syncevolution/src/syncevo/GLibSupport.h

1057 lines
40 KiB
C++

/*
* Copyright (C) 2011 Intel Corporation
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) version 3.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301 USA
*/
#ifndef INCL_GLIB_SUPPORT
# define INCL_GLIB_SUPPORT
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <syncevo/util.h>
#ifdef HAVE_GLIB
# include <glib-object.h>
# include <gio/gio.h>
#else
typedef void *GMainLoop;
#endif
#include <boost/shared_ptr.hpp>
#include <boost/intrusive_ptr.hpp>
#include <boost/utility.hpp>
#include <boost/foreach.hpp>
#include <boost/function.hpp>
#include <boost/bind.hpp>
#include <boost/type_traits/remove_pointer.hpp>
#include <boost/type_traits/function_traits.hpp>
#include <boost/utility/value_init.hpp>
#include <boost/lambda/lambda.hpp>
#include <boost/typeof/typeof.hpp>
#include <iterator>
#include <memory>
#include <syncevo/declarations.h>
SE_BEGIN_CXX
enum {
GLIB_SELECT_NONE = 0,
GLIB_SELECT_READ = 1,
GLIB_SELECT_WRITE = 2
};
enum GLibSelectResult {
GLIB_SELECT_TIMEOUT, /**< returned because not ready after given amount of time */
GLIB_SELECT_READY, /**< fd is ready */
GLIB_SELECT_QUIT /**< something else caused the loop to quit, return to caller immediately */
};
/**
* Waits for one particular file descriptor to become ready for reading
* and/or writing. Keeps the given loop running while waiting.
*
* @param loop loop to keep running; must not be NULL
* @param fd file descriptor to watch, -1 for none
* @param direction read, write, both, or none (then fd is ignored)
* @param timeout timeout in seconds + nanoseconds from now, NULL for no timeout, empty value for immediate return
* @return see GLibSelectResult
*/
GLibSelectResult GLibSelect(GMainLoop *loop, int fd, int direction, Timespec *timeout);
#ifdef HAVE_GLIB
// Signal callback. Specializations will handle varying number of parameters.
template<class S> struct GObjectSignalHandler {
// static void handler();
// No specialization defined for the requested function prototype.
};
template<> struct GObjectSignalHandler<void ()> {
static void handler(gpointer data) throw () {
try {
(*reinterpret_cast< boost::function<void ()> *>(data))();
} catch (...) {
Exception::handle(HANDLE_EXCEPTION_FATAL);
}
}
};
template<class A1> struct GObjectSignalHandler<void (A1)> {
static void handler(A1 a1, gpointer data) throw () {
try {
(*reinterpret_cast< boost::function<void (A1)> *>(data))(a1);
} catch (...) {
Exception::handle(HANDLE_EXCEPTION_FATAL);
}
}
};
template<class A1, class A2> struct GObjectSignalHandler<void (A1, A2)> {
static void handler(A1 a1, A2 a2, gpointer data) throw () {
try {
(*reinterpret_cast< boost::function<void (A1, A2)> *>(data))(a1, a2);
} catch (...) {
Exception::handle(HANDLE_EXCEPTION_FATAL);
}
}
};
template<class A1, class A2, class A3> struct GObjectSignalHandler<void (A1, A2, A3)> {
static void handler(A1 a1, A2 a2, A3 a3, gpointer data) throw () {
try {
(*reinterpret_cast< boost::function<void (A1, A2, A3)> *>(data))(a1, a2, a3);
} catch (...) {
Exception::handle(HANDLE_EXCEPTION_FATAL);
}
}
};
template<class A1, class A2, class A3, class A4> struct GObjectSignalHandler<void (A1, A2, A3, A4)> {
static void handler(A1 a1, A2 a2, A3 a3, A4 a4, gpointer data) throw () {
try {
(*reinterpret_cast< boost::function<void (A1, A2, A3, A4)> *>(data))(a1, a2, a3, a4);
} catch (...) {
Exception::handle(HANDLE_EXCEPTION_FATAL);
}
}
};
template<class A1, class A2, class A3, class A4, class A5> struct GObjectSignalHandler<void (A1, A2, A3, A4, A5)> {
static void handler(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, gpointer data) throw () {
try {
(*reinterpret_cast< boost::function<void (A1, A2, A3, A4, A5)> *>(data))(a1, a2, a3, a4, a5);
} catch (...) {
Exception::handle(HANDLE_EXCEPTION_FATAL);
}
}
};
template<class A1, class A2, class A3, class A4, class A5, class A6> struct GObjectSignalHandler<void (A1, A2, A3, A4, A5, A6)> {
static void handler(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, gpointer data) throw () {
try {
(*reinterpret_cast< boost::function<void (A1, A2, A3, A4, A5, A6)> *>(data))(a1, a2, a3, a4, a5, a6);
} catch (...) {
Exception::handle(HANDLE_EXCEPTION_FATAL);
}
}
};
template<class A1, class A2, class A3, class A4, class A5, class A6, class A7> struct GObjectSignalHandler<void (A1, A2, A3, A4, A5, A6, A7)> {
static void handler(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, gpointer data) throw () {
try {
(*reinterpret_cast< boost::function<void (A1, A2, A3, A4, A5, A6, A7)> *>(data))(a1, a2, a3, a4, a5, a6, a7);
} catch (...) {
Exception::handle(HANDLE_EXCEPTION_FATAL);
}
}
};
template<class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8> struct GObjectSignalHandler<void (A1, A2, A3, A4, A5, A6, A7, A8)> {
static void handler(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8, gpointer data) throw () {
try {
(*reinterpret_cast< boost::function<void (A1, A2, A3, A4, A5, A6, A7, A8)> *>(data))(a1, a2, a3, a4, a5, a6, a7, a8);
} catch (...) {
Exception::handle(HANDLE_EXCEPTION_FATAL);
}
}
};
template<class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9> struct GObjectSignalHandler<void (A1, A2, A3, A4, A5, A6, A7, A8, A9)> {
static void handler(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8, A9 a9, gpointer data) throw () {
try {
(*reinterpret_cast< boost::function<void (A1, A2, A3, A4, A5, A6, A7, A8, A9)> *>(data))(a1, a2, a3, a4, a5, a6, a7, a8, a9);
} catch (...) {
Exception::handle(HANDLE_EXCEPTION_FATAL);
}
}
};
enum RefOwnership
{
TRANSFER_REF = false, /**<
* Create new smart pointer which steals an existing reference without
* increasing the reference count of the object.
