
This section is only of interest for pkgsrc developers with write access to the
pkgsrc repository. Please remember that cvs imports files relative to the
current working directory, and that the pathname that you give the cvs import
command is so that it knows where to place the files in the repository. Newly
created packages should be imported with a vendor tag of "TNF" and a release
tag of "pkgsrc-base", e.g:
% cd .../pkgsrc/category/pkgname
% cvs import pkgsrc/category/pkgname TNF pkgsrc-base
Remember to move the directory from which you imported out of the way, or cvs
will complain the next time you "cvs update" your source tree. Also don't
forget to add the new package to the category's Makefile.
The commit message of the initial import should include part of the DESCR file,
so people reading the mailing lists know what the package is/does.
Please note all package updates/additions in pkgsrc/doc/CHANGES. It's very
important to keep this file up to date and conforming to the existing format,
because it will be used by scripts to automatically update pages on
www.NetBSD.org and other sites. Additionally, check the pkgsrc/doc/TODO file
and remove the entry for the package you updated, in case it was mentioned
there.
For new packages, "cvs import" is preferred to "cvs add" because the former
gets everything with a single command, and provides a consistent tag.
14.3. Updating a package to a newer version
Please always put a concise, appropriate and relevant summary of the changes
between old and new versions into the commit log when updating a package. There
are various reasons for this:
* A URL is volatile, and can change over time. It may go away completely or
its information may be overwritten by newer information.
* Having the change information between old and new versions in our CVS
repository is very useful for people who use either cvs or anoncvs.
* Having the change information between old and new versions in our CVS
repository is very useful for people who read the pkgsrc-changes mailing
list, so that they can make tactical decisions about when to upgrade the
package.
Please also recognise that, just because a new version of a package has been
released, it should not automatically be upgraded in the CVS repository. We
prefer to be conservative in the packages that are included in pkgsrc -
development or beta packages are not really the best thing for most places in
which pkgsrc is used. Please use your judgement about what should go into
pkgsrc, and bear in mind that stability is to be preferred above new and
possibly untested features.
14.4. Moving a package in pkgsrc
1. Make a copy of the directory somewhere else.
2. Remove all CVS dirs.
Alternatively to the first two steps you can also do:
% cvs -d user@cvs.NetBSD.org:/cvsroot export -D today pkgsrc/category/package
and use that for further work.
3. Fix CATEGORIES and any DEPENDS paths that just did "../package" instead of
"../../category/package".
4. cvs import the modified package in the new place.
5. Check if any package depends on it:
% cd /usr/pkgsrc
% grep /package */*/Makefile* */*/buildlink*
6. Fix paths in packages from step 5 to point to new location.
7. cvs rm (-f) the package at the old location.
8. Remove from oldcategory/Makefile.
9. Add to newcategory/Makefile.
10. Commit the changed and removed files:
% cvs commit oldcategory/package oldcategory/Makefile newcategory/Makefile
(and any packages from step 5, of course).
Appendix A. A simple example package: bison
Table of Contents
A.1. files
A.1.1. Makefile
A.1.2. DESCR
A.1.3. PLIST
A.1.4. Checking a package with pkglint
A.2. Steps for building, installing, packaging
We checked to find a piece of software that wasn't in the packages collection,
and picked GNU bison. Quite why someone would want to have bison when Berkeley
yacc is already present in the tree is beyond us, but it's useful for the
purposes of this exercise.
A.1. files
A.1.1. Makefile
# $NetBSD: pkgsrc.txt,v 1.9 2004/12/02 22:23:47 dillo Exp $
#
DISTNAME= bison-1.25
CATEGORIES= devel
MASTER_SITES= ${MASTER_SITE_GNU}
MAINTAINER= thorpej@NetBSD.org
HOMEPAGE= http://www.gnu.org/software/bison/bison.html
COMMENT= GNU yacc clone
GNU_CONFIGURE= yes
INFO_FILES= bison.info
.include "../../mk/bsd.pkg.mk"
A.1.2. DESCR
GNU version of yacc. Can make re-entrant parsers, and numerous other
improvements. Why you would want this when Berkeley yacc(1) is part
of the NetBSD source tree is beyond me.
A.1.3. PLIST
@comment $NetBSD: pkgsrc.txt,v 1.9 2004/12/02 22:23:47 dillo Exp $
bin/bison
man/man1/bison.1.gz
info/bison.info
info/bison.info-1
info/bison.info-2
info/bison.info-3
info/bison.info-4
info/bison.info-5
share/bison.simple
share/bison.hairy
A.1.4. Checking a package with pkglint
The NetBSD package system comes with pkgtools/pkglint which helps to check the
contents of these files. After installation it is quite easy to use, just
change to the directory of the package you wish to examine and execute pkglint:
$ pkglint
OK: checking ./DESCR.
