todo
251
results/df_imputed.csv
Normal file
|
@ -0,0 +1,251 @@
|
|||
;numVol;E;EG.1;E.S;Total.E;HE;HE.GG;Total.HE;N;N.G;N.GG;N.S;Total.N;Weight;BMI;Fat;CVRI;Bpmin;Bpmax;Frec;Sex;Sweetener;Time
|
||||
0;41.161407470703125;0.0770298872853528;0.0511215755521484;0.139525669026829;0.051593231932311;0.646288209606987;0.752717391304348;0.0804034864361963;0.209757890158495;0.0279574737800461;0.0881526634127197;0.0417696893463814;0.0378905074464284;75.2;28.0;44.7;8.0;86.0;137.0;70.0;WOMAN;ST;Initial
|
||||
1;84.20506286621094;0.0934142922454336;0.0521016614624402;0.173318468089232;0.0526471099045635;0.419213973799127;0.690217391304348;0.0052122438764295;0.0344649842384607;0.0327607444104397;0.0386753165177882;0.0406224519491085;0.0344223936221695;75.0;27.9;41.0;7.0;85.0;120.0;98.0;WOMAN;ST;Final
|
||||
2;2.0;0.06213586404919624;0.0002361464187937;0.230840507038543;0.0008809676684602;0.631004366812227;0.78804347826087;0.0074320721661824;0.0097395506751462;0.0325565031999228;0.0144615338813324;0.103101528512967;0.0375174716488686;69.8;27.3;35.4;6.0;77.0;99.0;81.0;WOMAN;ST;Final
|
||||
3;2.0;0.08247137814760208;0.0059260585716736;0.196210627235022;0.0064987265907535;0.602620087336245;0.741847826086957;0.005778082460092;0.153984100002925;0.029646910920439;0.0625427616255885;0.06991452723741531;0.032832016651591;70.2;27.4;38.6;8.0;81.0;107.0;69.0;WOMAN;ST;Initial
|
||||
4;3.0;0.123573163069946;0.101476741689882;0.0961788594286703;0.10185821400317;0.423580786026201;0.508152173913043;0.005114310275411;0.0308875160141178;0.0184728261989279;0.0637039716242932;0.0411489143597457;0.0213996508104134;80.4;26.9;39.2;11.0;75.0;107.0;64.0;WOMAN;ST;Initial
|
||||
5;3.0;0.0643571921667506;0.295116918966625;0.0467452958727414;0.295302837525148;0.519650655021834;0.665760869565217;0.269045365020294;0.0157333554021093;0.161698749010704;0.0726726173070903;0.197729595818917;0.17030239299323;76.2;25.8;36.8;7.0;78.0;104.0;65.0;WOMAN;ST;Final
|
||||
6;4.0;0.0409124620896298;0.0054168198974341;0.02805653839541;0.0056678269878972;0.665938864628821;0.828804347826087;0.009249284540637;0.009816408081312;0.0333495925121943;0.0049943943774985;0.0280342855098961;0.0321001466043735;77.8;30.0;41.2;8.0;73.0;143.0;90.0;WOMAN;ST;Initial
|
||||
7;4.0;0.0660299663073989;0.0224243835630442;0.0513678980041759;0.0227249897357799;0.593886462882096;0.744565217391304;0.0102395020620464;0.0294159783678454;0.0149170167510831;0.0027514740025136;0.0300828610611238;0.0153093475578408;80.3;29.5;41.2;8.0;80.0;125.0;81.88275146484375;WOMAN;ST;Final
|
||||
8;5.0;0.0615207023416866;0.0559365403764433;0.0745642901243317;0.0562695192301997;0.567685589519651;0.720108695652174;0.0015995821499689;0.0091093096517981;0.0136730123576091;0.0809331922177788;0.131297517145463;0.0235894686880448;70.4;24.9;34.0;6.0;61.0;100.0;74.0;WOMAN;ST;Initial
|
||||
9;5.0;0.0687109157090351;0.0202676168767328;0.207561234791417;0.0208855950149671;0.53056768558952;0.71195652173913;0.0813937039576056;0.0211505275872907;0.004773794207721949;0.108316874876379;0.118405962316509;0.0091248615687467;70.3;24.9;31.1;5.0;62.0;121.0;69.0;WOMAN;ST;Final
|
||||
10;7.0;0.0503269973995748;0.0055163999579798;0.0514403206332722;0.0058180000092914;0.672489082969432;0.839673913043478;0.003786765906049;0.0109826498323792;0.0203738650964801;0.0078591959961714;0.0387264780310392;0.02066556544044;78.5;26.2;37.8;7.0;76.0;114.0;81.0;WOMAN;ST;Final
|
||||
11;7.0;0.08449064195156097;0.0093096056939571;0.0520021771871834;0.0095896094056818;0.622270742358079;0.779891304347826;0.0010228620550822;0.04468077793717384;0.0025818857830017805;0.0113737696334729;0.0376758095800048;0.0010822901984869;79.6;26.6;40.9;8.0;74.0;103.0;83.0;WOMAN;ST;Initial
|
||||
12;8.0;0.174493467380456;0.0295338820828877;0.12163986265659332;0.0297355296378663;0.585152838427948;0.722826086956522;0.0057345564151949;0.0393176831899469;0.0116161876354355;0.0187989892009575;0.0095342679653646;0.0113725991129404;66.8;25.1;38.5;6.0;76.0;107.0;79.0;WOMAN;ST;Initial
|
||||
13;8.0;0.104352831610279;0.0498636461872412;0.308810179592839;0.0506876410150064;0.471615720524018;0.657608695652174;0.136247402039195;0.0197341411109814;0.252516380365692;0.0119220995246902;0.084750471699775;0.246607428963168;67.8;25.2;39.1;6.0;69.0;103.0;66.0;WOMAN;ST;Final
|
||||
14;9.0;0.0627770224753825;0.300447852968172;0.0586708337121902;0.300655250336806;0.606986899563319;0.798913043478261;0.0018498569081274;0.0428467324040808;0.00590408142046;0.0271376241173594;0.031207938326384;0.0079908653653957;64.7;28.0;44.7;9.0;76.0;107.0;74.0;WOMAN;ST;Initial
|
||||
15;9.0;0.0240983023821626;0.0500499264462373;0.144558378871401;0.0505131274431532;0.665938864628821;0.785326086956522;0.0531997083754992;0.121959579477711;0.106780826946768;0.03986893966794014;0.100948608019094;0.112080568703971;64.8;28.0;43.7;9.0;69.0;102.0;69.0;WOMAN;ST;Final
|
||||
16;10.0;0.0483320845415926;0.0440386979227211;0.0226260239948217;0.0442665658427145;0.652838427947598;0.801630434782609;0.0078890956376021;0.0390057033023659;0.0004641028449122;0.0233047370652797;0.008663498329103;0.0007640830265808;91.3;32.7;44.2;10.0;88.0;150.0;80.0;WOMAN;ST;Initial
|
||||
17;10.0;0.0985716100129017;0.0039487725974766;0.372306329724971;0.0049166153573445;0.740174672489083;0.834239130434783;0.135550985320841;0.0820925028937823;0.0920006327695812;0.0534018031929055;0.0264444373556325;0.09213022577547;89.9;32.3;43.1;10.0;91.0;158.0;72.0;WOMAN;ST;Final
|
||||
18;11.0;0.07298658788204193;0.0012106089186226;0.0066462653732205;0.0014052605031588;0.759825327510917;0.951086956521739;0.011980543857931;0.0105563671845351;0.0007929392326285;0.0058017081183109;0.014887132939935;0.0023426455445587635;82.4;30.3;45.4;9.0;65.0;100.0;78.62516784667969;WOMAN;ST;Final
|
||||
19;11.0;0.082348170091955;0.0564083800247462;0.0707620668175774;0.0567409854437924;0.414847161572052;0.52445652173913;0.0045049456468514;0.0575646517286082;0.0482716890694257;0.0840247964248829;0.144531813067455;0.0595951730157972;83.3;30.5;44.5;9.0;79.0;122.0;80.0;WOMAN;ST;Initial
|
||||
20;12.0;0.103069252782658;0.111815795700529;0.05052729696035385;0.111960151508486;0.54585152838428;0.690217391304348;0.0068879966049685;0.0405048944554568;0.0076973757883706;0.023826822638511658;0.0155804669770721;0.0076275986363705;71.8;24.8;35.3;7.0;72.0;112.0;79.0;WOMAN;ST;Initial
|
||||
21;12.0;0.0949836335692954;0.0289770055001812;0.0836126940068479;0.0293506557461308;0.648471615720524;0.777173913043478;0.188369840803491;0.039475075086278;0.0429014736388349;0.05583605542778969;0.0151295272757327;0.0412012707619581;71.9;24.9;34.7;6.0;74.0;102.0;70.0;WOMAN;ST;Final
|
||||
22;13.0;0.0672919301278201;0.0066124093821746;0.0319790359253135;0.0068803690172877;0.550218340611354;0.673913043478261;0.0036888323050305;0.040533024817705154;0.0052598405842053;0.0580320685982212;0.0964293060188399;0.0120826301013128;81.9;30.5;44.5;9.0;69.0;112.0;72.0;WOMAN;ST;Initial
|
||||
23;13.0;0.0762935895907884;0.0012942321331926;0.204263316521067;0.0019155619530548;0.550218340611354;0.752717391304348;0.0065941958019129;0.101307962370352;0.0113548568210471;0.0260220727188403;0.0718999060558425;0.0185480107164051;86.6;31.8;44.3;9.0;65.0;105.0;80.20156860351562;WOMAN;ST;Final
|
||||
24;14.0;0.289819524600241;0.0074900866813666;0.15270019270298;0.0080816448247916;0.074235807860262;0.122282608695652;0.0090534173385999;0.0997451443138512;0.0135783858812211;0.166678805109052;0.29245730224541;0.0420377545532415;73.2;26.9;39.1;8.0;93.0;134.0;80.0;WOMAN;ST;Initial
|
||||
25;14.0;0.0756097020295104;0.0067741759904805;0.477397173936586;0.0079450056823833;0.502183406113537;0.779891304347826;0.148728495413443;0.0735396089273115;0.0174244057537114;0.10152021011253;0.164907832588967;0.0328169320577558;73.9;27.1;36.9;8.0;80.0;120.0;81.0;WOMAN;ST;Final
|
||||
26;15.0;0.103728979940136;0.0091442292101092;0.0628559700385704;0.0094867048861477;0.556768558951965;0.6875;0.08343942806777;0.0411038531920104;0.01590193834365;0.0059324319727265;0.14209691341229;0.0255882271527287;79.3;31.0;43.6;8.0;89.0;131.0;80.0;WOMAN;ST;Final
|
||||
27;15.0;0.0658204196618326;0.0007023529851629;0.119262671905078;0.0011484050155958;0.611353711790393;0.747282608695652;0.0019042644642487;0.0100970169311419;0.009702070197681;0.0259270453609114;0.055454498527154;0.0122718750098858;76.7;30.0;44.1;7.0;98.0;144.0;80.0;WOMAN;ST;Initial
|
||||
28;17.0;0.0241307248929616;0.0157217435653094;0.102171377070374;0.0161125019045315;0.700873362445415;0.869565217391304;0.0093363366304312;0.0242641199255924;0.0133652998230481;0.00679202051833272;0.0154698983582413;0.012430770191548;66.4;24.4;36.1;5.0;70.0;111.0;79.0;WOMAN;ST;Final
|
||||
29;17.0;0.0099417349329342;0.0007633727189464;0.02612094875033;0.0010011188003439;0.685589519650655;0.872282608695652;0.0023612879356685;0.0134335807952005;0.0096172755757928;0.0228267607868394;0.0265468887981006;0.0099518569159398;69.0;25.3;29.0;9.0;68.0;129.0;83.0;WOMAN;ST;Initial
|
||||
30;18.0;0.104899434666372;0.0214727943131105;0.0983858074032553;0.0218827412080191;0.622270742358079;0.771739130434783;0.0123178707058836;0.0113323099839704;0.0168997041895403;0.02994721535312;0.0810954413554468;0.0213304161479755;71.4;22.8;36.1;4.0;71.0;106.0;70.0;WOMAN;ST;Initial
|
||||
31;18.0;0.0865556585131389;0.0219375495095898;0.1431054323911667;0.0221104906355437;0.661572052401747;0.807065217391304;0.258479417621519;0.0470978814019446;0.0088196063204574;0.0892145192500432;0.0621568481586588;0.0151691366816494;68.7;22.2;33.6;4.0;61.0;99.0;66.0;WOMAN;ST;Final
|
||||
32;19.0;0.0379846509455392;0.0211025916786854;0.0657518093991928;0.0214226817195304;0.646288209606987;0.883152173913043;0.0048205094723555;0.0115995856422935;0.007936798564432;0.0060447052467821;0.03657577888262;0.0085796752664203;62.6;23.3;29.2;6.0;82.0;118.0;76.0;WOMAN;ST;Initial
|
||||
33;19.0;0.0777592581629382;0.0820962030409268;0.212296880766612;0.0827032536957698;0.558951965065502;0.690217391304348;0.0367033373594925;0.0444169070198692;0.0634745586544423;0.0332568745080306;0.299994526928623;0.0843910453813864;61.9;23.0;29.2;6.0;76.0;114.0;70.0;WOMAN;ST;Final
|
||||
34;20.0;0.194146557990055;0.0006063309847377241;0.139580140113055;0.000316565378238;0.286026200873362;0.364130434782609;0.0020130795764915;0.0186143852526718;0.0835013398390099;0.019098841709243;0.298783333794119;0.102064839554292;59.6;24.8;39.9;8.0;66.0;136.0;60.0;WOMAN;ST;Initial
|
||||
35;20.0;0.310898256377249;0.0102344020048769;0.9310379028320312;0.0104925169523872;0.602620087336245;0.739130434782609;0.155812359220449;0.0855601081432608;0.272844194500416;0.113541325123415;0.175482297914005;0.278571356376836;57.9;24.1;34.4;7.0;71.0;118.0;71.0;WOMAN;ST;Final
|
||||
36;21.0;0.028515160105707;0.0135947227916441;0.0662532549635222;0.0139153044563666;0.620087336244541;0.766304347826087;0.0039064625295161;0.087968089672492;0.166344020452697;0.0986639685943334;0.0674480182111307;0.167942136699479;95.5;28.5;26.7;11.0;95.0;143.0;101.0;MAN;ST;Final
|
||||
37;21.0;0.0353854984895836;0.0277902413432693;0.120631447340117;0.0282177088755868;0.609170305676856;0.747282608695652;0.0030685861652466;0.0226502279993836;0.0470320802580862;0.0176797186150069;0.0643491307799753;0.0488798051005227;93.6;27.9;30.8;12.0;99.0;141.0;60.0;MAN;ST;Initial
|
||||
38;22.0;0.0402606214888327;0.012700011022388935;0.0102891956606041;0.012952867895364761;0.657205240174673;0.83695652173913;0.001991316554043;0.0234857320338833;0.0086598564327312;0.0218195734960707;0.0238715841680334;0.0091719126049243;87.6;27.6;23.0;11.0;94.0;136.0;59.0;MAN;ST;Initial
|
||||
39;22.0;0.0697543822679745;0.0038790081352075;0.0889482367985495;0.0042640061700191;0.617903930131004;0.747282608695652;0.010304791129392;0.0187433096134903;0.0047136064902703;0.0433327366864486;0.0556752718260354;0.0083481276125813;87.6;27.6;18.8;8.0;99.0;126.0;59.0;MAN;ST;Final
|
||||
40;23.0;0.0199260009393974;0.0096069260721538;0.0856849719875068;0.0099652113080868;0.670305676855895;0.826086956521739;0.0050381396968411;0.0115460543310163;0.0095240215833462;0.00495296623557806;0.027063027300823;0.009196982541244;80.1;25.9;24.9;9.0;80.0;130.0;61.0;MAN;ST;Initial
|
||||
41;23.0;0.186590589908702;0.0855377893238289;0.847779322195976;0.0874666107083224;0.194323144104803;0.345108695652174;0.0663010478895309;0.0213401514876402;0.183633960871499;0.0218109694106629;0.20797163600822;0.190808165949123;80.0;25.9;23.5;9.0;77.0;116.0;68.0;MAN;ST;Final
|
||||
42;24.0;0.0421676034126049;0.0010877322439567;0.038324229419231415;0.0012841670145614;0.663755458515284;0.817934782608696;0.0017301602846603;0.0222794218391934;0.0083589326081489;0.0036337295645095;0.0110206749638197;0.0073015675000973;78.2;25.7;27.8;10.0;91.0;143.0;81.0;MAN;ST;Initial
|
||||
43;24.0;0.106536009929133;0.0065797020779263;0.148263220442806;0.0070967325933574;0.676855895196507;0.907608695652174;0.115529004668168;0.0371649346374982;0.0932368895537296;0.0609654343767619;0.0349906961638434;0.0925283000600034;79.0;25.8;21.2;8.0;95.0;133.0;81.0;MAN;ST;Final
|
||||
44;25.0;0.0218298324132785;0.0014254061191675;0.112451972033152;0.0018415998319963;0.672489082969432;0.831521739130435;0.0149403149109348;0.0113122543686691;0.0159451542962659;0.00795394740998745;0.139100394387494;0.0241369175731083;72.5;25.0;17.2;7.0;75.0;117.0;53.0;MAN;ST;Final
|
||||
45;25.0;0.0618328055199638;0.0112322812860066;0.0538088584888881;0.0115406089847469;0.61353711790393;0.75;0.0025245106040326;0.0116679592017124;0.0069676845841248;0.0206488138897184;0.0694611540628231;0.010665565472023;74.2;25.7;20.9;10.0;77.0;124.0;61.0;MAN;ST;Initial
|
||||
