Demo for the presentation ‘Getting insights from automatic feeder
data’

Luis Gonzalez-Gracia (lagog6@ulaval.ca) Twitter - Qgonzaluisandres

28 September 2022

Abstract

This short R Notebook will show the workflow as presented in my presentation today. We will grab
to different sources of data, and do some wrangling, visualization, and analysis. The script can also be
accessed in the demo.R file, also in this repository.

How to get and run this files on your own computer:

THEFILES)

!

ARE IN THE COMPUTER®!.

] & i]

Figure 1: Some of you might be too young to get the reference

You can run and tweak this code by cloning my repository. If you do not know what a repository is, I
recommend you to begin reading about it if you want to work collaboratively with other people.

1. Install git https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
2. Go to the folder you want the folder with the files to be located.
3. Open that folder in the terminal and type

mailto:lagog6@ulaval.ca
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

git clone https://git.disroot.org/luangonz/feeder-analytics-demo.git

Cloning into ’feeder-analytics-demo’...

Git will automatically create a folder and download all the files required to run this code.

Setup

Since the idea of this project is to be as modular and automated as possible, I created a set of custom
functions that do the heavy lifting in the background, without cluttering too much the script file. This
has some advantages and disadvantages, since although it is easier to read and the workflow is easy to
follow along, if issues appear, then debugging and following the function that originated the issue is more
time-consuming.

The folder is organized in the main project files and two folders:

e The data folder holds the data files we will be loading into the environment.
e The setup folder (used in this section) holds two key files:

— functions.R that holds all the custom functions
— loadlibraries.R that has all the libraries needed for any script file that uses the same set of
libraries (so you do not need to copy and paste it in every file of the project)

When we run the source() function at this step, we are loading both the libraries and the functions that
we are going to use throughout the demo.

source ("setup/functions.R")
source("setup/loadlibraries.R")

Importing data

First step in the process is to load the excel file in the environment. There are packages that can natively
import excel files that are very straightforward, but some of them do not handle the Date information
properly. For this I have a custom function that takes into account some common issues and with the
method = parameter, I can fine-tune the importing method according to where the data comes from.

farmA <- x1lsx_to_dataframe("data/farm_A_demo.xlsx", # selects the file
"farm_A_11lrows") # selects the farm A method

Lucky for us, farm B has its data directly formatted in the RData format, which helps a lot in the importing
process. A simple load () function and the data is there.

load("data/farmB.RData") # load the file into the environment

farmB <- data_alim # renaming to make it a better understandable filename
rm(data_alim) # removing the original imported dataframe

Checking structure of data

We will look at the raw imported data as it comes from the import procedure.

str(farmA)

tibble [268,199 x 10] (83: tbl_df/tbl/data.frame)
$ Date : POSIXct[1:268199], format: "2021-04-27" "2021-04-27"

$ Tatouage: chr [1:268199] NA NA NA NA ...

$ Station : num [1:268199] 1 111111111

$ pdsdeb : num [1:268199] 1.408 1.392 0.778 1.248 1.247 ...

$ pdsfin : num [1:268199] 1.392 1.385 0.771 1.189 1.245 ...

¢ cons : num [1:268199] 0.016 0.007 0.007 0.059 0.002 0.02 0.04 0.468 0.261 0.364 ...
$ remp : num [1:268199] 0 0 0 0 0 0 0 0 0 0.48 ...

$ hredeb : chr [1:268199] "4:43:19" "4:44:09" "8:06:28" "8:38:20"

$ hrefin : chr [1:268199] "4:43:43" "4:44:14" "8:06:40" "8:40:52"

$ dureel : chr [1:268199] "0:00:24" "0:00:05" "0:00:12" "0:02:32"

We see some issues that are of concern, for example time of start of visit is not in a proper date/time type,
but it is only a character. Lets check Farm B:

str(farmB)

’data.frame’: 32827 obs. of 12 variables:

$ Date_fin : Date, format: "2020-05-12" "2020-05-12"

$ Animal : chr "4817" "4817" "4815" "4817"

¢ RFID : num 7406487 7406487 13333982 7406487 13333982 ...
§ Parc :int 66 6 6 6 66666 ...

$ Poids_aliment_debut: num 13.4 13.4 13.4 13.4 13.4 ...

§ Poids_aliment_fin : num 13.4 13.4 13.4 13.4 13.4 ...

¢ Qte_aliment :num 0 0.01 -0.01 000000 0.01 ...

$ Tdebut : chr "10:28:15" "10:30:06" "10:32:47" "10:34:17"
$ Tfin : chr "10:28:56" "10:32:47" "10:34:17" "10:34:42"
$ Duree_insentec :num 0.41 2.41 1.3 0.25 0.36 0.21 0.05 0.1 0.58 0.02 ...
$ Dummy :num 00000000O0O0 ...