*/
ADD_REF = true /**<
* Create new smart pointer which increases the reference count when
* storing the pointer to the object.
*/
};
template<class C> class TrackGObject : public boost::intrusive_ptr<C> {
typedef boost::intrusive_ptr<C> Base_t;
// Frees the instance of boost::function which was allocated
// by connectSignal.
template<class S> static void signalDestroy(gpointer data, GClosure *closure) throw () {
try {
delete reinterpret_cast< boost::function<void ()> *>(data);
} catch (...) {
Exception::handle(HANDLE_EXCEPTION_FATAL);
}
}
public:
TrackGObject(C *ptr, RefOwnership ownership) : Base_t(ptr, (bool)ownership) {}
TrackGObject() {}
TrackGObject(const TrackGObject &other) : Base_t(other) {}
operator C * () const { return Base_t::get(); }
operator bool () const { return Base_t::get() != NULL; }
C * ref() const { return static_cast<C *>(g_object_ref(Base_t::get())); }
static TrackGObject steal(C *ptr) { return TrackGObject(ptr, TRANSFER_REF); }
template<class S> guint connectSignal(const char *signal,
const boost::function<S> &callback) {
return g_signal_connect_data(Base_t::get(), signal,
G_CALLBACK(&GObjectSignalHandler<S>::handler),
new boost::function<S>(callback),
&signalDestroy<S>,
GConnectFlags(0));
}
void disconnectSignal(guint handlerID) {
g_signal_handler_disconnect(static_cast<gpointer>(Base_t::get()),
handlerID);
}
};
template<class C> class StealGObject : public TrackGObject<C> {
public:
StealGObject(C *ptr) : TrackGObject<C>(ptr, TRANSFER_REF) {}
StealGObject() {}
StealGObject(const StealGObject &other) : TrackGObject<C>(other) {}
};
template<class C> class TrackGLib : public boost::intrusive_ptr<C> {
typedef boost::intrusive_ptr<C> Base_t;
public:
TrackGLib(C *ptr, RefOwnership ownership) : Base_t(ptr, (bool)ownership) {}
TrackGLib() {}
TrackGLib(const TrackGLib &other) : Base_t(other) {}
operator C * () const { return Base_t::get(); }
operator bool () const { return Base_t::get() != NULL; }
C * ref() const { return static_cast<C *>(intrusive_ptr_add_ref(Base_t::get())); }
static TrackGLib steal(C *ptr) { return TrackGLib(ptr, TRANSFER_REF); }
};
template<class C> class StealGLib : public TrackGLib<C> {
public:
StealGLib(C *ptr) : TrackGLib<C>(ptr, TRANSFER_REF) {}
StealGLib() {}
StealGLib(const StealGLib &other) : TrackGLib<C>(other) {}
};
/**
* Defines a shared pointer for a GObject-based type, with intrusive
* reference counting. Use *outside* of SyncEvolution namespace
* (i.e. outside of SE_BEGIN/END_CXX. This is necessary because some
* functions must be put into the boost namespace. The type itself is
* *inside* the SyncEvolution namespace.
*
* connectSignal() connects a GObject signal to a boost::function with
* the function signature S. Returns the handler ID, which can be
* passed to g_signal_handler_disconnect() to remove the connection.
*
* Example:
* SE_GOBJECT_TYPE(GFile)
* SE_GOBJECT_TYPE(GObject)
* SE_BEGIN_CXX
* {
* // reference normally increased during construction,
* // steal() avoids that
* GFileCXX filecxx = GFileCXX::steal(g_file_new_for_path("foo"));
* GFile *filec = filecxx.get(); // does not increase reference count
* // file freed here as filecxx gets destroyed
* }
*
* GObjectCXX object(...);
* // Define signature explicitly because it cannot be guessed from
* // boost::bind() result.