46;26.0;0.0397872716086828;0.056538090323498;0.008722236529176;0.0567299923013056;0.705240174672489;0.880434782608696;0.0024483400254627;0.0450985503392903;0.0129285347179761;0.0125086756323261;0.0126182890183486;0.0129026692594054;85.6;26.7;26.3;10.0;81.0;142.0;73.0;MAN;ST;Initial
|
||||
47;26.0;0.0549706144916001;0.0398979556480912;0.109827366596432;0.040305986597041;0.764192139737991;0.888586956521739;0.174006245987443;0.0769205956684803;0.113141157687717;0.0280227655039259;0.0236288834179829;0.111186226349168;87.1;27.2;24.6;9.0;77.0;120.0;74.0;MAN;ST;Final
|
||||
48;27.0;0.0579665775864789;0.0741778991466407;0.0879766253235096;0.0745296918215806;0.620087336244541;0.771739130434783;0.0028727189632096;0.0141677977832623;0.0273969166500106;0.0023474239591069;0.0340317693674886;0.0269678592790463;105.3;31.1;25.0;14.0;80.0;128.0;57.0;MAN;ST;Initial
|
||||
49;27.0;0.0417687168149786;0.0497750187727791;0.596603997009802;0.0511580113995445;0.596069868995633;0.752717391304348;0.0297718147096269;0.0109620456555448;0.0265467369144264;0.013658196712305;0.114759003137018;0.0327125504301127;101.6;29.7;21.4;10.0;77.0;111.0;55.0;MAN;ST;Final
|
||||
50;28.0;0.0120381402643926;0.0003363372193979;0.0024243959714784;0.0005271237614375;0.685589519650655;0.866847826086957;0.0020457241101644;0.0895089454370568;0.0199865979729016;0.0330852039996661;0.0180689513732146;0.0223292828654985;79.1;25.8;25.4;9.0;66.0;112.0;51.0;MAN;ST;Initial
|
||||
51;28.0;0.0221815561501189;0.0077847882902291;0.0416602224099979;0.0080556351965035;0.705240174672489;0.869565217391304;0.0360069206411386;0.0400074301071161;0.0376318042074121;0.0044108610296818;0.0127239145840875;0.0360974895403457;77.7;25.4;23.2;8.0;71.0;109.0;47.0;MAN;ST;Final
|
||||
52;29.0;0.0404981466331001;0.0122387328454535;0.193340948330285;0.0128209178631972;0.589519650655022;0.741847826086957;0.0050381396968411;0.0087994078449807;0.0328367541504408;0.002056611342976;0.0557710279073856;0.0336683457431653;87.9;26.2;16.6;7.0;82.0;123.0;51.0;MAN;ST;Final
|
||||
53;29.0;0.08619965612888336;0.0002381528342809;0.0412148466367366;0.0004998458976586;0.552401746724891;0.736413043478261;0.0014363594816048;0.033299341797828674;0.0023227719534166;0.0441872881787738;0.0076446808648219;0.0018915043674954;94.7;28.9;25.5;12.0;86.0;140.0;60.0;MAN;ST;Initial
|
||||
54;30.0;0.065986840612533;0.0319057950997071;0.106786847232821;0.0323147144755002;0.497816593886463;0.66304347826087;0.117901174115061;0.0562652898110519;0.117535039382003;0.03316639108796;0.0023812580778497;0.113093819578092;85.4;26.6;29.0;12.0;86.0;134.0;60.0;MAN;ST;Final
|
||||
55;30.0;0.087434783577919;0.0063438356664147;0.07174292206764221;0.0064884635345264;0.646288209606987;0.8125;0.0040914482203288;0.0473205122545238;0.0104610705392388;0.0083665370720591;0.0316002513853846;0.0119999695226482;86.5;33.4;39.0;19.0;96.0;134.0;59.0;MAN;ST;Initial
|
||||
56;32.0;0.0507846680539426;0.0688734391169728;0.538319292294922;0.0701345772270452;0.558951965065502;0.682065217391304;0.0057998454825406;0.0382999985839884;0.0145673513890989;0.0377600798148024;0.0861201024420721;0.0207281389925678;99.9;30.8;28.8;15.0;107.0;154.0;61.0;MAN;ST;Initial
|
||||
57;32.0;0.164926469073301;0.0010671456495164;0.191717397646975;0.0016950886953967;0.414847161572052;0.478260869565217;0.0051578363203081;0.039553966373205185;0.0515449616724398;0.0262003874785116;0.271762143608473;0.0691881205640523;100.5;31.0;26.1;13.0;101.0;146.0;80.0;MAN;ST;Final
|
||||
58;33.0;0.0298646897419735;0.038223433701549;0.257989144482181;0.0389224313236512;0.657205240174673;0.826086956521739;0.0042329078662444;0.0150472307913571;0.0200457675448645;0.0071080264722077;0.0268238989494205;0.0195456240892966;89.8;29.7;28.3;14.0;76.0;118.0;72.0;MAN;ST;Initial
|
||||
59;33.0;0.0416110900008945;0.0079367458916777;0.262525262437751;0.0086607664289323;0.62882096069869;0.809782608695652;0.0031774012774894;0.0309527493337577;0.0200428377030688;0.0125828554288471;0.0387357471229076;0.0212312790346778;89.2;29.5;28.5;14.0;97.0;130.0;80.0;MAN;ST;Final
|
||||
60;34.0;0.0793363817239481;0.0023703184175882;0.0395252644300979;0.0026594856713754;0.565502183406114;0.684782608695652;0.0026659702499483;0.0272179027238625;0.0206697984579807;0.0421450788470592;0.0540245363519378;0.0237504880473042;92.3;31.9;28.5;15.0;85.0;133.0;55.0;MAN;ST;Initial
|
||||
61;34.0;0.0169402402948279;0.0008780346482165;0.0979199938318588;0.001263319217568;0.694323144104804;0.888586956521739;0.0026442072274997;0.013616176357661;0.014950380469765;0.0081073685384796;0.0386005578605948;0.0155773488879811;92.3;31.9;28.3;15.0;88.0;118.0;60.0;MAN;ST;Final
|
||||
62;35.0;0.030882003394036;0.0558340505204851;0.0995000359764293;0.0562064315899608;0.683406113537118;0.858695652173913;0.027551986419874;0.0434477218568093;0.109119071089209;0.012898730114102364;0.0293481887974597;0.105757375536413;94.3;29.1;26.0;12.0;75.0;111.0;60.0;MAN;ST;Final
|
||||
63;35.0;0.0851970948053306;0.0045312735338061;0.0700577342823357;0.0048834074039447;0.650655021834061;0.769021739130435;0.005386348056018;0.219033659335165;0.0483004110938259;0.0318801021801339;0.0681056727754911;0.058120110137969;98.3;30.3;30.2;13.0;82.0;112.0;56.0;MAN;ST;Initial
|
||||
64;36.0;0.266494240388194;0.0024102216526547;0.0694219473776887;0.0028270840441796;0.777292576419214;0.989130434782609;0.0665295596252408;0.0834496772801979;0.0211275974309128;0.0061713581441644;0.0344645739292154;0.0237033924828258;86.4;26.7;28.7;11.0;81.0;114.0;80.0;MAN;ST;Initial
|
||||
65;36.0;0.0343310992436051;0.0057698070135756;0.164433217513388;0.0062938527054145;0.657205240174673;0.847826086956522;0.0478895308980511;0.030474329171176;0.0525300637086076;0.0467664264063222;0.033633120357990265;0.049641775451218;85.8;26.5;26.9;11.0;81.0;120.0;81.0;MAN;ST;Final
|
||||
66;37.0;0.0244680003745071;0.0323364595024875;0.344564297978596;0.0332106976355996;0.685589519650655;0.858695652173913;0.0021763022448557;0.0097335582604239;0.0111277390727372;0.0047081261606062;0.0303031157324677;0.011027897234085;91.6;30.3;40.5;8.0;83.0;117.0;69.0;MAN;ST;Initial
|
||||
67;37.0;0.0206596176219684;0.000688970656945;0.0836668234418652;0.0010468677238198;0.665938864628821;0.847826086956522;0.0025136290928084;0.0357724963668061;0.0099228939919132;0.0256822189250524;0.0204834745777279;0.0106826299674312;88.0;29.1;24.9;9.0;85.0;146.0;88.0;MAN;ST;Final
|
||||
68;38.0;0.111784868086647;0.027290716957773;0.0624185060903162;0.0276282354234283;0.456331877729258;0.584239130434783;0.0031556382550408;0.020364736642818;0.0144229487009754;0.0379941167820468;0.0791620251475197;0.0193810548763443;83.7;25.8;25.6;9.0;71.0;118.0;70.0;MAN;ST;Initial
|
||||
69;38.0;0.0315295460300811;0.0300713181836045;0.1465342938899994;0.030221346406333;0.611353711790393;0.771739130434783;0.0159414139435685;0.0095724014685713;0.0353773335632839;0.0032806258482978;0.0316104243855348;0.0342607180929034;83.3;26.3;26.2;9.0;80.0;132.0;79.0;MAN;ST;Final
|
||||
70;39.0;0.0929130264583023;0.003228355459058;0.0669242895034921;0.003577433683818;0.624454148471616;0.842391304347826;0.0055713337468307;0.032236606052656;0.035976237340222;0.0134853162228474;0.113165926079617;0.0423879208690004;88.5;26.1;25.1;10.0;89.0;125.0;61.0;MAN;ST;Final
|
||||
71;39.0;0.0376975427273246;0.0034251726597775;0.0404741542429429;0.0037008776788431;0.626637554585153;0.785326086956522;0.0034712020805449;0.0081531937161793;0.0135853565137919;0.0154117608172598;0.0302662176060178;0.0136252486323726;87.6;26.2;27.1;10.0;85.0;122.0;63.0;MAN;ST;Initial
|
||||
72;40.0;0.102888926038234;0.0590990134535776;0.0214686025389167;0.0593383776931313;0.462882096069869;0.554347826086957;0.0034603205693206;0.0087735459425891;0.0224386312158125;0.086037229166155;0.0098637245116295;0.0225524847963741;80.2;26.2;20.6;9.0;74.0;136.0;80.0;MAN;ST;Initial
|
||||
73;40.0;0.032296284164321;0.0191823857044013;0.167386630673118;0.0197065148104174;0.650655021834061;0.820652173913043;0.0049837321407197;0.0930908665647227;0.0500787086564919;0.0033602193945899;0.0461634151169999;0.0525724397733532;80.4;26.3;15.5;8.0;66.0;106.0;74.0;MAN;ST;Final
|
||||
74;41.0;0.0623554776752288;0.0219055417375335;0.12916069921304;0.0223622015227017;0.537117903930131;0.679347826086957;0.0019369089979216;0.0448228594641941;0.0062595290588285;0.0141814006396636;0.357395646008091;0.0336825349889542;94.8;28.3;28.1;13.0;81.0;121.0;79.0;MAN;ST;Initial
|
||||
75;41.0;0.0384837260224814;0.0021320250448643;0.336107273770764;0.0030058187112852;0.554585152838428;0.709239130434783;0.0159522954547928;0.0122957164280777;0.0451741350365447;0.0112060168599068;0.972681954915516;0.117968268404946;94.4;28.2;26.5;13.0;80.0;138.0;74.0;MAN;ST;Final
|
||||
76;42.0;0.0984156731752492;0.0154578350638266;0.102490167357121;0.0158760533350346;0.574235807860262;0.692934782608696;0.004178500310123;0.0472651542722852;0.0537205148530197;0.0116744562516162;0.0407171187644665;0.0541574965639497;103.7;30.0;27.0;14.0;96.0;149.0;70.0;MAN;ST;Initial
|
||||
77;42.0;0.03471268340945244;0.0818426648518961;0.0087431849473245;0.0820074050222488;0.679039301310044;0.845108695652174;0.003046823142798;0.04351440444588661;0.0412187109530117;0.0065683417951656;0.0185161053534221;0.0388323614216472;103.4;29.9;24.7;12.0;112.0;145.0;69.0;MAN;ST;Final
|
||||
78;43.0;0.0452315828428794;0.0838593433196807;0.13366737389024;0.0842951528210224;0.532751091703057;0.671195652173913;0.0068553520712956;0.0233520433556844;0.0506626188659772;0.0429925765800138;0.0664392588436791;0.0532739881108947;94.2;32.6;31.8;16.0;108.0;162.0;72.0;MAN;ST;Final
|
||||
79;43.0;0.117861293097985;0.0288365298936495;0.0417997015160499;0.0291339807235139;0.587336244541485;0.78804347826087;0.0051687178315324;0.0183653783536386;0.0384185325446488;0.006702293818411;0.0992452451481739;0.0429137067899072;95.9;33.2;33.9;18.0;107.0;150.0;79.0;MAN;ST;Initial
|
||||
80;44.0;0.0957314377083294;0.0079431349433579;0.0634544092670395;0.0082844050055712;0.521834061135371;0.630434782608696;0.0028618374519853;0.0158972426523315;0.0074089109532018;0.0156895887168169;0.107678089885387;0.014106875532489;92.3;29.8;29.7;15.0;94.0;143.0;55.0;MAN;ST;Initial
|
||||
81;44.0;0.0356428234811793;0.0098717206447441;0.0675170469238123;0.0101988490666798;0.665938864628821;0.831521739130435;0.0079543847049478;0.0109315901225145;0.0613441362472031;0.0226450511901601;0.205954847855056;0.0734029905781956;91.1;29.7;29.1;15.0;60.0;136.0;70.0;MAN;ST;Final
|
||||
82;51.0;0.0726663472750304;0.0017377584775122;0.0596397899631605;0.0020654102286413;0.681222707423581;0.8125;0.0035691356815634;0.10079997724174;0.0015561979612237;0.0050422839276982;0.0335752975392264;0.0055414998742925;66.4;28.7;36.8;8.0;83.0;121.0;80.0;WOMAN;SU;Initial
|
||||
83;51.0;0.0426631837851977;0.023067383291035;0.219223667777577;0.0236984819165888;0.7882096069869;0.888586956521739;0.278664620942557;0.101152055378645;0.162569790544836;0.0104769974621116;0.0889933615851929;0.163964898237139;65.8;28.5;41.0;8.0;80.0;120.0;80.0;WOMAN;SU;Final
|
||||
84;52.0;0.272669466429062;0.0011727822875755;0.0348435362147153;0.0015224771128791;0.7242938876152039;0.8713510036468506;0.2217937856912613;0.13884854316711426;0.0171113965449101;0.0939470125135971;0.0374643402358509;0.0195336810743677;75.4;27.0;41.8;7.0;72.0;108.0;79.0;WOMAN;SU;Initial
|
||||
85;52.0;0.0851435371571832;0.0371320353809345;0.0739260986636218;0.0374794432118824;0.34061135371179;0.472826086956522;0.0401310133951403;0.0277509836885827;0.0935902538196619;0.0410583176735918;0.0543344012100275;0.0934594694780702;77.0;27.6;38.7;7.0;78.0;108.0;73.0;WOMAN;SU;Final
|
||||
86;53.0;0.0412345799430572;0.0900320520416094;0.0993878629718923;0.0903947933450038;0.703056768558952;0.763586956521739;0.235889400319916;0.108729268110778;0.155050728812431;0.0160090501119502;0.0277998006063585;0.152408395453107;71.8;28.0;37.8;7.0;70.0;109.0;79.0;WOMAN;SU;Final
|
||||
87;53.0;0.0634157396789514;0.0178352672816676;0.0197947715670905;0.0180729044584506;0.72707423580786;0.790760869565217;0.0328948084309949;0.0945344622977286;0.0016161087583244;0.0497264223147481;0.008313157432305;0.0046734377685143;69.9;27.0;34.4;6.0;59.0;78.0;76.0;WOMAN;SU;Initial
|
||||
88;54.0;0.0400833721706261;0.0400170182842302;0.315386809393836;0.0408349703679197;0.62882096069869;0.760869565217391;0.0076714654131165;0.0156280433563069;0.0740450452006787;0.0220877056402448;0.606269297800941;0.117184885188487;71.2;28.2;37.0;8.0;82.0;114.0;67.0;WOMAN;SU;Final
|
||||
89;54.0;0.049945354820723;0.0080291395239912;0.107621393441872;0.0084431476652782;0.62882096069869;0.698369565217391;0.0482921468133494;0.0590796505270835;0.0424921057350495;0.0820327516002845;0.0483238637053084;0.0465033895609543;68.9;25.6;24.8;6.0;75.0;101.0;69.0;WOMAN;SU;Initial
|
||||
90;55.0;0.0681188502005413;0.0014064030826439;0.299022241959759;0.0022162047925704;0.524017467248908;0.733695652173913;0.0396848714349449;0.0289504159403363;0.127591825074721;0.0531924769691272;0.08500462025403976;0.20072804291714;74.2;25.6;37.8;6.0;79.0;113.0;60.0;WOMAN;SU;Final
|
||||
91;55.0;0.0415769775136639;0.128987320501353;0.0524746325323538;0.129240436085207;0.591703056768559;0.758152173913043;0.0199675730965516;0.0232771181616965;0.005191650517714;0.0101183621244211;0.656522508807204;0.0552664144321781;73.6;25.5;37.4;6.0;76.0;110.0;72.0;WOMAN;SU;Initial
|
||||
92;56.0;0.15220917735442;0.0220433233834553;0.0483039291127514;0.0223688772562787;0.59825327510917;0.739130434782609;0.0182809388567884;0.0419050992376516;0.0951333511997158;0.0276782415517836;0.0801027475076495;0.0971008192457126;82.0;30.1;39.8;8.0;85.0;125.0;68.46609497070312;WOMAN;SU;Final
|
||||
93;56.0;0.0407585699148205;0.0492353899203213;0.0053765297959747;0.0494236864979533;0.683406113537118;0.847826086956522;0.0070076932284355;0.0260545575744591;0.0084117233106145;0.0049717056446353;0.0280608090048332;0.0088716962813634;81.0;29.4;39.5;7.0;68.0;103.0;79.0;WOMAN;SU;Initial