$ Duree_s : num 41 161 90 25 36 21 5 10 58 2 ...

Similar issues with the time and also the titles of the variables between these two are different, making it
hard to work with them with just a piece of code. So the strategy is to take this (or any) kind of dataframe
that we work with, and standardize it to a format that any of the next functions can work with. Next step
then, is standardization.

Standardization

The harmonize_feeder_data() function is a custom function that allows us to funnel any kind of source
file into a single, homogenous data structure so it can be fed into the following functions in the workflow. It
has two parameters:

o groupstations: If TRUE, the station number becomes a group in the dataframe (useful for summa-
rizations).

e method: a selector for the method that it will use, according to which source the data frame comes
from

o remove_filling: if TRUE, it will remove the FILLING events of the feeder (when the feeder is filled
up).

e remove_na: if TRUE, it will remove unavailable data that might interfere in some of the calculations.

farmB_standard <- harmonize_feeder_data(farmB,
TRUE,
"deschambault")

farmA_standard <- harmonize_feeder_data(farmA,

TRUE,
"farm A_raw",
TRUE,
TRUE)

We will check the structure again to see if everything is in order:
str(farmA_standard)
tibble [261,636 x 9] (S3: tbl_df/tbl/data.frame)
$ Date : POSIXct[1:261636], format: "2021-04-27" "2021-04-27"
$ id : Factor w/ 308 levels "SOGE60281J","SOGE60286J",..: 4 4 44777777 ...
$ station : Factor w/ 22 levels "i",m"2m "3" "4" . : 1111111111 ...
$ pdsdeb : num [1:261636] 1.282 1.068 0.991 1.03 1.448 ...
$ pdsfin : num [1:261636] 0.814 0.807 0.627 0.524 1.282 ...
$ cons : num [1:261636] 0.468 0.261 0.364 0.506 0.166 0.265 0.209 0.092 0.122 0.295 ..
$ hour.in : POSIXct[1:261636], format: "2021-04-27 04:56:28" "2021-04-27 08:54:00"
$ hour.out : POSIXct[1:261636], format: "2021-04-27 05:15:48" "2021-04-27 09:05:44"
$ visit_dur_secs: ’difftime’ num [1:261636] 1160 704 1306 1651 ...
#t ..— attr(*, "units")= chr "secs"
str(farmB_standard)
’data.frame’: 26853 obs. of 9 variables:
$ Date : Date, format: "2020-05-12" "2020-05-12"
$ id : Factor w/ 20 levels "4804","4805",..: 14 14 12 14 12 14 1 14 55 ...
$ station : Factor w/ 1 level "6": 1 111111111
$ pdsdeb :num 13.4 13.4 13.4 13.4 13.4 ...
$ pdsfin :num 13.4 13.4 13.4 13.4 13.4 ...
$ cons :num 0 0.01 -0.01 00 00O0O0 0.01
$ hour.in : POSIXct, format: "2020-05-12 10:28:15" "2020-05-12 10:30:06"
$ hour.out : POSIXct, format: "2020-05-12 10:28:56" "2020-05-12 10:32:47"
¢ visit_dur_secs: ’difftime’ num 41 161 90 25 ...
..— attr(x, "units")= chr "secs"

With this function we‘ve managed to homogenize the data structure so we can move on now to our next
step.

Inspecting data integrity

Well be running some more custom functions to plot valuable data.

Population plot

Farm A has 22 different pens. It would be valuable to see if there are any issues regarding the population
of these pens, for example a quick reduction or increase in size or a quick drop due to data loss form the
hardware

Population plot of farm A

populationPlot(farmA_standard)

1 2 3 4 5
Y _—vwv—y
10-
5-
O-
6 7 8 9 10
5 - N v PE—
10-
5-
0-
11 12 13 14 15
—_— v — [-
c 10-
5-
0-
16 17 18 19 20
10-
5-
0- L T Y T [T T BN |
- 4 4 4 94 I I dI I dJ <
2 TS N O S A G G
10- FC 1=t T 7% 3338 3858
5- 8 8§ 8§ 8§ § ¥ ¥ &8 & & & ™
O-IIIIIIIIOOOOOOOOOOOO
N N N NN N NN NN NN
L e T e I e R e B e I o I o |
T 2T 9?9 9 2 2 9 9
n © ~ To) © o~ ©
T T 2 T T 72 979
T 4 d Hd -
AN NN NN NN NN
o o o o o o o o
N N N NN N NN

Date

Population plot of farm B

populationPlot (farmB_standard)

‘summarise() ¢ has grouped output by ’station’. You can override using the
¢.groups‘ argument.
pad applied on the interval: day

PR | W | W—

10-

1 1 1 1
— — — —
9 9 9 9
(o] N~ [ee] (@]
9 9 9 9
o o o o
[aN] N N N
o o o o
[qV] [a\] N N

Date

We can evidence with these plots that there are some pen size fluctuations and some data loss in some of
the periods. These losses will need to be taken into account during the analyses.