OK: checking Makefile.
OK: checking distinfo.
OK: checking patches/patch-aa.
looks fine.
Depending on the supplied command line arguments (see pkglint(1)) more verbose
checks will be performed. Use e.g. pkglint -v for a very verbose check.
A.2. Steps for building, installing, packaging
Create the directory where the package lives, plus any auxiliary directories:
# cd /usr/pkgsrc/lang
# mkdir bison
# cd bison
# mkdir patches
Create Makefile, DESCR and PLIST (see Chapter 7, Package components - files,
directories and contents) then continue with fetching the distfile:
# make fetch
>> bison-1.25.tar.gz doesn't seem to exist on this system.
>> Attempting to fetch from ftp://prep.ai.mit.edu/pub/gnu//.
Requesting ftp://prep.ai.mit.edu/pub/gnu//bison-1.25.tar.gz (via ftp://orpheus.amdahl.com:80/)
ftp: Error retrieving file: 500 Internal error
>> Attempting to fetch from ftp://wuarchive.wustl.edu/systems/gnu//.
Requesting ftp://wuarchive.wustl.edu/systems/gnu//bison-1.25.tar.gz (via ftp://orpheus.amdahl.com:80/)
ftp: Error retrieving file: 500 Internal error
>> Attempting to fetch from ftp://ftp.freebsd.org/pub/FreeBSD/distfiles//.
Requesting ftp://ftp.freebsd.org/pub/FreeBSD/distfiles//bison-1.25.tar.gz (via ftp://orpheus.amdahl.com:80/)
Successfully retrieved file.
Generate the checksum of the distfile into distinfo:
# make makesum
Now compile:
# make
>> Checksum OK for bison-1.25.tar.gz.
===> Extracting for bison-1.25
===> Patching for bison-1.25
===> Ignoring empty patch directory
===> Configuring for bison-1.25
creating cache ./config.cache
checking for gcc... cc
checking whether we are using GNU C... yes
checking for a BSD compatible install... /usr/bin/install -c -o bin -g bin
checking how to run the C preprocessor... cc -E
checking for minix/config.h... no
checking for POSIXized ISC... no
checking whether cross-compiling... no
checking for ANSI C header files... yes
checking for string.h... yes
checking for stdlib.h... yes
checking for memory.h... yes
checking for working const... yes
checking for working alloca.h... no
checking for alloca... yes
checking for strerror... yes
updating cache ./config.cache
creating ./config.status
creating Makefile
===> Building for bison-1.25
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g LR0.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g allocate.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g closure.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g conflicts.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g derives.c
cc -c -DXPFILE=\"/usr/pkg/share/bison.simple\" -DXPFILE1=\"/usr/pkg/share/bison.hairy\" -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -g ./files.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g getargs.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g gram.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g lalr.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g lex.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g main.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g nullable.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g output.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g print.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g reader.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g reduce.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g symtab.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g warshall.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g version.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g getopt.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g getopt1.c
cc -g -o bison LR0.o allocate.o closure.o conflicts.o derives.o files.o getargs.o gram.o lalr.o lex.o main.o nullable.o output.o print.o reader.o reduce.o symtab.o warshall.o version.o getopt.o getopt1.o
./files.c:240: warning: mktemp() possibly used unsafely, consider using mkstemp()
rm -f bison.s1
sed -e "/^#line/ s|bison|/usr/pkg/share/bison|" < ./bison.simple > bison.s1
Everything seems OK, so install the files:
# make install
>> Checksum OK for bison-1.25.tar.gz.
===> Installing for bison-1.25
sh ./mkinstalldirs /usr/pkg/bin /usr/pkg/share /usr/pkg/info /usr/pkg/man/man1
rm -f /usr/pkg/bin/bison
cd /usr/pkg/share; rm -f bison.simple bison.hairy
rm -f /usr/pkg/man/man1/bison.1 /usr/pkg/info/bison.info*
install -c -o bin -g bin -m 555 bison /usr/pkg/bin/bison
/usr/bin/install -c -o bin -g bin -m 644 bison.s1 /usr/pkg/share/bison.simple
/usr/bin/install -c -o bin -g bin -m 644 ./bison.hairy /usr/pkg/share/bison.hairy
cd .; for f in bison.info*; do /usr/bin/install -c -o bin -g bin -m 644 $f /usr/pkg/info/$f; done
/usr/bin/install -c -o bin -g bin -m 644 ./bison.1 /usr/pkg/man/man1/bison.1
===> Registering installation for bison-1.25
You can now use bison, and also - if you decide so - remove it with pkg_delete
bison. Should you decide that you want a binary package, do this now:
# make package
>> Checksum OK for bison-1.25.tar.gz.