|
||||
94;57.0;0.153902137324668;0.012700011022388935;0.0727982541756912;0.012980551458895206;0.526200873362445;0.676630434782609;0.0186617917496382;0.0097919884502896;0.0904085686523824;0.0255445105183268;0.0931809793461937;0.0923545155200598;80.3;30.2;43.2;8.0;92.0;125.0;59.0;WOMAN;SU;Final
|
||||
95;57.0;0.0291644135820902;0.0135821556892273;0.0096287764465121;0.0137885692601388;0.635371179039301;0.790760869565217;0.0016648712173146;0.0127112366388883;0.0055902378273903;0.02177143655717373;0.0274977899148814;0.005514763466479;79.0;29.4;35.0;7.0;90.0;124.0;79.0;WOMAN;SU;Initial
|
||||
96;58.0;0.14056402963405;0.0064775773209295;0.0714764539250823;0.0068517411603919;0.569868995633188;0.744565217391304;0.0371821238533608;0.0114634625813762;0.0779927620540136;0.02713241754936;0.0194801985243383;0.0747996489054554;73.8;29.2;40.4;7.0;79.0;109.0;81.0;WOMAN;SU;Final
|
||||
97;58.0;0.0537258216662802;0.11350749957604;0.0607786527025796;0.113787708052924;0.624454148471616;0.769021739130435;0.0023721694468927;0.0103072342816897;0.0066018791099852;0.0080556855405739;0.0189187649415238;0.005925208983905;72.8;28.1;38.8;6.0;67.0;94.0;66.0;WOMAN;SU;Initial
|
||||
98;60.0;0.0194137190096008;0.004404067624328;0.0029204698132672;0.0045969463818871;0.713973799126637;0.866847826086957;0.0458220437654381;0.134499830207532;0.0667875239596586;0.013088042165838;0.0242431417460158;0.0686441308014138;89.1;32.7;42.6;9.0;81.0;120.0;79.0;WOMAN;SU;Final
|
||||
99;60.0;0.0559796138768972;0.0167254209438558;0.0736036170583782;0.0170695278263285;0.661572052401747;0.823369565217391;0.0035038466142177;0.06847745180130005;0.0101120809563613;0.0213179482642659;0.0568495834234997;0.0125434295939925;86.4;31.7;41.1;9.0;81.0;121.0;101.0;WOMAN;SU;Initial
|
||||
100;61.0;0.137496399020127;0.0071832882542689;0.067866723222568;0.0075487845877067;0.646288209606987;0.869565217391304;0.0309687809442975;0.061471741646528244;0.0229009291004065;0.0159293125930017;0.0431736766673472;0.0235350637772212;68.6;29.3;40.8;8.0;72.0;107.0;69.0;WOMAN;SU;Final
|
||||
101;61.0;0.0267300651240763;0.000870036916064;0.0234281671862244;0.0011083388605137;0.694323144104804;0.959239130434783;0.0022198282897528;0.0084482534969032;0.0109590594752324;0.010783849242939;0.0187885579590919;0.0100892604652037;68.3;29.2;30.4;4.0;81.0;110.0;86.0;WOMAN;SU;Initial
|
||||
102;62.0;0.051137727080803;0.0599992369215535;0.102423710626581;0.0603832095421405;0.587336244541485;0.739130434782609;0.0084875787549374;0.106159714047145;0.0498932287970655;0.0146266166025632;0.0580238019372917;0.0541416725507152;71.5;26.2;31.6;4.0;80.0;120.0;80.0;WOMAN;SU;Final
|
||||
103;62.0;0.028659991919994354;0.0320902421027005;0.104665787401285;0.0324678990422223;0.668122270742358;0.858695652173913;0.0059195421060076;0.0104712654533055;0.0512702386650993;0.0042394736550915;0.153612105793338;0.0591073062954365;71.6;26.3;34.8;6.0;75.0;108.0;73.0;WOMAN;SU;Initial
|
||||
104;63.0;0.0288120117682865;0.0053148214550252;0.0443540827749318;0.0055944443619513;0.661572052401747;0.834239130434783;0.0087487350243201;0.0189473580380789;0.0128040466877006;0.0087361483858996;0.0380884446336443;0.0137026068283668;81.3;25.7;27.2;10.0;80.0;121.0;79.0;MAN;SU;Final
|
||||
105;63.0;0.021128137507749;0.0122489952254922;0.0619117482210477;0.012558665520708;0.609170305676856;0.741847826086957;0.0035364911478906;0.010090804107962;0.0156510385950886;0.0072955573054361;0.0949006395917842;0.0205199225318241;80.3;25.3;26.7;10.0;79.0;122.0;70.0;MAN;SU;Initial
|
||||
106;64.0;0.0667516696993224;0.0193241614726123;0.0221065451884201;0.0195670972105108;0.587336244541485;0.777173913043478;0.0151144190905233;0.0123158686343451;0.101280503598765;0.0278063223336323;0.0265663773631363;0.0976663265630592;85.2;27.8;42.4;7.0;86.0;130.0;69.0;WOMAN;SU;Final
|
||||
107;64.0;0.0827930720355062;0.0823785876582882;0.0641428680186655;0.082688003701965;0.563318777292577;0.703804347826087;0.0123396337283322;0.019742569667727;0.0407799208290387;0.0427380568714376;0.0052571432298171;0.0388745178023315;85.5;27.9;41.8;7.0;91.0;136.0;61.0;WOMAN;SU;Initial
|
||||
108;65.0;0.14448075865337;0.0490296442219118;0.27782967317287;0.0498057959742587;0.482532751091703;0.853260869565217;0.446163723217881;0.0201899001617859;0.16638741325803;0.204191648302679;0.109824975849874;0.17184814783723;77.9;26.6;35.8;8.0;82.0;125.0;68.0;WOMAN;SU;Final
|
||||
109;65.0;0.0470023443207012;0.0086673885632198;0.166500721661122;0.0091990553641375;0.587336244541485;0.758152173913043;0.0029706525642281;0.0649469531486988;0.0300419591171867;0.016351714730262756;0.349851766696468;0.0561849111009653;77.5;26.5;38.1;8.0;80.0;112.0;59.0;WOMAN;SU;Initial
|
||||
110;66.0;0.0435312474816613;0.0012867538307049;0.18934124691116;0.0018661553202643;0.639737991266376;0.83695652173913;0.0196737722934961;0.0806059052384084;0.0936583752929351;0.0298252662509205;0.100580402627286;0.0988065395743166;87.8;27.1;43.2;6.0;86.0;119.0;81.0;WOMAN;SU;Initial
|
||||
111;66.0;0.222959070492099;0.0073726546469498;0.0877837613592598;0.0078090536446755;0.397379912663755;0.652173913043478;0.341189784437263;0.0234560240004909;0.31660980237495;0.188252573603398;0.13371496310604;0.316967057496848;87.5;27.0;42.9;7.0;80.0;120.0;80.0;WOMAN;SU;Final
|
||||
112;67.0;0.0768663246898515;0.000787241398501;0.0161500810332608;0.0010289002840467;0.609170305676856;0.771739130434783;0.0023068803795471;0.0258145284427685;0.044158439119283;0.0366849037934109;0.0367450530021848;0.0446310154989231;81.6;31.8;39.4;8.0;81.0;106.0;80.0;WOMAN;SU;Final
|
||||
113;67.0;0.0603854971855894;0.0547667709903407;0.026006638568937;0.0550016830172736;0.543668122270742;0.676630434782609;0.0026877332723968;0.0306055304996209;0.0694258251911444;0.0193823053264862;0.0812423056436392;0.0719579132477986;83.5;33.9;37.1;17.0;72.0;98.0;79.0;WOMAN;SU;Initial
|
||||
114;69.0;0.150854306558073;0.0244453960994998;0.124015940769534;0.0249225116821501;0.27292576419214;0.385869565217391;0.0316216716177543;0.0143441380942564;0.0770751757309248;0.0412873486195188;0.112355945190196;0.0817446896935589;90.2;30.8;29.6;16.0;80.0;160.0;82.25562286376953;MAN;SU;Final
|
||||
115;69.0;0.110029514603822;0.0302575747049006;0.187464632949224;0.030845970569369;0.451965065502183;0.527173913043478;0.0048857985397011;0.0171309829391912;0.0154875566526902;0.047800950706005096;0.0943711983336085;0.0203986426019157;90.3;30.9;34.4;17.0;80.0;160.0;120.0;MAN;SU;Initial
|
||||
116;70.0;0.0562242327493961;0.176809300814416;0.109272044121892;0.177164070360741;0.615720524017467;0.752717391304348;0.014635632596655;0.01377392653375864;0.0740434871965986;0.0214407925762708;0.0476428491873596;0.0729275476548806;79.2;28.1;41.5;9.0;65.0;100.0;71.95310974121094;WOMAN;SU;Final
|
||||
117;70.0;0.0657934739265064;0.02716069448481;0.046355447704934;0.0274492689440217;0.561135371179039;0.739130434782609;0.0038411734621704;0.0260647452995139;0.056324832601847;0.0077596828782561;0.0767580137751725;0.0585773834387841;78.6;27.8;41.2;9.0;82.0;118.0;81.0;WOMAN;SU;Initial
|
||||
118;71.0;0.0424301861086545;0.0600860460844911;0.113970936596924;0.0604901844419786;0.655021834061135;0.815217391304348;0.0240263767832077;0.0282734488364028;0.0108796802732645;0.0130953164211004;0.0192238457992087;0.0108536878891862;104.6;28.4;23.3;11.0;107.0;153.0;66.0;MAN;SU;Final
|
||||
119;71.0;0.0165734215215891;0.0374705670071446;0.0701463371515274;0.03761237447919;0.665938864628821;0.834239130434783;0.0026224442050512;0.0421206939464936;0.0799947246797825;0.0375787725418348;0.0115019662251096;0.0775312693802902;105.5;28.6;24.1;11.0;107.0;148.0;59.0;MAN;SU;Initial
|
||||
120;72.0;0.114357074807276;0.0403993463122024;0.0560277178357849;0.0407198423273439;0.641921397379913;0.717391304347826;0.0920902294910717;0.0296338894322481;0.0472714031156272;0.0086737460272302;0.0324118342661007;0.0465960980305802;86.5;28.9;17.6;8.0;93.0;116.0;91.0;MAN;SU;Final
|
||||
121;72.0;0.0305768687605509;0.0579001201426167;0.0815920332107405;0.0582354158080567;0.639737991266376;0.907608695652174;0.002927126519331;0.136607257407538;0.0181969192590504;0.0156435088982936;0.0615188512352957;0.0252862471506044;86.4;28.9;23.4;14.0;88.0;118.0;79.0;MAN;SU;Initial
|
||||
122;73.0;0.0326906119983632;0.0030372136890794;0.0449129443103646;0.0033202354467374;0.685589519650655;0.845108695652174;0.0041240927540016;0.174876146748601;0.171557659924219;0.0114789744938376;0.0456922158033556;0.171927275257926;89.7;26.8;14.4;7.0;80.0;120.0;79.0;MAN;SU;Final
|
||||
123;73.0;0.0427487362340596;0.140481316786502;0.126715923004228;0.140880438847319;0.639737991266376;0.785326086956522;0.0027856668734153;0.0150123463532899;0.01915304964107;0.0542322364860254;0.0307528613201541;0.0203658475562213;92.0;27.5;17.9;8.0;87.0;125.0;65.0;MAN;SU;Initial
|
||||
124;74.0;0.0644318536563866;0.0163092336820409;0.0549164471450883;0.016618783717649;0.685589519650655;0.855978260869565;0.0544075561213941;0.0120391250970642;0.0217994520873827;0.0067403528462088;0.0254798294920021;0.0209932647228735;70.0;28.0;40.7;9.0;70.0;120.0;76.51911926269531;WOMAN;SU;Final
|
||||
125;74.0;0.17228931188583374;0.0381762065997822;0.306648663801843;0.0393224175571556;0.471615720524018;0.263586956521739;0.10875216871500015;0.121433147592557;0.04711076617240906;0.09531024098396301;0.167796361518718;0.05741399526596069;68.9;27.3;39.5;9.0;67.0;121.0;59.0;WOMAN;SU;Initial
|
||||
126;75.0;0.0193132488675463;0.0100408149853364;0.0922206649178321;0.0104119181776943;0.670305676855895;0.951086956521739;0.0031882827887137;0.0148911146814885;0.0130637252689416;0.0083830270054096;0.0346368139664566;0.013517893758464;80.4;27.2;30.6;11.0;81.0;106.0;80.0;MAN;SU;Final
|
||||
127;75.0;0.0270713256117754;0.0445649721515778;0.177875670009354;0.0450986647837642;0.600436681222707;0.744565217391304;0.007301494031491;0.0118348793228693;0.0360591099929275;0.0050011384847069;0.0305287937077683;0.034961490263895;82.9;28.0;29.9;12.0;95.0;147.0;70.0;MAN;SU;Initial
|
||||
128;76.0;0.0889972989064966;0.0020120041074559;0.129540639495788;0.0024866540001645;0.925764192139738;0.869565217391304;0.318393018422398;0.166770504978578;0.0189177886599235;0.0604534435091691;0.0070151812816761;0.0241118402567943;73.0;25.6;25.9;9.0;88.0;133.0;59.0;MAN;SU;Final
|
||||
129;76.0;0.120914819711071;0.0161989236819501;0.139812141708729;0.0167003552966713;0.51528384279476;0.654891304347826;0.0034276760356478;0.0435380813819187;0.156772593203527;0.045393068095676;0.121468286243132;0.15984222581108;75.0;26.3;27.9;10.0;91.0;121.0;56.0;MAN;SU;Initial
|
||||
130;77.0;0.0352579678607167;0.0013211335075214;0.0907163783584451;0.0016982808405558;0.648471615720524;0.826086956521739;0.0076279393682194;0.0240438160868874;0.0100422175111441;0.009156596657809;0.0229250917294169;0.0100725156719149;80.9;26.7;21.2;10.0;89.0;119.0;66.0;MAN;SU;Final
|
||||
131;77.0;0.203577304555399;0.0120734933422082;0.301192183909375;0.0129322956323555;0.093886462882096;0.138586956521739;0.171732010141568;0.12588758554185;0.0874476636424297;0.322486646225242;0.12206821006615;0.104730466260325;83.6;27.0;18.2;7.0;76.0;138.0;80.0;MAN;SU;Initial
|
||||
132;78.0;0.0733464271733605;0.0083144533622726;0.135003412083621;0.0087920911830843;0.596069868995633;0.730978260869565;0.0089554837375814;0.031006799383787;0.0794711130589172;0.027818626689875;0.113730979432791;0.0843736512632108;83.9;28.3;26.9;13.0;79.0;108.0;66.0;MAN;SU;Final
|
||||
133;78.0;0.0653256425496424;0.0263719088973208;0.0193012248301678;0.0266059566479906;0.604803493449782;0.820652173913043;0.0030577046540223;0.014266953508611;0.0181108787868543;0.009926393954178;0.0499475329298249;0.0195674925853408;84.2;28.5;35.2;13.0;82.0;131.0;69.0;MAN;SU;Initial
|
||||
134;79.0;0.115434226143362;0.11803609650309;0.0808465781248221;0.118377303155073;0.646288209606987;0.817934782608696;0.023884917137292;0.0398514272076673;0.0190143390841448;0.0072886828912195;0.0623722602930272;0.0222855030961865;88.6;27.7;26.4;11.0;84.0;137.0;66.0;MAN;SU;Final
|
||||
135;79.0;0.0520994279899217;0.0023803992539492;0.122611784009569;0.0028276390341386;0.670305676855895;0.823369565217391;0.0032753348785079;0.0119915556774223;0.0282535416964445;0.0168703315185438;0.0713612729125393;0.0310622496564907;87.7;27.4;23.0;9.0;87.0;132.0;74.0;MAN;SU;Initial
|
||||
136;80.0;0.037475697696208954;0.0735147979627494;0.305394009154592;0.074282102395892;0.703056768558952;0.8422618508338928;0.0071165083406783;0.0396667104529316;0.0440547799167087;0.0399002004615244;0.194951099206139;0.057583999687745;83.9;26.2;20.2;7.0;74.0;119.0;54.0;MAN;SU;Initial
|
||||
137;80.0;0.0289176770230752;0.0145845686196049;0.100002571482387;0.0149731033132298;0.716157205240175;0.807065217391304;0.0338959074636285;0.0239446704561915;0.0773277823820149;0.0147858375297104;0.0395138413126002;0.0758471224498372;84.5;26.4;21.7;8.0;86.0;122.0;61.0;MAN;SU;Final
|
||||
138;81.0;0.0762004531118908;0.007568932039236;0.132739621889148;0.0080433087440624;0.698689956331878;0.880434782608696;0.13587743065757;0.0758873880146048;0.102967520356568;0.0141056881154721;0.0737619599663295;0.104963385440586;96.4;30.1;30.8;15.0;98.0;152.0;68.0;MAN;SU;Final
|
||||
139;81.0;0.06049596890807152;0.000576138707312;0.0267881137189985;0.0008085535888296;0.620087336244541;0.847826086956522;0.0027094962948454;0.0066091760023541;0.0210778522713325;0.0270039491200905;0.0770930796146194;0.0247476720879101;94.9;29.6;32.8;15.0;102.0;140.0;60.0;MAN;SU;Initial
|
||||
140;82.0;0.0527338159328787;0.0004602533876498;0.0163348456356985;0.0006937326092339;0.62882096069869;0.78804347826087;0.0018607384193516;0.05133074149489403;0.0205521655523878;0.00231074067979;0.0427154192550832;0.0208594140327877;72.6;27.0;26.4;11.0;90.0;113.0;59.0;MAN;SU;Final
