16af52c1ec
analysis. It can handle the classification of, for example, titles, questions, sentences, and short messages. Main features of LibShortText include * It is more efficient than general text-mining packages. On a typical computer, processing and training 10 million short texts takes only around half an hour. * The fast training and testing is built upon the linear classifier * LIBLINEAR * Default options often work well without tedious tuning. * An interactive tool for error analysis is included. Based on the property that each short text contains few words, LibShortText provides details in predicting each text.
35 lines
1.7 KiB
Text
35 lines
1.7 KiB
Text
@comment $NetBSD: PLIST,v 1.1.1.1 2014/10/29 17:06:40 cheusov Exp $
|
|
bin/text-predict.py
|
|
bin/text-train.py
|
|
bin/text2svm.py
|
|
share/doc/libshorttext/README
|
|
share/examples/libshorttext/demo/demo.py
|
|
share/examples/libshorttext/demo/demo.sh
|
|
share/examples/libshorttext/demo/test_feats1
|
|
share/examples/libshorttext/demo/test_feats2
|
|
share/examples/libshorttext/demo/test_file
|
|
share/examples/libshorttext/demo/train_feats1
|
|
share/examples/libshorttext/demo/train_feats2
|
|
share/examples/libshorttext/demo/train_file
|
|
${PYSITELIB}/libshorttext/analyzer/analyzer_impl.py
|
|
${PYSITELIB}/libshorttext/__init__.py
|
|
${PYSITELIB}/libshorttext/analyzer/__init__.py
|
|
${PYSITELIB}/libshorttext/analyzer/selector.py
|
|
${PYSITELIB}/libshorttext/classifier/__init__.py
|
|
${PYSITELIB}/libshorttext/classifier/classifier_impl.py
|
|
${PYSITELIB}/libshorttext/classifier/grid.py
|
|
${PYSITELIB}/libshorttext/classifier/learner/__init__.py
|
|
${PYSITELIB}/libshorttext/classifier/learner/learner_impl.py
|
|
${PYSITELIB}/libshorttext/classifier/learner/liblinear/liblinear.so.1
|
|
${PYSITELIB}/libshorttext/classifier/learner/liblinear/predict
|
|
${PYSITELIB}/libshorttext/classifier/learner/liblinear/python/liblinear.py
|
|
${PYSITELIB}/libshorttext/classifier/learner/liblinear/python/liblinearutil.py
|
|
${PYSITELIB}/libshorttext/classifier/learner/liblinear/train
|
|
${PYSITELIB}/libshorttext/classifier/learner/util.so.1
|
|
${PYSITELIB}/libshorttext/converter/__init__.py
|
|
${PYSITELIB}/libshorttext/converter/converter_impl.py
|
|
${PYSITELIB}/libshorttext/converter/stemmer/__init__.py
|
|
${PYSITELIB}/libshorttext/converter/stemmer/porter.py
|
|
${PYSITELIB}/libshorttext/converter/stemmer/porter.so.1
|
|
${PYSITELIB}/libshorttext/converter/stop-words/stoplist-nsp.regex
|
|
${PYSITELIB}/libshorttext/converter/stop-words/stoplist-nsp.regex.pickle
|