===> Building package for bison-1.25
Creating package bison-1.25.tgz
Registering depends:.
Creating gzip'd tar ball in '/u/pkgsrc/lang/bison/bison-1.25.tgz'
Now that you don't need the source and object files any more, clean up:
# make clean
===> Cleaning for bison-1.25
Appendix B. Build logs
Table of Contents
B.1. Building figlet
B.2. Packaging figlet
B.1. Building figlet
# make
===> Checking for vulnerabilities in figlet-2.2.1nb2
=> figlet221.tar.gz doesn't seem to exist on this system.
=> Attempting to fetch figlet221.tar.gz from ftp://ftp.figlet.org/pub/figlet/program/unix/.
=> [172219 bytes]
Connected to ftp.plig.net.
220 ftp.plig.org NcFTPd Server (licensed copy) ready.
331 Guest login ok, send your complete e-mail address as password.
230-You are user #5 of 500 simultaneous users allowed.
230-
230- ___ _ _ _
230- | _| |_ ___ ___| |_|___ ___ ___ ___
230- | _| _| . |_| . | | | . |_| . | _| . |
230- |_| |_| | _|_| _|_|_|_ |_|___|_| |_ |
230- |_| |_| |___| |___|
230-
230-** Welcome to ftp.plig.org **
230-
230-Please note that all transfers from this FTP site are logged. If you
230-do not like this, please disconnect now.
230-
230-This arhive is available via
230-
230-HTTP: http://ftp.plig.org/
230-FTP: ftp://ftp.plig.org/ (max 500 connections)
230-RSYNC: rsync://ftp.plig.org/ (max 30 connections)
230-
230-Please email comments, bug reports and requests for packages to be
230-mirrored to ftp-admin@plig.org.
230-
230-
230 Logged in anonymously.
Remote system type is UNIX.
Using binary mode to transfer files.
200 Type okay.
250 "/pub" is new cwd.
250-"/pub/figlet" is new cwd.
250-
250-Welcome to the figlet archive at ftp.figlet.org
250-
250- ftp://ftp.figlet.org/pub/figlet/
250-
250-The official FIGlet web page is:
250- http://www.figlet.org/
250-
250-If you have questions, please mailto:info@figlet.org. If you want to
250-contribute a font or something else, you can email us.
250
250 "/pub/figlet/program" is new cwd.
250 "/pub/figlet/program/unix" is new cwd.
local: figlet221.tar.gz remote: figlet221.tar.gz
502 Unimplemented command.
227 Entering Passive Mode (195,40,6,41,246,104)
150 Data connection accepted from 84.128.86.72:65131; transfer starting for figlet221.tar.gz (172219 bytes).
38% |************** | 65800 64.16 KB/s 00:01 ETA
226 Transfer completed.
172219 bytes received in 00:02 (75.99 KB/s)
221 Goodbye.
=> Checksum OK for figlet221.tar.gz.
===> Extracting for figlet-2.2.1nb2
===> Required installed package ccache-[0-9]*: ccache-2.3nb1 found
===> Patching for figlet-2.2.1nb2
===> Applying pkgsrc patches for figlet-2.2.1nb2
===> Overriding tools for figlet-2.2.1nb2
===> Creating toolchain wrappers for figlet-2.2.1nb2
===> Configuring for figlet-2.2.1nb2
===> Building for figlet-2.2.1nb2
gcc -O2 -DDEFAULTFONTDIR=\"/usr/pkg/share/figlet\" -DDEFAULTFONTFILE=\"standard.flf\" figlet.c zipio.c crc.c inflate.c -o figlet
chmod a+x figlet
gcc -O2 -o chkfont chkfont.c
=> Unwrapping files-to-be-installed.
#
# make install
===> Checking for vulnerabilities in figlet-2.2.1nb2
===> Installing for figlet-2.2.1nb2
install -d -o root -g wheel -m 755 /usr/pkg/bin
install -d -o root -g wheel -m 755 /usr/pkg/man/man6
mkdir -p /usr/pkg/share/figlet
cp figlet /usr/pkg/bin
cp chkfont /usr/pkg/bin
chmod 555 figlist showfigfonts
cp figlist /usr/pkg/bin
cp showfigfonts /usr/pkg/bin
cp fonts/*.flf /usr/pkg/share/figlet
cp fonts/*.flc /usr/pkg/share/figlet
cp figlet.6 /usr/pkg/man/man6
===> Registering installation for figlet-2.2.1nb2
#
B.2. Packaging figlet
# make package
===> Checking for vulnerabilities in figlet-2.2.1nb2
===> Packaging figlet-2.2.1nb2
===> Building binary package for figlet-2.2.1nb2
Creating package /home/cvs/pkgsrc/packages/i386/All/figlet-2.2.1nb2.tgz
Using SrcDir value of /usr/pkg
Registering depends:.