|
||||
141;82.0;0.14020201563835144;0.0010267131331705;0.831019987930762;0.0028838577770134;0.635371179039301;0.817934782608696;0.0040370406642074;0.0265996443094771;0.342112896409775;0.0808696165028321;0.123065638089449;0.337509965068831;71.1;26.5;24.1;10.0;83.0;110.0;60.0;MAN;SU;Initial
|
||||
142;83.0;0.0518732841066844;0.002809978346568;0.0374558292103135;0.0030849192276777;0.655021834061135;0.820652173913043;0.0045049456468514;0.0340958885326211;0.043477623740852;0.0235982189647785;0.0050810434303738;0.0414194569073727;91.9;30.0;26.0;14.0;77.0;121.0;87.0;MAN;SU;Final
|
||||
143;83.0;0.13335958123207092;0.0200756945098476;0.138512283264295;0.0205263513042964;0.447598253275109;0.551630434782609;0.0014798855265019;0.104811910880398;0.0278867714802761;0.0372830346239865;0.295440243700533;0.0523867865787689;90.0;29.4;26.909076690673828;13.519221305847168;81.0;117.0;67.0;MAN;SU;Initial
|
||||
144;84.0;0.149342643503905;0.0163262492632132;0.0674191285732485;0.0166915894333032;0.637554585152838;0.777173913043478;0.0141894906364596;0.0699032958124719;0.0361062848521651;0.0197662590016932;0.0244343575420268;0.037119950201686;75.6;27.7;19.9;10.0;64.0;123.0;80.0;MAN;SU;Final
|
||||
145;84.0;0.17527814847434;0.003128573502337;0.153227880422396;0.003681681612491;0.574235807860262;0.717391304347826;0.0020783686438372;0.0310171359665377;0.0133299175810351;0.0579589554033402;0.105368477355589;0.0213731601583221;74.8;27.5;19.0;12.0;79.0;117.0;73.0;MAN;SU;Initial
|
||||
146;85.0;0.05179538577795029;0.021460503262318;0.0071214056512611;0.0216451606444827;0.718340611353712;0.921195652173913;0.0042220263550201;0.0109896608675894;0.0076095576685619;0.0008700060660801;0.0355364942805327;0.008012454357685;81.8;25.2;22.5;7.0;83.0;124.0;61.0;MAN;SU;Final
|
||||
147;85.0;0.0153450903185475;0.0647519154096763;0.0850209635789209;0.0650860294462621;0.716157205240175;0.888586956521739;0.0023177618907713;0.0096382018993093;0.0189925901772873;0.0037536976530504;0.0167493316697355;0.01744781503363;81.6;25.2;23.2;8.0;84.0;120.0;67.0;MAN;SU;Initial
|
||||
148;86.0;0.0535348543295084;0.0147337278558465;0.0814628129249571;0.0150935996331415;0.61353711790393;0.75;0.0260176933372507;0.067252719521266;0.0918606182619736;0.0116237705604081;0.0696315893924969;0.0936289123654275;94.5;27.9;26.3;12.0;104.0;151.0;86.0;MAN;SU;Final
|
||||
149;86.0;0.0437637757203068;0.0153687729510915;0.10432719991242;0.015771083048304;0.541484716157205;0.714673913043478;0.0014798855265019;0.0201464556631979;0.0142109794078154;0.0072401722351149;0.0612116034476883;0.0168672491721091;94.3;27.9;28.9;12.0;102.0;149.0;70.0;MAN;SU;Initial
|
||||
150;87.0;0.047548279731784;0.0118885273861805;0.203458061332783;0.012493823330975;0.665938864628821;0.820652173913043;0.0026877332723968;0.017468558624386787;0.0203555131728195;0.0018401933288996;0.0691447736958114;0.022736415612346;79.2;24.7;25.8;5.0;79.0;108.0;68.0;MAN;SU;Final
|
||||
151;87.0;0.16936905682086945;0.0122783576645082;0.192355674520487;0.0128407969450555;0.578602620087336;0.698369565217391;0.023297315531181;0.195731387656071;0.227764957744218;0.098951970349224;0.261788471249032;0.245957352577695;78.3;24.4;19.4;8.0;126.0;143.0;72.0;MAN;SU;Initial
|
||||
152;88.0;0.104654283764256;0.0461177490080569;0.181530428113048;0.0466861299092977;0.615720524017467;0.769021739130435;0.0148859073548134;0.0433182580384339;0.0878261453111785;0.043047866693854;0.0734478274845887;0.0900914430544056;81.6;25.1;21.9;7.0;82.0;122.0;61.0;MAN;SU;Final
|
||||
153;88.0;0.0152292226134494;0.0744891711375195;0.0692783517459289;0.0747876962376999;0.650655021834061;0.804347826086957;0.0031338752325923;0.033143836711011;0.0268947300169214;0.033722356121797;0.140501365674411;0.0364781519666998;81.7;25.2;23.1;8.0;83.0;132.0;60.0;MAN;SU;Initial
|
||||
154;89.0;0.0526230703168419;0.0080667175866042;0.0703430000442049;0.0084063554730061;0.731441048034934;0.853260869565217;0.0241787179403476;0.0295518602331776;0.0146752419125036;0.0033053479285396;0.0128905909348552;0.0137472560679881;106.8;31.9;32.7;16.0;86.0;124.0;61.0;MAN;SU;Final
|
||||
155;89.0;0.041679951324506;0.0004505201988186;0.0422041069962386;0.000732295265094;0.713973799126637;0.883152173913043;0.0028291929183125;0.0088486673247002;0.018651758437282;0.010817881673574448;0.14213743456383;0.0268708615426957;106.0;31.7;33.3;16.0;82.0;130.0;61.0;MAN;SU;Initial
|
||||
156;90.0;0.0243619804333068;0.0013932392913858;0.103638356803184;0.0017925485877103;0.681222707423581;0.864130434782609;0.0024483400254627;0.0187079287439746;0.0168759797433692;0.0032311941231146;0.126222989296878;0.0243575657903394;78.4;26.2;18.0;6.0;77.0;110.0;61.0;MAN;SU;Final
|
||||
157;90.0;0.0352624118728147;0.0002049836075263;0.0272101012388475;0.0004542506040889;0.615720524017467;0.77445652173913;0.0027965483846396;0.0707647401494578;0.027742378565487;0.0050320730960209;0.0175215776755063;0.0281872712631975;76.6;25.6;22.8;8.0;68.0;102.0;60.0;MAN;SU;Initial
|
||||
158;91.0;0.0297598068836809;0.0201072611622546;0.0313256094202047;0.0203552195974623;0.639737991266376;0.815217391304348;0.0188032513955538;0.0146603554813275;0.055175352947481;0.0219426628010699;0.0486810471871521;0.0552564587815948;79.8;24.4;23.5;10.0;100.0;155.0;80.0;MAN;SU;Final
|
||||
159;91.0;0.0252867939556219;0.0051190984553149;0.167976812711771;0.0056473011980768;0.633187772925764;0.866847826086957;0.0024918660703598;0.0129451371890692;0.0406521361937733;0.0192917993427168;0.0631695127411903;0.0423741022402876;80.0;24.2;19.9;8.0;90.0;134.0;88.0;MAN;SU;Initial
|
||||
160;92.0;0.0919891205159227;0.0010342141112604;0.08809118717908859;0.00121713859897;0.694323144104804;0.804347826086957;0.187651661062688;0.124822634048379;0.0296791616248831;0.0344283630295088;0.0050124609723251;0.0319218272521123;98.7;27.3;29.0;10.0;80.0;118.0;60.0;MAN;SU;Final
|
||||
161;92.0;0.0376778471995291;0.0042164539633666;0.0387869171747656;0.0044884389908143;0.65938864628821;0.8125;0.0017845678407817;0.0078217102251176;0.0302805821919921;0.0110201625732117;0.0684728351233373;0.032447495086742;97.8;27.1;30.0;9.0;83.0;136.0;66.0;MAN;SU;Initial
|
||||
162;93.0;0.0710692778193462;0.0095593627319652;0.0094904634108907;0.0097821119737399;0.48471615720524;0.595108695652174;0.0016322266836418;0.0797405190164066;0.0451853061976135;0.0679893764235656;0.0373591902331935;0.0485783822147449;92.5;29.9;26.3;12.0;93.0;126.0;79.0;MAN;SU;Initial
|
||||
163;93.0;0.179174222226163;0.0547366385603848;0.22433455288410187;0.0549302885726268;0.67467248908297;0.8125;0.351124604185029;0.104472227610558;0.166165390748009;0.14197813087471;0.0958524620401802;0.171875944754689;93.5;30.5;27.9;12.0;80.0;120.0;79.0;MAN;SU;Final
|
||||
164;94.0;0.0121524014486854;0.0173469038447944;0.47665105411625;0.0184893442557066;0.700873362445415;0.853260869565217;0.0023395249132199;0.0237477632212184;0.0251119977854453;0.0089355200857999;0.0256709820393701;0.0246744896888397;67.9;24.1;25.0;8.0;75.0;119.0;70.0;MAN;SU;Initial
|
||||
165;94.0;0.0477902384561961;0.0176372810301857;0.0628177440959696;0.0179563003575221;0.956331877729258;0.842391304347826;0.308621421342996;0.0890258611520737;0.128604142389583;0.025020012632012367;0.139501771878967;0.134743305853002;69.4;24.6;24.9;7.0;76.0;120.0;59.0;MAN;SU;Final
|
||||
166;101.0;0.0318533121321269;0.0066915268397634;0.0530285308412566;0.0069892408531175;0.64410480349345;0.842391304347826;0.0019477905091459;0.0119457175334199;0.0302156599101467;0.0635032091700636;0.0417671284564333;0.0319599321177794;75.8;25.3;36.2;6.0;86.0;120.0;80.0;WOMAN;SA;Initial
|
||||
167;101.0;0.0392139001604695;0.0189994998839622;0.0644574136605014;0.0193182245806291;0.668122270742358;0.823369565217391;0.0104027247304106;0.017664458876414;0.0646105792547899;0.0037113981658473;0.0287865010137179;0.0622934567380702;77.5;25.9;24.8;6.0;81.0;121.0;80.0;WOMAN;SA;Final
|
||||
168;103.0;0.0487127256529294;0.0183589290312115;0.143680209002008;0.0188413807238205;0.620087336244541;0.83695652173913;0.0026659702499483;0.0111138877646156;0.0200266107568024;0.0157864657048419;0.164096403911227;0.0304283096700525;78.5;27.8;40.5;7.0;76.0;99.0;65.0;WOMAN;SA;Initial
|
||||
169;103.0;0.0946745347935634;0.0210418209411776;0.0749173773647767;0.0214008397080861;0.552401746724891;0.741847826086957;0.0645600060936463;0.0255558569813158;0.408803626874991;0.0111476035962049;0.0442502728276182;0.392993698048176;79.9;28.7;41.4;7.0;70.0;112.0;64.0;WOMAN;SA;Final
|
||||
170;104.0;0.306563550285796;0.0465773742680174;0.241703916257382;0.0473397665048277;0.358078602620087;0.456521739130435;0.0488253408633391;0.0141759781413644;0.0766306839489177;0.0481458608771758;0.153491846254996;0.0847475839242944;83.0;31.6;42.9;9.0;88.0;130.0;91.0;WOMAN;SA;Final
|
||||
171;104.0;0.225895894843825;0.0396406035518884;0.245871099184092;0.0403850700401092;0.451965065502183;0.5625;0.00218718375608;0.0251012911321247;0.026901940186124;0.111524304854822;0.39462675292191;0.0584263673848773;84.0;32.0;40.9;9.0;82.0;136.0;89.0;WOMAN;SA;Initial
|
||||
172;105.0;0.0953196050566807;0.0062960845563278;0.99474511103201;0.0085194568450858;0.513100436681223;0.652173913043478;0.0079108586600507;0.02888716571033001;0.0312702861562295;0.0240581363308804;0.351473128171343;0.0560168650128492;58.0;25.1;31.0;5.0;64.0;98.0;69.0;WOMAN;SA;Final
|
||||
173;105.0;0.182954355249215;0.0603780826570842;0.8469640612602234;0.0626228135301213;0.445414847161572;0.657608695652174;0.124114517024124;0.0107210243441826;0.0408112590491468;0.125714443512033;0.0874847820268364;0.0474399774867622;57.9;25.1;30.8;5.0;85.0;127.0;71.0;WOMAN;SA;Initial
|
||||
174;106.0;0.117467570317233;0.0787845243142488;0.314041645028215;0.0796126962794198;0.550218340611354;0.9375;0.0150491300231776;0.0249788158537689;0.11720735013858;0.0038698635935692;0.0420045856656632;0.113881464598017;95.2;32.9;44.9;9.0;79.0;123.0;50.0;WOMAN;SA;Final
|
||||
175;106.0;0.0359265413145774;0.0433319561502047;0.142312748181403;0.0437974541797252;0.587336244541485;0.782608695652174;0.0049946136519439;0.0261088478293968;0.132902968580085;0.0033097100605484;0.0119275331244696;0.126543506709241;93.9;32.5;46.0;9.0;84.0;116.0;54.0;WOMAN;SA;Initial
|
||||
176;107.0;0.120656754050793;0.0518755715230631;0.285396389609391;0.0526573505977745;0.554585152838428;0.894021739130435;0.10457132286532;0.0298962257138075;0.175585609857162;0.0114205096214419;0.0329221998161341;0.16936634411902;73.2;27.3;40.1;7.0;72.0;111.0;88.0;WOMAN;SA;Final
|
||||
177;107.0;0.0963676512431107;0.0759467601923277;0.298754004911136;0.0767375464417737;0.441048034934498;0.5625;0.0045811162254213;0.03208572790026665;0.0648588426613835;0.0759573312054668;0.206283924018866;0.0782057081522884;70.8;26.3;41.2;7.0;71.0;105.0;80.0;WOMAN;SA;Initial
|
||||
178;108.0;0.116400339768718;0.0186624226563098;0.142126867642136;0.0191659612568721;0.672489082969432;0.853260869565217;0.16514869585088;0.0665950962998364;0.173249047367803;0.0052942339012212;0.0747217875943552;0.171611074910883;65.6;26.6;33.1;6.0;70.0;102.0;56.0;WOMAN;SA;Final
|
||||
179;108.0;0.0647999451279257;0.125075917547607;0.167330663006052;0.12557094688962;0.609170305676856;0.779891304347826;0.0026659702499483;0.0444357138531849;0.0259439345164175;0.0286776274052528;0.108100117832098;0.0332958733530949;64.8;28.1;35.2;7.0;83.0;113.0;60.0;WOMAN;SA;Initial
|
||||
180;109.0;0.170725059872892;0.0178956154731036;0.0736445279338494;0.0182806204464092;0.620087336244541;0.771739130434783;0.0030794676764709;0.0082229981883481;0.0480001328955815;0.0036627202263907;0.0761958602087335;0.0497926846257416;80.7;29.3;38.9;8.0;79.0;136.0;80.0;WOMAN;SA;Final
|
||||
181;109.0;0.0700656404580358;0.0055981038903717;0.0707697595401788;0.0059458249833165;0.54585152838428;0.668478260869565;0.0060392387294747;0.014860588125884533;0.0223979890944644;0.0015826976947513;0.0484035197279988;0.023049876599727;80.1;29.1;38.0;7.0;85.0;142.0;80.0;WOMAN;SA;Initial
|
||||
182;110.0;0.155917392491549;0.0256670174494331;0.200780758053883;0.0263005833459171;0.585152838427948;0.744565217391304;0.0730802293822566;0.0114353096198377;0.271087203399696;0.0352268618999806;0.0740390800255255;0.263880760764327;93.3;33.5;47.5;10.0;86.0;123.0;89.0;WOMAN;SA;Final
|
||||
183;110.0;0.110525105408368;0.0089641232413476;0.181543856490999;0.0095489139723595;0.51528384279476;0.614130434782609;0.0242875330525903;0.0377823253729285;0.0603343190338937;0.0417913837290524;0.0259131537256949;0.0598339198445731;92.7;34.0;49.3;10.0;81.0;121.0;81.0;WOMAN;SA;Initial
|
||||
184;111.0;0.137895588144398;0.0367825938440067;0.152500152206542;0.0373078609020919;0.558951965065502;0.692934782608696;0.0065615512682401;0.0124765808003019;0.0922652253793669;0.0089135825022039;0.0058948438188763;0.0868823408930194;86.7;31.1;43.4;9.0;80.0;120.0;79.03202056884766;WOMAN;SA;Final
|
||||
185;111.0;0.0551548219226455;0.0286338500777581;0.0036293329406275;0.0288317071995774;0.648471615720524;0.807065217391304;0.0028836004744338;0.053773611654508;0.0329080311316012;0.0213884505733557;0.056046128273010254;0.0315871239538849;86.7;31.5;44.8;9.0;88.0;122.0;88.0;WOMAN;SA;Initial
|
||||
186;112.0;0.178112885731253;0.0032630076409173;0.212156723928542;0.0039361457767139;0.430131004366812;0.491847826086957;0.0246466229229915;0.0223162350391513;0.143749878993645;0.0172661279279147;0.2891900102097;0.158979852522051;66.9;25.5;38.8;7.0;76.0;131.0;69.0;WOMAN;SA;Final
|
||||
187;112.0;0.0471678576914661;0.0008927600085875;0.147813544320632;0.0013897163837337;0.698689956331878;0.834239130434783;0.0078564511039293;0.0108264570475597;0.0197439417754246;0.0043957077812712;0.0877704667230649;0.023814467440599;65.3;25.5;38.5;7.0;73.0;105.0;80.0;WOMAN;SA;Initial