Visualizing visits to the feeder

We can visualize a timeline of visits to the feeder for any station or day with this custom function,
visitPlotsDay():

visitPlotsDay(farmA_standard,
thedate = "2021-06-03",
thestation = 11,
singlestrip = FALSE)

id
EEEEEEEEEERERRE®G

SOGEG60372J
SOGEG0379J
SOGE60399J
SOGEG60419J
SOGE60435J
SOGE60465J
SOGE60480J
SOGE60503J
SOGE60512J
SOGE60536J
SOGE60549J
SOGE60566J
SOGE60591J
SOGE60606J

Jun 03 00:00 Jun 03 06:00 Jun 03 12:00 Jun 03 18:00 Jun 04 00:00
hour.in

With the last plot, we have one line per pig, but sometimes seeing all the visit in a single line is useful. This
is what the singlestrip parameter is useful for.

visitPlotsDay(farmA_standard,
thedate = "2021-06-03",
thestation = 11,
singlestrip = TRUE)

- S0GE604353
. SOGE60465J
. SOGE60480J
o
>
. SOGE60503J
Jun0300:00 Jun0306:00 Jun0312:00 Jun0318:00 Jun 04 00:0 SOGE60536J
hour.in

A birdseye view of all the data for a station

The inspectDay function can show the visits to a feeder for the whole period, in a single plot. It can also
show a population plot similar to the previous section.

inspectDay(farmA_standard, thestation = 11)
‘summarise() ¢ has grouped output by ’station’. You can override using the

¢.groups‘ argument.
pad applied on the interval: day

20~
o 15-
£
o 10~
5-
0-
11
p—a
10~
<
5-
0- 1 1 1
I - I
o o o
& & L
7 7 7
- — i
N N N
o o o
N N N
Date

Building network visualizations and analyisis

Building the igraph objects and plotting

The following steps succesively converts the data into the network objects of the igraph package.

farmA_list <- makeAllStationsPerdate(farmA_standard, "F")
farmA_pairs <- makePairsPerStation(farmA_list, 5) # TAKES A LONG TIME
farmA_network <- makeIGraphObjects(farmA_pairs, T

plot(farmA_network[["12"]1] [["2021-05-20"1])

SOGEB0830J

SOGEB0801J
SOGER0784) SOGEB0764)

GE$1028J
SOGES SOGEB1036J

SOG4 @menosa)

SOGEB098IGEB0781J

Making summarizations based on the network data

The following steps will analyze how a whole-network parameter, the Network Density progresses through
time. It looks that there is a downward trend in the group we are studying.

getmetheplot_pliz("Farm A",

farmA_standard,
12)

10

https://methods.sagepub.com/reference/the-sage-encyclopedia-of-educational-research-measurement-and-evaluation/i14550.xml

Edge density across time
Farm A, Station 12

1.00-

0.75-

Edge density
o
g

o % ° o o © o ®

o’ o
° o, o 0% oo .o...o °, e .o.“ 1 ..
0.25- ° ° C e o %

0.00-

2021-05-24 2021-06-07 2021-06-21 2021-07-05 2021-07-19 2021-08-02 2021-08-1

Date

The reason why this trend occurs is not clear, but it could be that these animals are learning to
avoid each other. Another possible explanation is that the animals are going less to the feeder as
they grow, and thus there is less of a chance that the animals can interact with each other. The
getmetheplot_pliz_but_corrected_this_time() function corrects the network density by the times the

animals visit the feeder.
"Farm A",

farmA_standard,
5)

getmetheplot_pliz_but_corrected_this_time(

11

Edge density across time
Corrected daily amount of feeding bouts. Farm A, Station 5

0.003- -
[]
o)
©
5 °
S . . .
5 0.002- o o o o
[]
8 °)
;\ ® [] [[]
i °)
‘N o® ¢ ° o ° o o, °
S . .
° ° °
ke 1 . e %o o ° °
() ° [1) [
[@)] ° [] o)
v ¢ °) * s *
0.001 - * 1. SSE e
o % . .o ° o®
[] o [
[

2021-05-03 2021-05-17 2021-05-31 2021-06-14 2021-06-28 2021-07-12
Date

Even with this correction, we still see a downward trend.

Thanks for reading all of this, you can reach me at Microsoft Teams or e-mail at lagog6@ulaval. ca.

12

mailto:lagog6@ulaval.ca

	How to get and run this files on your own computer:
	Setup
	Importing data
	Checking structure of data
	Standardization
	Inspecting data integrity
	Population plot
	Population plot of farm A
	Population plot of farm B

	Visualizing visits to the feeder
	A birdseye view of all the data for a station

	Building network visualizations and analyisis
	Building the igraph objects and plotting
	Making summarizations based on the network data