#
Appendix C. Layout of the FTP server's package archive
Layout for precompiled binary packages on ftp.NetBSD.org:
/pub/NetBSD/packages/
distfiles/
# Unpacked pkgsrc trees
pkgsrc-current -> /pub/NetBSD/NetBSD-current/pkgsrc
pkgsrc-2003Q4 -> N/A
pkgsrc-2004Q1/pkgsrc
# pkgsrc archives
pkgsrc-current.tar.gz -> ../NetBSD-current/tar_files/pkgsrc.tar.gz
pkgsrc-2003Q4.tar.gz -> N/A
pkgsrc-2004Q1.tar.gz -> N/A
# Per pkgsrc-release/OS-release/arch package archives
pkgsrc-2003Q4/
NetBSD-1.6.2/
i386/
All/
archivers/
foo -> ../All/foo
...
pkgsrc-2004Q1/
NetBSD-1.6.2/
i386/
All/
...
NetBSD-2.0/
i386/
All/
...
SunOS-5.9/
sparc/
All/
...
x86/
All/
...
# Per os-release package archive convenience links
NetBSD-1.6.2 -> 1.6.2
1.6.2/
i386 -> ../pkgsrc-2004Q1/NetBSD-1.6.2/i386
m68k/
All/
archivers/
foo -> ../All/foo
...
amiga -> m68k
atari -> m68k
...
2.0 -> NetBSD-2.0 # backward compat, historic
NetBSD-2.0/
i386 -> ../pkgsrc-2004Q1/NetBSD-2.0/i386
SunOS-5.9/
sparc -> ../pkgsrc-2004Q1/SunOS-5.9/sparc
x86 -> ../pkgsrc-2004Q1/SunOS-5.9/x86
To create:
1. Run bulk build, see Section 5.3, "Doing a bulk build of all packages"
2. Upload /usr/pkgsrc/packages to
ftp://ftp.NetBSD.org/pub/NetBSD/packages/\
pkgsrc-2004Q3/\ # pkgsrc-branch
`uname -s`-`uname -r`/ # OS & version
`uname -p` # architecture
3. If necessary, create a symlink ln -s `uname -m` `uname -p` (amiga -> m68k,
...)
Appendix D. Editing guidelines for the pkgsrc guide
Table of Contents
D.1. Targets
D.2. Procedure
This section contains information on editing the pkgsrc guide itself.
D.1. Targets
The pkgsrc guide's source code is stored in pkgsrc/doc/guide/files, and several
files are created from it:
* pkgsrc/doc/pkgsrc.txt, which replaces pkgsrc/Packages.txt
* pkgsrc/doc/pkgsrc.html
* http://www.NetBSD.org/Documentation/pkgsrc/: the documentation on the
NetBSD website will be built from pkgsrc and kept up to date on the web
server itself. This means you must make sure that your changes haven't
broken the build!
* http://www.NetBSD.org/Documentation/pkgsrc/pkgsrc.pdf: PDF version of the
pkgsrc guide.
* http://www.NetBSD.org/Documentation/pkgsrc/pkgsrc.ps: PostScript version of
the pkgsrc guide.
D.2. Procedure
The procedure to edit the pkgsrc guide is:
* Make sure you have the packages needed to re-generate the pkgsrc guide (and
other XML-based NetBSD documentation) installed. These are "pkgsrc-doc" for
creating the ASCII- and HTML-version, and "pkgsrc-doc-print"for the
PostScript- and PDF version. You will need both packages installed, to make
sure documentation is consistent across all formats. The packages can be
found in pkgsrc/meta-pkgs/netbsd-doc and pkgsrc/meta-pkgs/netbsd-doc-print.
* Edit the XML file(s) in pkgsrc/doc/guide/files.
* Run make extract && make do-lint in pkgsrc/doc/guide to check the XML
syntax, and fix it if needed.
* Run make in pkgsrc/doc/guide to build the HTML and ASCII version.
* If all is well, run make install-doc to put the generated files into pkgsrc
/doc.
* cvs commit pkgsrc/doc/guide/files
* cvs commit -m re-generate pkgsrc/doc/pkgsrc.{html,txt}
* Until the webserver on www.NetBSD.org is really updated automatically to
pick up changes to the pkgsrc guide automatically, also run make
install-htdoc HTDOCSDIR=../../../htdocs (or similar, adjust HTDOCSDIR!).
* cvs commit htdocs/Documentation/pkgsrc