|
||||
188;113.0;0.275506018845845;0.0590161793514623;0.403077853299468;0.0600886711382357;0.578602620087336;0.779891304347826;0.255639343191983;0.128691489102959;0.216283975645527;0.0528201347666497;0.31449541109301;0.235293053032589;75.3;28.0;40.2;9.0;96.0;136.0;80.0;WOMAN;SA;Final
|
||||
189;113.0;0.223428497957815;0.001754251521539;0.0987275236002025;0.0022150886938672;0.637554585152838;0.796195652173913;0.0083352375977975;0.0156369528182078;0.0028203326588044;0.0126949579262421;0.111478737680859;0.0099235997135185;74.6;27.8;38.0;9.0;87.47425842285156;128.1151123046875;69.6730728149414;WOMAN;SA;Initial
|
||||
190;114.0;0.0591405165851105;0.0051856847266591;0.0477679507811178;0.0054831615371331;0.65938864628821;0.817934782608696;0.0211101317751009;0.017763203590548;0.109647219549202;0.0072083279793799;0.0207582440333308;0.104812405719939;83.7;28.0;36.4;6.0;61.0;114.0;71.0;WOMAN;SA;Final
|
||||
191;114.0;0.0560258274299344;0.0384448381004223;0.18696404993534088;0.0386004592651659;0.696506550218341;0.83695652173913;0.183538449819911;0.224331603799372;0.338517166161962;0.151634342881434;0.0350670753206517;0.336574625094337;84.9;27.9;35.4;6.0;73.0;122.0;69.0;WOMAN;SA;Initial
|
||||
192;115.0;0.0398888892655983;0.0138775459128164;0.158526667857135;0.014388542138964;0.646288209606987;0.815217391304348;0.0088357871141144;0.0169799420654224;0.108512825292992;0.0045237869373032;0.620357305397732;0.150777991055106;65.6;24.8;26.1;8.0;71.0;101.0;70.0;WOMAN;SA;Final
|
||||
193;115.0;0.11894133687019348;0.0065280862976429;0.0385805171381614;0.0067820407751752;0.600436681222707;0.744565217391304;0.008313474575349;0.0134478927922451;0.0134490934009995;0.0057655604357308;0.0236898979475813;0.0128956150227182;65.2;25.2;39.6;6.0;73.0;117.0;79.0;WOMAN;SA;Initial
|
||||
194;116.0;0.0437709424722112;0.0125495545143367;0.0441373645004574;0.0128313401091342;0.648471615720524;0.820652173913043;0.0065833142906886;0.0285753453445014;0.0424125253236434;3.84745118362665e-05;0.0874191388090091;0.0459885004595909;87.9;34.3;45.3;9.0;80.0;130.0;80.0;WOMAN;SA;Initial
|
||||
195;116.0;0.276162647713198;0.0124454225462175;0.237466650269637;0.0132014315482897;0.427947598253275;0.635869565217391;0.282451386848606;0.044008793704964;0.237803741181461;0.032418096623024;0.232996275339482;0.245703409391787;90.8;35.5;45.9;9.0;79.0;120.0;66.0;WOMAN;SA;Final
|
||||
196;117.0;0.0786000110057107;0.028322521371603;0.0827006022573664;0.0286886882874742;0.541484716157205;0.684782608695652;0.0609799889008586;0.0157071409042597;0.159100682072046;0.0121209501283807;0.0413474476399836;0.15376426966474;93.6;33.6;43.0;9.0;83.0;120.0;61.0;WOMAN;SA;Final
|
||||
197;117.0;0.158677478690779;0.20720337576854;0.1037688322858;0.20757219583236;0.196506550218341;0.309782608695652;0.0083025930641247;0.0251344797026999;0.0419977053249507;0.0828180804330539;0.169199843886872;0.0542947200833772;95.5;34.9;48.7;9.0;83.0;115.0;67.0;WOMAN;SA;Initial
|
||||
198;118.0;0.190695010631464;0.229948665274572;0.0323486839653921;0.230175962433324;0.480349344978166;0.633152173913043;0.0041893818213473;0.0091471306602047;0.125418620172573;0.0034773545635132;0.0372338988167641;0.120752895896144;79.9;30.4;39.6;10.0;85.0;130.0;72.21851348876953;WOMAN;SA;Final
|
||||
199;118.0;0.125412253841762;0.129608349248487;0.162277537644945;0.130113225511279;0.585152838427948;0.763586956521739;0.0737548830781619;0.0202197808120314;0.316756260954253;0.0034443209569803;0.0482792588466787;0.304910943931731;79.8;30.4;42.0;10.0;83.0;147.0;89.0;WOMAN;SA;Initial
|
||||
200;119.0;0.754024942278699;0.0016535699791717;0.285687734534619;0.0026830017239553;0.567685589519651;0.684782608695652;0.0453214942491213;0.0541706928292222;0.313907325046041;0.221029272828075;0.0688228094662359;0.311375449218365;79.8;32.4;42.2;11.0;84.0;133.0;80.0;WOMAN;SA;Final
|
||||
201;119.0;0.0584638792313632;0.0008457610552033;0.174586129620824;0.0014008901935797;0.593886462882096;0.820652173913043;0.006322158021306;0.0155179459327065;0.104364848020836;0.009488056413829327;0.0902878490209903;0.104939294757563;79.4;32.6;44.7;11.0;90.0;133.0;79.0;WOMAN;SA;Initial
|
||||
202;120.0;0.242731586102865;0.0043947179879397;0.285323935414694;0.0052384897028427;0.5;0.630434782608696;0.0073994276325096;0.048111069947481155;0.198267916386063;0.0049455045985253;0.102762333780731;0.195516247353219;75.2;27.3;41.5;9.0;75.0;110.0;72.59857177734375;WOMAN;SA;Final
|
||||
203;120.0;0.104938919609542;0.0116321842116578;0.142499191331085;0.0121350537417557;0.408296943231441;0.519021739130435;0.0024809845591355;0.03267909213900566;0.0569566435954761;0.0797920407321103;0.193743219662535;0.0697777560056356;74.4;27.0;43.9;9.0;94.0;126.0;105.0;WOMAN;SA;Initial
|
||||
204;121.0;0.169225049310539;0.0300770518458321;0.0991974128477057;0.0305084663514141;0.572052401746725;0.709239130434783;0.0171166171557906;0.040219144762825;0.123815203264847;0.0049172306361744;0.0127535978474765;0.118495142693544;101.1;30.2;30.9;14.0;108.0;156.0;79.0;MAN;SA;Final
|
||||
205;121.0;0.045079704374074936;0.0465078809034178;0.0329246299180722;0.0467350509671412;0.593886462882096;0.828804347826087;0.0040043961305346;0.0089617785572517;0.0368567967829705;0.0029903850802211;0.10037226058924;0.0410515207559517;98.0;28.6;29.6;12.0;109.0;159.0;73.0;MAN;SA;Initial
|
||||
206;122.0;0.140859660758095;0.0025616711322155;0.0722606659984155;0.0029390299149796;0.665938864628821;0.815217391304348;0.0022524728234257;0.0106740058432009;0.0274692235354246;0.0034064472283407;0.0167372295535888;0.0255772473639649;75.8;27.5;28.1;12.0;70.0;120.0;69.78875732421875;MAN;SA;Final
|
||||
207;122.0;0.0567473534786522;0.0003127428012883;0.157479033417705;0.0008328955086058;0.615720524017467;0.766304347826087;0.0040043961305346;0.0078506065869427;0.0302549017731626;0.0212306173466389;0.0902456941081004;0.0344323255536164;78.2;28.4;30.4;13.0;89.0;138.0;59.0;MAN;SA;Initial
|
||||
208;123.0;0.096895560238923;0.0012207179399839;0.209859463056392;0.0018607915840608;0.574235807860262;0.706521739130435;0.0086725644457502;0.114950185067055;0.17207145204216;0.0109173869465822;0.172134423690472;0.180112404577544;81.0;28.0;25.4;11.0;81.0;114.0;59.0;MAN;SA;Final
|
||||
209;123.0;0.143247618319866;0.0085088660146723;0.337771648059943;0.0094212483306034;0.141921397379913;0.160326086956522;0.0149838409558319;0.120250708604002;0.0507994712701957;0.170101585203671;0.101573904328334;0.0634642660342723;82.0;28.4;27.2;12.0;83.0;124.0;67.0;MAN;SA;Initial
|
||||
210;124.0;0.150371682671456;0.042691291352457;0.142558046322226;0.0431986880071464;0.657205240174673;0.907608695652174;0.112743337794753;0.011057977838879;0.0456714902314276;0.0111582421055456;0.0622557978673735;0.0467935801908449;68.6;25.8;21.7;9.0;81.0;129.0;66.0;MAN;SA;Final
|
||||
211;124.0;0.0748072866150476;0.0109631187927209;0.0360293908497647;0.0112402934233382;0.587336244541485;0.752717391304348;0.0044287750682814;0.0304421983698941;0.0504264639611692;0.0147071359415905;0.057274278759474;0.0517720139913403;69.9;26.3;24.0;10.0;95.0;123.0;70.0;MAN;SA;Initial
|
||||
212;125.0;0.267493788423818;0.0324574124251571;0.21259396506079;0.0331523631510714;0.633187772925764;0.78804347826087;0.0794894394933568;0.0806123564901112;0.132766665274705;0.0084243526943452;0.165962161640225;0.140707723301453;84.7;27.7;27.5;12.0;92.0;146.0;62.0;MAN;SA;Final
|
||||
213;125.0;0.03816473111510277;0.001088733411947;0.194998870239294;0.0016608112563577;0.683406113537118;0.845108695652174;0.0026442072274997;0.044196498220689;0.0960495582634841;0.0041401071243214;0.117264265693055;0.100302400180415;83.1;27.1;28.8;12.0;93.0;144.0;64.0;MAN;SA;Initial
|
||||
214;126.0;0.1272092934099;0.0156453504263156;0.100220431688892;0.0160692656071573;0.694323144104804;0.861413043478261;0.0073232570539396;0.0116330236583983;0.0513273823920579;0.0016823574217824;0.0263967897774027;0.0491259854365669;74.8;26.2;19.7;8.0;78.0;110.0;60.0;MAN;SA;Final
|
||||
215;126.0;0.09850779920816422;0.0445918603791614;0.279436767037349;0.0453178296192801;0.593886462882096;0.782608695652174;0.0047769834274584;0.05349519103765488;0.0352260517468486;0.013442555399182;0.121243813149622;0.0413831546769605;74.7;26.2;20.6;10.0;84.0;115.0;69.0;MAN;SA;Initial
|
||||
216;127.0;0.147361344344955;0.0312217400456765;0.110118340161651;0.0316669172832654;0.593886462882096;0.845108695652174;0.0912523531268022;0.04482867196202278;0.188107995633296;0.0048062648922114;0.067559321994232;0.183032897318993;81.9;33.4;25.9;12.0;76.0;109.0;68.0;MAN;SA;Final
|
||||
217;127.0;0.0523045201914368;0.0017162401304965;0.100156736020024;0.0021184396887931;0.602620087336245;0.807065217391304;0.0134713108956572;0.0124089897216525;0.0581318199309138;0.0449741221223009;0.0959928390514038;0.0623867218464761;79.5;28.9;25.7;14.0;70.0;102.0;79.0;MAN;SA;Initial
|
||||
218;128.0;0.126183821970372;0.0086857355910465;0.139306074569079;0.0091909255318075;0.637554585152838;0.793478260869565;0.022285334987323;0.0258626405311259;0.0972714759604791;0.0109517828556528;0.132371912986486;0.102172408288848;76.8;26.3;22.6;8.0;77.0;107.0;60.0;MAN;SA;Final
|
||||
219;128.0;0.0288803827900937;0.0183055178363846;0.82772007545716;0.0201629199134688;0.676855895196507;0.877717391304348;0.0047987464499069;0.0211961851890275;0.0090911775973344;0.008197387656071;0.0526480164139398;0.0113671952251018;76.5;26.1;25.5;10.0;89.0;114.0;74.0;MAN;SA;Initial
|
||||
220;129.0;0.0513485046968566;0.0193955970464428;0.117847131104015;0.019826404215105;0.600436681222707;0.804347826086957;0.0027965483846396;0.0097677141071112;0.0460888274666535;0.0341038719288641;0.055515771945463;0.0472792967603583;95.0;27.7;27.4;10.0;93.0;135.0;56.0;MAN;SA;Initial
|
||||
221;129.0;0.0476682784903816;0.0135976808543388;0.214356686621344;0.0142243834613907;0.655021834061135;0.826086956521739;0.0168663423976322;0.0126526388880362;0.0835142410401605;0.0035438016684149;0.0633345302481326;0.0828866952984397;96.3;28.1;24.7;7.0;82.0;124.0;49.0;MAN;SA;Final
|
||||
222;130.0;0.0640949537251592;0.0049515589959967;0.0206508288047048;0.0051961189265954;0.707423580786026;0.875;0.0092384030294127;0.025107981637120247;0.074627159321795;0.0076710355983973;0.0588151478349857;0.0739650039553354;78.2;24.4;19.5;13.0;90.0;130.0;88.0;MAN;SA;Final
|
||||
223;130.0;0.0498937896756523;0.0069317323864908;0.140272117500773;0.0074121123715944;0.541484716157205;0.682065217391304;0.0033623869683021;0.076914355721259;0.147005617455257;0.0029413476155778;0.0341111638053855;0.143650602577619;78.6;24.5;20.8;7.0;82.61690521240234;115.9872817993164;68.3066635131836;MAN;SA;Initial
|
||||
224;131.0;0.220846745999933;0.0126050959547555;0.0921553798281227;0.0130475580311023;0.606986899563319;0.815217391304348;0.0260176933372507;0.0660557550107025;0.0315811357445972;0.0233229021390519;0.0080998607351083;0.0314698654395689;76.7;26.5;15.1;5.0;82.0;120.0;60.0;MAN;SA;Final
|
||||
225;131.0;0.0476411762757562;0.003936359146471;0.234730980338008;0.0046079281571639;0.672489082969432;0.828804347826087;0.0037976474172733;0.0133141855303201;0.061731612121743;0.015176202170550823;0.25797203183174133;0.0564669554205613;79.1;27.4;17.0;6.0;84.0;126.0;59.0;MAN;SA;Initial
|
||||
226;132.0;0.0668444306279019;0.0038991948816961;0.022717658934021;0.004149323720323;0.65938864628821;0.820652173913043;0.0035473726591149;0.08255845308303833;0.0223282608370468;0.013078529387712479;0.032496239223928;0.0217118982758418;76.7;24.5;15.0;7.0;76.0;112.0;48.0;MAN;SA;Final
|
||||
227;132.0;0.0352412767354663;0.093157820066812;0.154164788304527;0.0936278789176133;0.635371179039301;0.782608695652174;0.0067574184702771;0.0136926310537986;0.030754178490866;0.023735985159873962;0.08662194758653641;0.0268733151265635;75.9;24.8;15.5;8.0;70.0;131.0;60.0;MAN;SA;Initial
|
||||
228;134.0;0.0461560625426895;0.0348003020673883;0.0894583294807053;0.0351659667912553;0.694323144104804;0.866847826086957;0.0284442703402649;0.0225632853861079;0.0591012101561503;0.0137546038832564;0.0301203076501406;0.0576062881876092;109.4;32.7;29.1;14.0;87.0;137.0;50.0;MAN;SA;Final
|
||||
229;134.0;0.0197988980206151;0.0889281130584353;0.196523310506409;0.0894798261301488;0.729257641921397;0.839673913043478;0.0104027247304106;0.0150480939610257;0.0160161275778881;0.0150365313621295;0.181953098578885;0.0281244624427079;107.9;32.0;31.7;15.0;87.0;139.0;50.0;MAN;SA;Initial
|
||||
230;135.0;0.10109090059995651;0.0755349436359313;0.213978874231452;0.0761167732381252;0.576419213973799;0.763586956521739;0.050185529766374;0.0574189014776912;0.119485276352258;0.0128066789059844;0.11516775680312;0.123281109909106;106.5;31.5;30.7;15.0;92.0;133.0;61.0;MAN;SA;Final
|
||||
231;135.0;0.0207441686033153;0.064350493751609;0.205322080619989;0.0649297648608403;0.668122270742358;0.828804347826087;0.0206639898149055;0.109443243902487;0.0884788626129991;0.0060122125977869;0.113889583177572;0.0952876538404389;106.5;31.5;34.7;16.0;92.0;138.0;79.0;MAN;SA;Initial
|
||||
232;136.0;0.0730046450879974;0.0001754580295251;0.266614491328021;0.0009220116662094;0.657205240174673;0.826086956521739;0.0082590670192276;0.0242647162958106;0.0234878941864115;0.0262414422712389;0.0603634458166168;0.0263715011083391;103.9;31.4;29.6;14.0;82.0;125.0;92.0;MAN;SA;Final
|
||||
233;136.0;0.038928388031107;0.0099978967433661;0.274299584338041;0.0107439501157209;0.62882096069869;0.779891304347826;0.006909759627417;0.0287437875206532;0.0433854413841973;0.0114840702206878;0.0319330782050578;0.0428925706771159;103.2;31.2;28.8;12.0;80.0;120.0;80.0;MAN;SA;Initial
|
||||
234;137.0;0.0624798161263915;0.009559517700678;0.103963968973309;0.0099700560467447;0.622270742358079;0.771739130434783;0.0028074298958639;0.0084839176315972;0.0294062724934731;0.0066202006668869;0.0511110936748417;0.0301435557463705;96.7;33.1;29.2;13.0;93.0;135.0;70.0;MAN;SA;Final
|
||||
235;137.0;0.213097129569815;0.0288824762667505;0.476176866376634;0.0300917916168123;0.377729257641921;0.559782608695652;0.0245813338556459;0.0482176216314771;0.113551203229341;0.0352812140714017;0.456021815972861;0.144724999793191;96.1;32.9;29.5;16.0;89.0;134.0;71.0;MAN;SA;Initial
|
||||
236;138.0;0.0349990259163623;0.0067231413916588;0.054725204167281;0.0070254025553973;0.724890829694323;0.85054347826087;0.0171927877343605;0.0613277873472649;0.0263844182319974;0.0021115791276782;0.0138185157028485;0.0261616718736792;94.0;32.1;30.7;7.0;94.0;131.0;81.0;MAN;SA;Final
|
||||
237;138.0;0.0751072678636116;0.0294861387715267;0.556985645622867;0.0308088674782766;0.465065502183406;0.709239130434783;0.0163766743925396;0.0197906572282988;0.0693162547201607;0.0199715150813464;0.0703208694280318;0.0706081513143154;92.0;31.5;32.0;14.0;84.0;127.0;80.0;MAN;SA;Initial
|
||||
238;139.0;0.0797310433804953;0.0267385776806448;0.664553201147329;0.0282813584536635;0.604803493449782;0.736413043478261;0.0116323354987541;0.0094526583908095;0.154488505725275;0.012072022072970867;0.0879907546541918;0.152465536794519;91.1;28.8;28.3;8.0;99.0;139.0;61.0;MAN;SA;Final
|
||||
239;139.0;0.027061603031317;0.0335269940017933;0.0832412875771233;0.0338737198850567;0.602620087336245;0.75;0.0083896451539189;0.0123470134391436;0.0238117324296182;0.02156040072441101;0.0585396118579702;0.0253583605011403;89.9;28.4;23.8;13.0;102.0;148.0;67.0;MAN;SA;Initial
|
||||
240;140.0;0.0516653752777834;0.0104313644015074;0.12813215639171;0.0108865091397704;0.648471615720524;0.839673913043478;0.0037214768387033;0.0461561646770703;0.0855092091030128;0.0030710531595022;0.126101534090384;0.0909651971352392;102.9;27.0;20.3;6.0;82.0;118.0;71.0;MAN;SA;Final
|
||||
241;140.0;0.053446506117167;0.0124021721565912;0.22564620359934;0.0130542217559535;0.626637554585153;0.89945652173913;0.0106747625110175;0.119794962995653;0.0684764718670505;0.0158666845534036;0.324364430670596;0.0933944621069601;104.2;26.8;23.6;9.0;80.0;117.0;61.0;MAN;SA;Initial
|
||||
242;141.0;0.0408146207998022;0.0087572627304745;0.104150634938997;0.0091606951158945;0.676855895196507;0.842391304347826;0.0236999314464793;0.0145790057839045;0.0735684560429879;0.01178241515752;0.0063822379103143;0.0692121146512906;92.7;29.3;25.1;13.0;71.0;114.0;61.0;MAN;SA;Final
|
||||
243;141.0;0.0440037523735954;0.0094051765001335;0.093968767891603;0.0097889350308601;0.672489082969432;0.831521739130435;0.0030032970979009;0.0264119054616845;0.0150339663760188;0.0028684879653155804;0.0509217981698117;0.0168939187142447;92.9;29.3;23.6;13.0;80.0;122.0;67.0;MAN;SA;Initial
|
||||
244;142.0;0.195219369633575;0.0007344444165937603;0.158863721629161;0.0005728680254827;0.7195104360580444;0.847826086956522;0.180143418317936;0.07349735498428345;0.181178705865888;0.0540821374009806;0.032125477848557;0.212050778171777;90.3;26.7;19.4;9.0;78.0;131.0;47.0;MAN;SA;Final
|
||||
245;142.0;0.0174101371984416;0.0961152518453647;0.122599911630058;0.0965139872708986;0.687772925764192;0.85054347826087;0.0062242244202874;0.0227570856372899;0.0366866206594564;0.004081368851081;0.398927496127325;0.0649153210327416;91.1;26.9;21.9;9.0;70.0;121.0;42.0;MAN;SA;Initial
|
||||
246;143.0;0.046842933642606;0.308518384649599;0.789118803008055;0.31019277855525;0.569868995633188;0.698369565217391;0.0031774012774894;0.0257956200138619;0.032820778272941;0.029048888012766838;0.136687133427372;0.0406165106248735;108.1;34.1;36.7;17.0;82.0;113.0;60.0;MAN;SA;Initial
|
||||
247;143.0;0.129398271894779;0.154149033895083;0.0291251231097889;0.154376890525366;0.64410480349345;0.809782608695652;0.0046681683152156;0.0083991840391994;0.0413891896435029;0.01055608969181776;0.0209636994532953;0.0390562049790376;108.0;34.1;34.6;17.0;80.0;131.0;65.0;MAN;SA;Final
|
||||
248;144.0;0.08266040682792664;0.039209687510723;0.110317909030876;0.0395960295277342;0.593886462882096;0.755434782608696;0.0020239610877158;0.0136697656064372;0.0374918090599339;0.0161357614947912;0.114098462711636;0.0432944778212515;99.8;33.7;37.5;17.0;95.0;135.0;73.0;MAN;SA;Initial
|
||||
249;144.0;0.0678226035912521;0.0016874701131654;0.0912195488900197;0.0020772042979906;0.661572052401747;0.817934782608696;0.0091513509396184;0.007525520697323;0.0529247320444273;0.004908815892496;0.0119666777598118;0.0494582035296564;101.4;34.3;36.7;17.0;103.0;150.0;79.0;MAN;SA;Final
|
|
BIN
results/plots/residualsVsPredicted_BMI_prueba_RFXGB_little.png
Normal file
After Width: | Height: | Size: 24 KiB |
BIN
results/plots/residualsVsPredicted_Bpmax_prueba_RFXGB_little.png
Normal file
After Width: | Height: | Size: 24 KiB |
BIN
results/plots/residualsVsPredicted_Bpmin_prueba_RFXGB_little.png
Normal file
After Width: | Height: | Size: 25 KiB |
BIN
results/plots/residualsVsPredicted_CVRI_prueba_RFXGB_little.png
Normal file
After Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 25 KiB After Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 25 KiB After Width: | Height: | Size: 23 KiB |
Before Width: | Height: | Size: 25 KiB After Width: | Height: | Size: 24 KiB |
BIN
results/plots/residualsVsPredicted_Fat_prueba_RFXGB_little.png
Normal file
After Width: | Height: | Size: 24 KiB |
BIN
results/plots/residualsVsPredicted_Frec_prueba_RFXGB_little.png
Normal file
After Width: | Height: | Size: 25 KiB |
Before Width: | Height: | Size: 26 KiB After Width: | Height: | Size: 25 KiB |
Before Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 27 KiB After Width: | Height: | Size: 23 KiB |
Before Width: | Height: | Size: 25 KiB After Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 26 KiB After Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 26 KiB After Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 25 KiB After Width: | Height: | Size: 25 KiB |
Before Width: | Height: | Size: 25 KiB After Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 24 KiB After Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 27 KiB After Width: | Height: | Size: 24 KiB |
After Width: | Height: | Size: 25 KiB |
BIN
results/plots/testVsPredicted_lmplot_BMI_prueba_RFXGB_little.png
Normal file
After Width: | Height: | Size: 29 KiB |
After Width: | Height: | Size: 27 KiB |
After Width: | Height: | Size: 31 KiB |
After Width: | Height: | Size: 28 KiB |
Before Width: | Height: | Size: 26 KiB After Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 20 KiB After Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 21 KiB After Width: | Height: | Size: 28 KiB |
BIN
results/plots/testVsPredicted_lmplot_Fat_prueba_RFXGB_little.png
Normal file
After Width: | Height: | Size: 28 KiB |
After Width: | Height: | Size: 23 KiB |
Before Width: | Height: | Size: 21 KiB After Width: | Height: | Size: 27 KiB |
Before Width: | Height: | Size: 19 KiB |
Before Width: | Height: | Size: 23 KiB After Width: | Height: | Size: 26 KiB |
Before Width: | Height: | Size: 24 KiB After Width: | Height: | Size: 27 KiB |
Before Width: | Height: | Size: 23 KiB After Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 22 KiB After Width: | Height: | Size: 22 KiB |
Before Width: | Height: | Size: 22 KiB After Width: | Height: | Size: 25 KiB |
Before Width: | Height: | Size: 20 KiB After Width: | Height: | Size: 25 KiB |
Before Width: | Height: | Size: 20 KiB After Width: | Height: | Size: 26 KiB |
Before Width: | Height: | Size: 22 KiB After Width: | Height: | Size: 24 KiB |
After Width: | Height: | Size: 32 KiB |
|
@ -1,13 +1,14 @@
|
|||
numVol,E.S_pred,E.S_test,EG.1_pred,EG.1_test,E_pred,E_test,HE.GG_pred,HE.GG_test,HE.G_pred,HE.G_test,HE_pred,HE_test,N.GG_pred,N.GG_test,N.G_pred,N.G_test,N.S_pred,N.S_test,N_pred,N_test,Total.E_pred,Total.E_test,Total.HE_pred,Total.HE_test,Total.N_pred,Total.N_test
|
||||
3.0,0.16955519,0.0537030557689136,0.11470259,1.0000000000000002,0.23522176,0.1776384995052071,0.7177555,0.6557377049180324,0.11957803,0.7881718012143014,0.5835844,0.523076923076923,0.084934615,0.22525834899076985,0.20743033,0.39485437161335146,0.11102433,0.19895339696087017,0.18062797,0.0471948709612743,0.11527168,0.9999999999999999,0.11953399,0.7873636946760737,0.2201052,0.4322425015186954
|
||||
19.0,0.16218804,0.2542997497889782,0.09153754,0.27775255724007,0.21543688,0.22314243750231802,0.7544929,0.6852459016393446,0.10088065,0.10286228275884222,0.6074276,0.569230769230769,0.073848605,0.10301934670517868,0.20511039,0.1543089808883861,0.1034324,0.3046617991792436,0.17098281,0.21892640130087426,0.092117846,0.2789533568756825,0.100833766,0.10256574727389371,0.21846169,0.2132091997953834
|
||||
84.0,0.17010398,0.07875326894025951,0.113254316,0.054759311160842414,0.23597522,0.46618898936269837,0.7191236,0.7901639344262295,0.11769066,0.03588293873879656,0.58383363,0.661538461538461,0.0839363,0.06118125708397916,0.20871262,0.08728565301610983,0.11140728,0.01982295066300209,0.17925112,0.3715161715116773,0.113831535,0.05507009207258497,0.11763929,0.03620910840282258,0.22161269,0.09269026555555611
|
||||
39.0,0.16218804,0.0781536788999181,0.09153754,0.01035085884444022,0.21543688,0.2745939176794031,0.7544929,0.8688524590163935,0.10088065,0.010697420411834607,0.6074276,0.6461538461538463,0.073848605,0.04170233510569501,0.20511039,0.0869671741418152,0.1034324,0.11154229408461538,0.17098281,0.1460016201241494,0.092117846,0.010592498042275784,0.100833766,0.010808210391276548,0.21846169,0.10612109909173456
|
||||
113.0,0.23430835,0.4854665634232739,0.18683702,0.19949966049190268,0.24136108,0.8945505875445721,0.539474,0.7934426229508198,0.31125718,0.7481126923447585,0.4830884,0.5923076923076919,0.14955616,0.16369036913543475,0.25819072,0.528530451009482,0.17246084,0.319650958015391,0.29539743,0.7234874522726198,0.18740977,0.20225438811451021,0.3113746,0.7478511866581149,0.27019167,0.5979379450812137
|
||||
129.0,0.16218804,0.25679558965089977,0.09153754,0.04550809093495392,0.21543688,0.12097475129021881,0.7544929,0.8491803278688526,0.10088065,0.04449227408525794,0.6074276,0.6820512820512815,0.073848605,0.010870978545023953,0.20511039,0.203385010041621,0.1034324,0.0600329723992896,0.17098281,0.028750287509597496,0.092117846,0.04670238715096344,0.100833766,0.04409878127004517,0.21846169,0.20937381861728474
|
||||
138.0,0.16294666,0.06337220646592515,0.09424778,0.022199942121837117,0.21807301,0.07795892941903082,0.75038373,0.8786885245901646,0.10108368,0.04487776671271165,0.60459566,0.7641025641025637,0.07512161,0.0064292646003418,0.20424923,0.06347736102365609,0.104486875,0.008849651538411087,0.17080438,0.3201736734906737,0.09482759,0.022286530249058707,0.10103251,0.04506093649775505,0.21759343,0.06475183890869655
|
||||
66.0,0.16856414,0.10342882861203968,0.094768,0.02440211896475144,0.21743488,0.7161383128619653,0.746386,0.6393442622950818,0.13169265,1.0,0.60659206,0.3794871794871789,0.07763642,0.5837034153161451,0.21459685,0.7742226282919165,0.1066626,0.13278325956142298,0.19050705,0.09343132432587406,0.0953648,0.024944338778722815,0.13165386,1.0,0.22805627,0.8061680259734029
|
||||
117.0,0.17066309,0.09726963109259891,0.14339356,0.09543271146975375,0.252999,0.22599703956436554,0.6751076,0.6786885245901639,0.116077825,0.17414629445211843,0.55030006,0.5487179487179482,0.09456188,0.03747106256593517,0.21047406,0.3884918551637643,0.119452655,0.03730553938065802,0.17483237,0.0470379219232755,0.14390731,0.09575910801615817,0.11603526,0.1741180243745993,0.22199875,0.390078109297625
|
||||
37.0,0.17439559,0.09844038868713877,0.11719439,0.0017410662637539905,0.23569687,0.029272439878614435,0.7122665,0.8754098360655742,0.11516037,0.0021202094509941054,0.573468,0.6948717948717948,0.08455081,0.07952826737069695,0.21472403,0.02316403529506062,0.11482965,0.015739033322268763,0.17265956,0.1671713784181674,0.11777786,0.002009903204621983,0.11517841,0.0017960230917257163,0.22740082,0.02528760338584915
|
||||
122.0,0.16363956,0.0846196966285569,0.09194672,0.008090463426568878,0.21921979,0.4373867792403407,0.7487585,0.8360655737704921,0.10525936,0.0015098461241928084,0.6033314,0.6948717948717948,0.07495198,0.010445004847160095,0.20996222,0.06613398679605448,0.10566646,0.011866644503119687,0.1722075,0.016903997158312013,0.09252959,0.008427306153432436,0.10521295,0.0010262989095576368,0.22346202,0.06326183283232692
|
||||
14.0,0.23325457,0.5755183139467145,0.19724186,0.022372975098142144,0.3899511,0.21584406506894596,0.40007982,0.7934426229508198,0.20186251,0.4318481159047822,0.3527669,0.5025641025641022,0.1819514,0.31472262677578905,0.2271397,0.04153480599039412,0.19113956,0.16502645728195145,0.1932731,0.3932871719905271,0.19772972,0.025405429805569757,0.20180374,0.4327453495830657,0.23618494,0.08171960454696989
|
||||
numVol,BMI_pred,BMI_test,Bpmax_pred,Bpmax_test,Bpmin_pred,Bpmin_test,CVRI_pred,CVRI_test,E.S_pred,E.S_test,EG.1_pred,EG.1_test,E_pred,E_test,Fat_pred,Fat_test,Frec_pred,Frec_test,HE.GG_pred,HE.GG_test,HE_pred,HE_test,N.GG_pred,N.GG_test,N.G_pred,N.G_test,N.S_pred,N.S_test,N_pred,N_test,Total.E_pred,Total.E_test,Total.HE_pred,Total.HE_test,Total.N_pred,Total.N_test,Weight_pred,Weight_test
|
||||
21.0,24.651154,28.5,56.590794,143.0,43.199974,95.0,19.004778,11.0,15.811796,0.0662532549635222,15.771048,0.0135947227916441,15.792032,0.028515160105707,25.133947,26.7,36.73544,101.0,15.994681,0.766304347826087,15.943034,0.620087336244541,15.7689495,0.0986639685943334,15.790371,0.166344020452697,15.783955,0.0674480182111307,15.77445,0.087968089672492,15.771323,0.0139153044563666,15.778751,0.0039064625295161,15.790886,0.167942136699479,43.534943,95.5
|
||||
52.0,24.064901,27.6,50.007797,108.0,38.59979,78.0,18.089745,7.0,15.8102665,0.0739260986636218,15.773506,0.0371320353809345,15.790751,0.0851435371571832,27.084803,38.7,39.160023,73.0,15.997675,0.472826086956522,15.941871,0.34061135371179,15.77217,0.0410583176735918,15.78637,0.0935902538196619,15.791226,0.0543344012100275,15.773867,0.0277509836885827,15.773771,0.0374794432118824,15.786359,0.0401310133951403,15.787837,0.0934594694780702,38.8143,77.0
|
||||
40.0,24.066223,26.3,52.04689,106.0,40.000248,66.0,18.377579,8.0,15.7983675,0.167386630673118,15.782211,0.0191823857044013,15.793859,0.032296284164321,25.179808,15.5,37.84935,74.0,15.988727,0.820652173913043,15.940902,0.650655021834061,15.768426,0.0033602193945899,15.784081,0.0500787086564919,15.7825575,0.0461634151169999,15.770753,0.0930908665647227,15.782329,0.0197065148104174,15.780197,0.0049837321407197,15.784631,0.0525724397733532,39.582294,80.4
|
||||
88.0,23.869986,25.1,51.95043,122.0,40.15168,82.0,18.08912,7.0,15.802604,0.181530428113048,15.77097,0.0461177490080569,15.790978,0.104654283764256,24.638636,21.9,36.919662,61.0,15.992982,0.769021739130435,15.943456,0.615720524017467,15.769557,0.043047866693854,15.786636,0.0878261453111785,15.782235,0.0734478274845887,15.773132,0.0433182580384339,15.771191,0.0466861299092977,15.780231,0.0148859073548134,15.788061,0.0900914430544056,39.758663,81.6
|
||||
64.0,24.499035,27.8,52.573727,130.0,40.178947,86.0,18.480356,7.0,15.80226,0.0221065451884201,15.790885,0.0193241614726123,15.802122,0.0667516696993224,26.915995,42.4,38.17893,69.0,15.97657,0.777173913043478,15.925197,0.587336244541485,15.769239,0.0278063223336323,15.790937,0.101280503598765,15.785732,0.0265663773631363,15.771273,0.0123158686343451,15.7911415,0.0195670972105108,15.77859,0.0151144190905233,15.791577,0.0976663265630592,40.138527,85.2
|
||||
110.0,25.11063,33.5,53.01934,123.0,40.310154,86.0,18.840628,10.0,15.800141,0.200780758053883,15.772432,0.0256670174494331,15.792696,0.155917392491549,26.525967,47.5,37.627827,89.0,15.986823,0.744565217391304,15.937132,0.585152838427948,15.76931,0.0352268618999806,15.789783,0.271087203399696,15.79107,0.0740390800255255,15.772494,0.0114353096198377,15.772824,0.0263005833459171,15.781747,0.0730802293822566,15.7907,0.263880760764327,42.759907,93.3
|
||||
67.0,24.614323,31.8,49.730434,106.0,38.17922,81.0,18.43157,8.0,15.795938,0.0161500810332608,15.783975,0.000787241398501,15.795575,0.0768663246898515,27.715515,39.4,38.051838,80.0,15.989288,0.771739130434783,15.941109,0.609170305676856,15.771013,0.0366849037934109,15.788359,0.044158439119283,15.783169,0.0367450530021848,15.772756,0.0258145284427685,15.784208,0.0010289002840467,15.779555,0.0023068803795471,15.789254,0.0446310154989231,40.379814,81.6
|
||||
143.0,25.038565,34.1,53.12766,131.0,40.71074,80.0,18.673801,17.0,15.8103075,0.0291251231097889,15.771637,0.154149033895083,15.788821,0.129398271894779,26.092579,34.6,35.69462,65.0,15.993031,0.809782608695652,15.939315,0.64410480349345,15.768349,0.01055608969181776,15.793874,0.0413891896435029,15.783251,0.0209636994532953,15.771765,0.0083991840391994,15.7721,0.154376890525366,15.778048,0.0046681683152156,15.794199,0.0390562049790376,43.648468,108.0
|
||||
112.0,23.859941,25.5,48.870907,131.0,38.00721,76.0,17.889809,7.0,15.817008,0.212156723928542,15.770916,0.0032630076409173,15.787658,0.178112885731253,26.563408,38.8,37.67739,69.0,16.000809,0.491847826086957,15.95268,0.430131004366812,15.770746,0.0172661279279147,15.797518,0.143749878993645,15.800106,0.2891900102097,15.777244,0.0223162350391513,15.7712145,0.0039361457767139,15.797299,0.0246466229229915,15.799155,0.158979852522051,36.897346,66.9
|
||||
5.0,23.702976,24.9,47.890106,121.0,37.22284,62.0,17.81643,5.0,15.814491,0.207561234791417,15.776265,0.0202676168767328,15.787348,0.0687109157090351,26.728542,31.1,37.38323,69.0,15.999607,0.71195652173913,15.950826,0.53056768558952,15.77187,0.108316874876379,15.794725,0.004773794207721949,15.783942,0.118405962316509,15.778341,0.0211505275872907,15.776325,0.0208855950149671,15.800636,0.0813937039576056,15.795538,0.0091248615687467,36.95684,70.3
|
||||
30.0,24.718094,26.6,53.93216,134.0,41.089878,86.0,18.725866,12.0,15.807482,0.106786847232821,15.782375,0.0319057950997071,15.798859,0.065986840612533,26.730991,29.0,38.10501,60.0,15.981627,0.66304347826087,15.929885,0.497816593886463,15.770491,0.03316639108796,15.787993,0.117535039382003,15.786569,0.0023812580778497,15.773894,0.0562652898110519,15.782713,0.0323147144755002,15.779075,0.117901174115061,15.788649,0.113093819578092,41.083717,85.4
|
||||
136.0,24.855312,31.4,53.70578,125.0,40.86665,82.0,18.706982,14.0,15.807762,0.266614491328021,15.769195,0.0001754580295251,15.795413,0.0730046450879974,25.605652,29.6,37.071342,92.0,15.989867,0.826086956521739,15.938005,0.657205240174673,15.7712345,0.0262414422712389,15.793428,0.0234878941864115,15.807517,0.0603634458166168,15.773314,0.0242647162958106,15.769707,0.0009220116662094,15.787692,0.0082590670192276,15.795497,0.0263715011083391,43.419315,103.9
|
||||
54.0,23.81316,28.2,49.641014,114.0,38.520332,82.0,18.05836,8.0,15.805643,0.315386809393836,15.771007,0.0400170182842302,15.7863,0.0400833721706261,24.950775,37.0,36.822155,67.0,16.002775,0.760869565217391,15.955327,0.62882096069869,15.7676325,0.0220877056402448,15.787598,0.0740450452006787,15.785045,0.606269297800941,15.775389,0.0156280433563069,15.771116,0.0408349703679197,15.788348,0.0076714654131165,15.788227,0.117184885188487,37.73548,71.2
|
||||
|
|
|
92
scripts/RFfit.py
Normal file
|
@ -0,0 +1,92 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
@author: dres2
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from xgboost import XGBRFRegressor
|
||||
from sklearn.metrics import mean_squared_error
|
||||
import optuna
|
||||
import time
|
||||
|
||||
def RFfit(X_train, X_test, X_val, y_train, y_test, y_val):
|
||||
'''
|
||||
function to train a Random Forest
|
||||
'''
|
||||
# Búsqueda bayesiana de hiperparámetros con optuna
|
||||
# ==============================================================================
|
||||
def objective(trial):
|
||||
params = {
|
||||
'n_estimators': trial.suggest_int('n_estimators', 10, 1000, step=10),
|
||||
'max_depth': trial.suggest_int('max_depth', 1, 50),
|
||||
'reg_lambda': trial.suggest_float('reg_lambda', 1e-10, 1e+10, log=True),
|
||||
'reg_alpha': trial.suggest_float('reg_alpha', 1e-10, 1e+10, log=True),
|
||||
'gamma': trial.suggest_float('gamma', 1e-10, 1e+10, log=True),
|
||||
'subsample': trial.suggest_float('subsample', 0.1, 1),
|
||||
'colsample_bynode': trial.suggest_float('colsample_bynode', 0.1, 1),
|
||||
}
|
||||
|
||||
model = XGBRFRegressor(
|
||||
tree_method = 'hist',
|
||||
grow_policy = 'depthwise',
|
||||
n_jobs = -1,
|
||||
learning_rate=0.01,
|
||||
random_state = 42,
|
||||
enable_categorical = True,
|
||||
missing = np.nan,
|
||||
multi_strategy="multi_output_tree",
|
||||
**params
|
||||
)
|
||||
model.fit(X_train, y_train)
|
||||
predictions = model.predict(X_val)
|
||||
score = mean_squared_error(y_val, predictions, squared=False)
|
||||
return score
|
||||
|
||||
study = optuna.create_study(direction='minimize')
|
||||
study.optimize(objective, n_trials=100, show_progress_bar=True, timeout=100*10)
|
||||
|
||||
print('Mejores hiperparámetros:', study.best_params)
|
||||
print('Mejor score:', study.best_value)
|
||||
|
||||
# Random Forest XGBoost con los mejores hiperparámetros encontrados
|
||||
# ==============================================================================
|
||||
rf_XGB = XGBRFRegressor(
|
||||
tree_method = 'hist',
|
||||
grow_policy = 'depthwise',
|
||||
n_jobs = -1,
|
||||
learning_rate = 0.3,
|
||||
random_state = 42,
|
||||
enable_categorical = True,
|
||||
missing = np.nan,
|
||||
multi_strategy="multi_output_tree",
|
||||
**study.best_params
|
||||
)
|
||||
|
||||
# Entrenamiento del modelo
|
||||
start = time.time()
|
||||
rf_XGB .fit(
|
||||
X = pd.concat([X_train, X_val]),
|
||||
y = pd.concat([y_train, y_val])
|
||||
)
|
||||
end = time.time()
|
||||
tiempo_entrenamiento_xgboost = end - start
|
||||
|
||||
# Predicciones test
|
||||
start = time.time()
|
||||
predicciones = rf_XGB.predict(X=X_test)
|
||||
end = time.time()
|
||||
tiempo_prediccion_xgboost = end - start
|
||||
|
||||
# Error de test del modelo
|
||||
rmse_rf_xgboost = mean_squared_error(
|
||||
y_true = y_test,
|
||||
y_pred = predicciones,
|
||||
squared = False
|
||||
)
|
||||
|
||||
print(f"Tiempo entrenamiento: {tiempo_entrenamiento_xgboost:.2f} segundos")
|
||||
print(f"Tiempo predicción: {tiempo_prediccion_xgboost:.2f} segundos")
|
||||
print(f"RMSE: {rmse_rf_xgboost:.2f}")
|
||||
|
||||
return (rf_XGB)
|
|
@ -1,31 +1,32 @@
|
|||
from lightgbm import LGBMRegressor
|
||||
from xgboost import XGBRegressor
|
||||
from sklearn.metrics import mean_squared_error
|
||||
import numpy as np
|
||||
import optuna
|
||||
import time
|
||||
|
||||
def LGBMRfit(X_train, X_test, X_val, y_train, y_test, y_val):
|
||||
def XGBfit(X_train, X_test, X_val, y_train, y_test, y_val):
|
||||
# Búsqueda bayesiana de hiperparámetros con optuna
|
||||
# ==============================================================================
|
||||
def objective(trial):
|
||||
params = {
|
||||
'n_estimators': trial.suggest_int('n_estimators', 50, 1000, step=100),
|
||||
'num_leaves': trial.suggest_int('num_leaves', 5, 256),
|
||||
'reg_lambda': trial.suggest_float('reg_lambda', 1e-5, 1e+3, log=True),
|
||||
'reg_alpha': trial.suggest_float('reg_alpha', 1e-5, 1e+3, log=True),
|
||||
'n_estimators': trial.suggest_int('n_estimators', 10, 1000, step=10),
|
||||
'max_depth': trial.suggest_int('max_depth', 3, 12),
|
||||
'scale_pos_weight': trial.suggest_int('scale_pos_weight', 1, 5),
|
||||
'learning_rate': trial.suggest_float('learning_rate', 0.01, 0.3),
|
||||
'reg_lambda': trial.suggest_float('reg_lambda', 0, 0.1, log=True),
|
||||
'reg_alpha': trial.suggest_float('reg_alpha', 0, 0.1, log=True),
|
||||
'min_samples_leaf': trial.suggest_int('min_samples_leaf', 1, 1000),
|
||||
'colsample_bytree': trial.suggest_float('colsample_bytree', 0.1, 1),
|
||||
'colsample_bynode': trial.suggest_float('colsample_bynode', 0.1, 1),
|
||||
'subsample': trial.suggest_float('subsample', 0.1, 1),
|
||||
'subsample': trial.suggest_float('subsample', 0.6, 1),
|
||||
}
|
||||
|
||||
model = LGBMRegressor(
|
||||
boosting_type = 'rf',
|
||||
learning_rate = 1.0,
|
||||
subsample_freq = 1,
|
||||
model = XGBRegressor(
|
||||
tree_method = 'gpu_hist',
|
||||
eval_metric = 'rmse',
|
||||
n_jobs = -1,
|
||||
random_state = 42,
|
||||
verbose = 2,
|
||||
early_stopping_rounds = 10,
|
||||
missing = np.nan,
|
||||
**params
|
||||
)
|
||||
|
@ -40,39 +41,39 @@ def LGBMRfit(X_train, X_test, X_val, y_train, y_test, y_val):
|
|||
print('Mejores hiperparámetros:', study.best_params)
|
||||
print('Mejor score:', study.best_value)
|
||||
|
||||
# Random Forest LightGBM con los mejores hiperparámetros encontrados
|
||||
# XGBoost con los mejores hiperparámetros encontrados
|
||||
# ==============================================================================
|
||||
rf_lgbm = LGBMRegressor(
|
||||
boosting_type = 'rf',
|
||||
learning_rate = 1.0,
|
||||
subsample_freq = 1,
|
||||
xgb_xgb = XGBRegressor(
|
||||
tree_method = 'gpu_hist',
|
||||
eval_metric = 'rmse',
|
||||
n_jobs = -1,
|
||||
random_state = 42,
|
||||
verbose = 2,
|
||||
early_stopping_rounds = 10,
|
||||
missing = np.nan,
|
||||
**study.best_params
|
||||
)
|
||||
)
|
||||
|
||||
# Entrenamiento del modelo
|
||||
start = time.time()
|
||||
rf_lgbm.fit(X_train, y_train, categorical_feature='auto')
|
||||
xgb_xgb.fit(X_train, y_train, categorical_feature='auto')
|
||||
end = time.time()
|
||||
tiempo_entrenamiento_lgbm = end - start
|
||||
tiempo_entrenamiento_xgb_xgb = end - start
|
||||
|
||||
# Predicciones test
|
||||
start = time.time()
|
||||
predicciones = rf_lgbm.predict(X=X_test)
|
||||
predicciones = xgb_xgb.predict(X=X_test)
|
||||
end = time.time()
|
||||
tiempo_prediccion_lgbm = end - start
|
||||
tiempo_prediccion_xgb_xgb = end - start
|
||||
|
||||
# Error de test del modelo
|
||||
rmse_rf_lgbm = mean_squared_error(
|
||||
rmse_xgb_xgb = mean_squared_error(
|
||||
y_true = y_test,
|
||||
y_pred = predicciones,
|
||||
squared = False
|
||||
)
|
||||
|
||||
print(f"Tiempo entrenamiento: {tiempo_entrenamiento_lgbm:.2f} segundos")
|
||||
print(f"Tiempo predicción: {tiempo_prediccion_lgbm:.2f} segundos")
|
||||
print(f"RMSE: {rmse_rf_lgbm:.2f}")
|
||||
return rf_lgbm
|
||||
print(f"Tiempo entrenamiento: {tiempo_entrenamiento_xgb_xgb:.2f} segundos")
|
||||
print(f"Tiempo predicción: {tiempo_prediccion_xgb_xgb:.2f} segundos")
|
||||
print(f"RMSE: {rmse_xgb_xgb:.2f}")
|
||||
return xgb_xgb
|
BIN
scripts/__pycache__/RFfit.cpython-311.pyc
Normal file
BIN
scripts/__pycache__/XGBFfit.cpython-311.pyc
Normal file
|
@ -1,76 +0,0 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
@author: dres2
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
import pickle
|
||||
import re
|
||||
import os
|
||||
from utils import encodingSplitting
|
||||
from sklearn.model_selection import RepeatedKFold, cross_val_score, GridSearchCV
|
||||
|
||||
from xgboost import XGBRFRegressor
|
||||
from lightgmb import LGBMRegressor
|
||||
import optuna
|
||||
|
||||
paths = ["plasmFlav_ord.csv", "plasmAnt_ord.csv", "urineFlav_ord.csv", "urineAnt_ord.csv"]
|
||||
paths = ["../data/" + s for s in paths]
|
||||
|
||||
def fitRF():
|
||||
'''
|
||||
function to train a Random Forest
|
||||
'''
|
||||
|
||||
param_grid_light = {
|
||||
'bootstrap': [False, True],
|
||||
'max_depth': [80, 90, 100, 110],
|
||||
'max_features': [0.2, 0.5, 0.7, 0.9, 2, 3],
|
||||
'min_samples_leaf': [3, 4, 5],
|
||||
'min_samples_split': [8, 10, 12],
|
||||
'n_estimators': [100, 200, 300, 1000]
|
||||
}
|
||||
|
||||
|
||||
print(" ----------------- SETTING UP TRAINING ----------------- ")
|
||||
|
||||
X_train, X_test, y_train, y_test = encodingSplitting(df, full = full)
|
||||
|
||||
model = RandomForestRegressor()
|
||||
|
||||
cv = RepeatedKFold(n_splits=3, n_repeats=3, random_state=42)
|
||||
|
||||
grid_search = GridSearchCV(estimator = model, param_grid = param_grid_light, cv = cv, n_jobs = -1, verbose = 2)
|
||||
|
||||
print(" ----------------- STARTING TRAINING ----------------- ")
|
||||
|
||||
grid_search.fit(X_train, y_train)
|
||||
|
||||
print(" ----------------- TRAINING ENDED ----------------- ")
|
||||
|
||||
if (full):
|
||||
filename = os.path.join("..", "models","RF_Full_5050"+df_name+".pkl")
|
||||
|
||||
else:
|
||||
filename = os.path.join("..", "models","RF_Met_5050"+df_name+".pkl")
|
||||
|
||||
best_model = grid_search.best_estimator_
|
||||
|
||||
with open(filename, 'wb') as file:
|
||||
pickle.dump(best_model, file)
|
||||
|
||||
print(" ----------------- MODEL SAVED ----------------- ")
|
||||
|
||||
if (eval):
|
||||
evaluateNPlot(filename, df, df_name, y_test=y_test, X_test=X_test, full = full, pipeline = True, plot = plot)
|
||||
else:
|
||||
print(" ----------------- ENDED SCRIPT ----------------- ")
|
||||
|
||||
|
||||
|
||||
print("lalala")
|
||||
|
||||
fitRF()
|
|
@ -1,5 +1,55 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "732da83a-0ddd-4168-b117-2a4d0d7558e7",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Collecting optuna\n",
|
||||
" Downloading optuna-3.6.1-py3-none-any.whl.metadata (17 kB)\n",
|
||||
"Collecting alembic>=1.5.0 (from optuna)\n",
|
||||
" Downloading alembic-1.13.1-py3-none-any.whl.metadata (7.4 kB)\n",
|
||||
"Collecting colorlog (from optuna)\n",
|
||||
" Downloading colorlog-6.8.2-py3-none-any.whl.metadata (10 kB)\n",
|
||||
"Requirement already satisfied: numpy in c:\\users\\dres2\\anaconda3\\lib\\site-packages (from optuna) (1.26.4)\n",
|
||||
"Requirement already satisfied: packaging>=20.0 in c:\\users\\dres2\\anaconda3\\lib\\site-packages (from optuna) (23.1)\n",
|
||||
"Requirement already satisfied: sqlalchemy>=1.3.0 in c:\\users\\dres2\\anaconda3\\lib\\site-packages (from optuna) (2.0.25)\n",
|
||||
"Requirement already satisfied: tqdm in c:\\users\\dres2\\anaconda3\\lib\\site-packages (from optuna) (4.65.0)\n",
|
||||
"Requirement already satisfied: PyYAML in c:\\users\\dres2\\anaconda3\\lib\\site-packages (from optuna) (6.0.1)\n",
|
||||
"Collecting Mako (from alembic>=1.5.0->optuna)\n",
|
||||
" Downloading Mako-1.3.5-py3-none-any.whl.metadata (2.9 kB)\n",
|
||||
"Requirement already satisfied: typing-extensions>=4 in c:\\users\\dres2\\anaconda3\\lib\\site-packages (from alembic>=1.5.0->optuna) (4.9.0)\n",
|
||||
"Requirement already satisfied: greenlet!=0.4.17 in c:\\users\\dres2\\anaconda3\\lib\\site-packages (from sqlalchemy>=1.3.0->optuna) (3.0.1)\n",
|
||||
"Requirement already satisfied: colorama in c:\\users\\dres2\\anaconda3\\lib\\site-packages (from colorlog->optuna) (0.4.6)\n",
|
||||
"Requirement already satisfied: MarkupSafe>=0.9.2 in c:\\users\\dres2\\anaconda3\\lib\\site-packages (from Mako->alembic>=1.5.0->optuna) (2.1.3)\n",
|
||||
"Downloading optuna-3.6.1-py3-none-any.whl (380 kB)\n",
|
||||
" ---------------------------------------- 0.0/380.1 kB ? eta -:--:--\n",
|
||||
" ----------------- --------------------- 174.1/380.1 kB 10.9 MB/s eta 0:00:01\n",
|
||||
" ---------------------------------------- 380.1/380.1 kB 6.0 MB/s eta 0:00:00\n",
|
||||
"Downloading alembic-1.13.1-py3-none-any.whl (233 kB)\n",
|
||||
" ---------------------------------------- 0.0/233.4 kB ? eta -:--:--\n",
|
||||
" ---------------------------------------- 233.4/233.4 kB 7.2 MB/s eta 0:00:00\n",
|
||||
"Downloading colorlog-6.8.2-py3-none-any.whl (11 kB)\n",
|
||||
"Downloading Mako-1.3.5-py3-none-any.whl (78 kB)\n",
|
||||
" ---------------------------------------- 0.0/78.6 kB ? eta -:--:--\n",
|
||||
" ---------------------------------------- 78.6/78.6 kB 4.3 MB/s eta 0:00:00\n",
|
||||
"Installing collected packages: Mako, colorlog, alembic, optuna\n",
|
||||
"Successfully installed Mako-1.3.5 alembic-1.13.1 colorlog-6.8.2 optuna-3.6.1\n",
|
||||
"Note: you may need to restart the kernel to use updated packages.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install optuna"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
|
@ -484,7 +534,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.2"
|
||||
"version": "3.11.7"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
|
|
@ -3,16 +3,20 @@
|
|||
import numpy as np
|
||||
import pandas as pd
|
||||
from utils import fullRead, scaling
|
||||
from sklearn.experimental import enable_iterative_imputer
|
||||
from sklearn.impute import IterativeImputer
|
||||
|
||||
# Gráficos
|
||||
# ==============================================================================
|
||||
from plotting import plotTestVsPredicted, plotResiduals
|
||||
|
||||
# Modelado
|
||||
# ==============================================================================
|
||||
import xgboost
|
||||
from xgboost import XGBRFRegressor
|
||||
from sklearn.metrics import mean_squared_error
|
||||
from xgboost import XGBRegressor
|
||||
from sklearn.model_selection import train_test_split
|
||||
import sklearn
|
||||
from XGBFfit import XGBfit
|
||||
from RFfit import RFfit
|
||||
|
||||
import optuna
|
||||
import time
|
||||
|
||||
|
@ -22,28 +26,44 @@ import warnings
|
|||
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
||||
warnings.filterwarnings("ignore", category=FutureWarning)
|
||||
optuna.logging.set_verbosity(optuna.logging.WARNING)
|
||||
import sys
|
||||
print(f"XGBoost version: {xgboost.__version__}")
|
||||
print(f"Optuna version: {optuna.__version__}")
|
||||
print(f"Scikit-learn version: {sklearn.__version__}")
|
||||
|
||||
import sys
|
||||
|
||||
paths = ["plasmFlav_ord.csv", "plasmAnt_ord.csv", "urineFlav_ord.csv", "urineAnt_ord.csv"]
|
||||
paths = ["../data/" + s for s in paths]
|
||||
|
||||
df, df_name = fullRead(paths[2], sep = ",", full = False)
|
||||
df, df_name = fullRead(paths[2], sep = ",", full = True)
|
||||
#Sweetener: object, Sex: object, Weight: object, BMI: object, Fat: object, CVRI: object, Bpmin: object, Bpmax: object, Frec: object
|
||||
full = True
|
||||
full = False
|
||||
|
||||
if not full:
|
||||
df[['Weight', 'BMI', "Fat", "CVRI", "Bpmin", "Bpmax", "Frec"]] = df[['Weight', 'BMI', "Fat", "CVRI", "Bpmin", "Bpmax", "Frec"]].apply(pd.to_numeric)
|
||||
df.replace([0,1], np.nan, inplace = True)
|
||||
df.dropna(inplace = True)
|
||||
|
||||
# testing imputation
|
||||
|
||||
df['HE.G'].where(df['HE.G'] > 2, np.nan, inplace=True)
|
||||
|
||||
df.replace([0,1,0.0,1.1], np.nan, inplace = True)
|
||||
|
||||
# df.dropna(inplace = True)
|
||||
|
||||
iimp = IterativeImputer(
|
||||
estimator = XGBRegressor(),
|
||||
random_state = 42,
|
||||
verbose = 2,
|
||||
)
|
||||
|
||||
iimp.set_output(transform="pandas")
|
||||
df_categorical = df[['Sex', 'Sweetener', 'Time']]
|
||||
df_imp = iimp.fit_transform(df.drop(['Sex', 'Sweetener', 'Time'],axis = 1))
|
||||
df = pd.concat([df_imp, df_categorical], axis = 1)
|
||||
|
||||
df[['Sex', 'Sweetener']] = df[['Sex', 'Sweetener']].astype("category")
|
||||
print(df)
|
||||
print(df.any([1]))
|
||||
sys.exit("julaii!")
|
||||
|
||||
df.to_csv("../results/df_imputed.csv", sep = ";")
|
||||
|
||||
#df = scaling(df)
|
||||
df = scaling(df[df["numVol"].duplicated(keep=False)])
|
||||
#df = scaling(df[df["numVol"].duplicated(keep=False)])
|
||||
|
||||
X = df[df["Time"] == "Initial"].set_index("numVol").drop(["Time"], axis=1)
|
||||
y = df[df["Time"] == "Final"].set_index("numVol").drop(["Time", "Sweetener", "Sex"], axis = 1)
|
||||
|
@ -51,7 +71,7 @@ y = df[df["Time"] == "Final"].set_index("numVol").drop(["Time", "Sweetener", "Se
|
|||
X_train, X_test, y_train, y_test = train_test_split(
|
||||
X,
|
||||
y,
|
||||
train_size = 0.8,
|
||||
train_size = 0.9,
|
||||
random_state = 42,
|
||||
shuffle = True
|
||||
)
|
||||
|
@ -59,7 +79,7 @@ X_train, X_test, y_train, y_test = train_test_split(
|
|||
X_train, X_val, y_train, y_val = train_test_split(
|
||||
X_train,
|
||||
y_train,
|
||||
train_size = 0.8,
|
||||
train_size = 0.9,
|
||||
random_state = 42,
|
||||
shuffle = True
|
||||
)
|
||||
|
@ -68,88 +88,54 @@ print("Observaciones en train:", X_train.shape)
|
|||
print("Observaciones en validation:", X_val.shape)
|
||||
print("Observaciones en test:", X_test.shape)
|
||||
|
||||
# Búsqueda bayesiana de hiperparámetros con optuna
|
||||
# ==============================================================================
|
||||
def objective(trial):
|
||||
params = {
|
||||
'n_estimators': trial.suggest_int('n_estimators', 100, 1000, step=100),
|
||||
'max_depth': trial.suggest_int('max_depth', 3, 30),
|
||||
'reg_lambda': trial.suggest_float('reg_lambda', 1e-5, 1e+3, log=True),
|
||||
'reg_alpha': trial.suggest_float('reg_alpha', 1e-5, 1e+3, log=True),
|
||||
'gamma': trial.suggest_float('gamma', 1e-5, 1e+3, log=True),
|
||||
'subsample': trial.suggest_float('subsample', 0.5, 1),
|
||||
'colsample_bynode': trial.suggest_float('colsample_bynode', 0.5, 1),
|
||||
}
|
||||
print(" ----------------- STARTING RF ----------------- ")
|
||||
|
||||
model = XGBRFRegressor(
|
||||
tree_method = 'hist',
|
||||
grow_policy = 'depthwise',
|
||||
n_jobs = -1,
|
||||
learning_rate=1,
|
||||
random_state = 42,
|
||||
enable_categorical = True,
|
||||
missing = np.nan,
|
||||
multi_strategy="multi_output_tree",
|
||||
**params
|
||||
)
|
||||
model.fit(X_train, y_train)
|
||||
predictions = model.predict(X_val)
|
||||
score = mean_squared_error(y_val, predictions, squared=False)
|
||||
return score
|
||||
|
||||
study = optuna.create_study(direction='minimize')
|
||||
study.optimize(objective, n_trials=50, show_progress_bar=True, timeout=60*10)
|
||||
modelname = "rf_XGB"
|
||||
|
||||
print('Mejores hiperparámetros:', study.best_params)
|
||||
print('Mejor score:', study.best_value)
|
||||
|
||||
# Random Forest XGBoost con los mejores hiperparámetros encontrados
|
||||
# ==============================================================================
|
||||
prueba_RFXGB = XGBRFRegressor(
|
||||
tree_method = 'hist',
|
||||
grow_policy = 'depthwise',
|
||||
n_jobs = -1,
|
||||
learning_rate=1,
|
||||
random_state = 42,
|
||||
enable_categorical = True,
|
||||
missing = np.nan,
|
||||
multi_strategy="multi_output_tree",
|
||||
**study.best_params
|
||||
)
|
||||
|
||||
# Entrenamiento del modelo
|
||||
start = time.time()
|
||||
prueba_RFXGB.fit(
|
||||
X = pd.concat([X_train, X_val]),
|
||||
y = pd.concat([y_train, y_val])
|
||||
)
|
||||
|
||||
rf_XGB = RFfit(X_train, X_test, X_val, y_train, y_test, y_val)
|
||||
|
||||
end = time.time()
|
||||
tiempo_entrenamiento_xgboost = end - start
|
||||
|
||||
# Predicciones test
|
||||
start = time.time()
|
||||
predicciones = prueba_RFXGB.predict(X=X_test)
|
||||
end = time.time()
|
||||
tiempo_prediccion_xgboost = end - start
|
||||
tiempo_entrenamiento_RF = end - start
|
||||
|
||||
# Error de test del modelo
|
||||
rmse_rf_xgboost = mean_squared_error(
|
||||
y_true = y_test,
|
||||
y_pred = predicciones,
|
||||
squared = False
|
||||
)
|
||||
|
||||
print(f"Tiempo entrenamiento: {tiempo_entrenamiento_xgboost:.2f} segundos")
|
||||
print(f"Tiempo predicción: {tiempo_prediccion_xgboost:.2f} segundos")
|
||||
print(f"RMSE: {rmse_rf_xgboost:.2f}")
|
||||
|
||||
# saving predicted
|
||||
print(" ----------------- PREDICTING AND JOINING PRED + TEST ----------------- ")
|
||||
|
||||
modelname = "prueba_RFXGB_little"
|
||||
print(f"Tiempo entrenamiento: {tiempo_entrenamiento_RF:.2f} segundos")
|
||||
|
||||
# make predict
|
||||
y_pred = prueba_RFXGB.predict(X_test)
|
||||
y_pred = rf_XGB.predict(X_test)
|
||||
# pred_prueba_DF = pd.DataFrame(pred_prueba, index = X_test.index-1, columns=y_test.columns).add_suffix("_pred").join(y_test.add_suffix('_test')).fillna(0)
|
||||
df_predTest = pd.DataFrame([i for i in y_pred], index = y_test.index, columns= y_test.columns).add_suffix("_pred").join(y_test.add_suffix('_test')).fillna(0)
|
||||
df_predTest.reindex(sorted(df_predTest.columns), axis=1).to_csv("../results/predicts/df_pred-test_"+modelname+".csv", sep = ",")
|
||||
|
||||
# plotting
|
||||
metabs = y_test.columns.drop(list(y_test.filter(regex='Sex|Sweetener')))
|
||||
plotTestVsPredicted (metabs=metabs, df_predTest=df_predTest, modelname=modelname)
|
||||
plotResiduals(metabs=metabs, df_predTest=df_predTest, modelname=modelname)
|
||||
|
||||
|
||||
print(" ----------------- STARTING XGB ----------------- ")
|
||||
|
||||
|
||||
modelname = "xgb_XGB"
|
||||
|
||||
start = time.time()
|
||||
|
||||
xgb_XGB = XGBfit(X_train, X_test, X_val, y_train, y_test, y_val)
|
||||
|
||||
end = time.time()
|
||||
|
||||
tiempo_entrenamiento_XGB = end - start
|
||||
|
||||
print(f"Tiempo entrenamiento: {tiempo_entrenamiento_XGB:.2f} segundos")
|
||||
|
||||
# saving predicted
|
||||
print(" ----------------- PREDICTING AND JOINING PRED + TEST ----------------- ")
|
||||
|
||||
|
||||
# make predict
|
||||
y_pred = xgb_XGB.predict(X_test)
|
||||
# pred_prueba_DF = pd.DataFrame(pred_prueba, index = X_test.index-1, columns=y_test.columns).add_suffix("_pred").join(y_test.add_suffix('_test')).fillna(0)
|
||||
df_predTest = pd.DataFrame([i for i in y_pred], index = y_test.index, columns= y_test.columns).add_suffix("_pred").join(y_test.add_suffix('_test')).fillna(0)
|
||||
df_predTest.reindex(sorted(df_predTest.columns), axis=1).to_csv("../results/predicts/df_pred-test_"+modelname+".csv", sep = ",")
|
||||
|
|