* object.connectSignal<void (GObject *gobject, GParamSpec *pspec)>("notify",
* boost::bind(...));
* // Signature is taken from boost::function parameter.
* guint handlerID =
* object.connectSignal("notify",
* boost::function<void (GObject *, GParamSpec *)>(boost::bind(...)));
* object.disconnectSignal(handlerID);
* SE_END_CXX
*/
#define SE_GOBJECT_TYPE(_x) \
void inline intrusive_ptr_add_ref(_x *ptr) { g_object_ref(ptr); } \
void inline intrusive_ptr_release(_x *ptr) { g_object_unref(ptr); } \
SE_BEGIN_CXX \
typedef TrackGObject<_x> _x ## CXX; \
typedef StealGObject<_x> _x ## StealCXX; \
SE_END_CXX \
/**
* Defines a CXX smart pointer similar to SE_GOBJECT_TYPE,
* but for types which have their own _ref and _unref
* calls.
*
* Example:
* SE_GLIB_TYPE(GMainLoop, g_main_loop)
*/
#define SE_GLIB_TYPE(_x, _func_prefix) \
void inline intrusive_ptr_add_ref(_x *ptr) { _func_prefix ## _ref(ptr); } \
void inline intrusive_ptr_release(_x *ptr) { _func_prefix ## _unref(ptr); } \
SE_BEGIN_CXX \
typedef TrackGLib<_x> _x ## CXX; \
typedef StealGLib<_x> _x ## StealCXX; \
SE_END_CXX
SE_END_CXX
SE_GOBJECT_TYPE(GFile)
SE_GOBJECT_TYPE(GFileMonitor)
SE_GLIB_TYPE(GMainLoop, g_main_loop)
SE_GLIB_TYPE(GAsyncQueue, g_async_queue)
SE_GLIB_TYPE(GHashTable, g_hash_table)
SE_GLIB_TYPE(GIOChannel, g_io_channel)
SE_BEGIN_CXX
/**
* Wrapper around g_file_monitor_file().
* Not copyable because monitor is tied to specific callback
* via memory address.
*/
class GLibNotify : public boost::noncopyable
{
public:
typedef boost::function<void (GFile *, GFile *, GFileMonitorEvent)> callback_t;
GLibNotify(const char *file,
const callback_t &callback);
private:
GFileMonitorCXX m_monitor;
callback_t m_callback;
};
class SourceLocation; // Exception.h
/**
* Wraps GError. Where a GError** is expected, simply pass
* a GErrorCXX instance.
*/
struct GErrorCXX {
GError *m_gerror;
/** empty error, NULL pointer */
GErrorCXX() : m_gerror(NULL) {}
/** copies error content */
GErrorCXX(const GErrorCXX &other) : m_gerror(g_error_copy(other.m_gerror)) {}
GErrorCXX &operator =(const GErrorCXX &other) {
if (m_gerror != other.m_gerror) {
if (m_gerror) {
g_clear_error(&m_gerror);
}
if (other.m_gerror) {
m_gerror = g_error_copy(other.m_gerror);
}
}
return *this;
}
GErrorCXX &operator =(const GError* err) {
if (err != m_gerror) {
if (m_gerror) {
g_clear_error(&m_gerror);
}
if (err) {
m_gerror = g_error_copy(err);
}
}
return *this;
}
/** takes over ownership */
void take (GError *err) {
if (err != m_gerror) {
if (m_gerror) {
g_clear_error(&m_gerror);
}
m_gerror = err;
}
}
/** For convenient access to GError members (message, domain, ...) */
const GError * operator-> () const { return m_gerror; }
/**
* For passing to C functions. They must not free the GError,
* because GErrorCXX retains ownership.
*/
operator const GError * () const { return m_gerror; }
/** error description, with fallback if not set (not expected, so not localized) */
operator const char * () { return m_gerror ? m_gerror->message : "<<no error>>"; }
/** clear error */
~GErrorCXX() { g_clear_error(&m_gerror); }
/** clear error if any is set */
void clear() { g_clear_error(&m_gerror); }
/** transfer ownership of error back to caller */
GError *release() { GError *gerror = m_gerror; m_gerror = NULL; return gerror; }
/** checks whether the current error is the one passed as parameters */
bool matches(GQuark domain, gint code) const { return g_error_matches(m_gerror, domain, code); }
/**
* Use this when passing GErrorCXX instance to C functions which need to set it.
* Make sure the pointer isn't set yet (new GErrorCXX instance, reset if
* an error was encountered before) or the GNOME functions will complain
* when overwriting the existing error.
*/
operator GError ** () { return &m_gerror; }
/** true if error set */
operator bool () { return m_gerror != NULL; }
/**
* always throws an exception, including information from GError if available:
* <action>: <error message>|failure
*/
void throwError(const SourceLocation &where, const std::string &action);
static void throwError(const SourceLocation &where, const std::string &action, const GError *err);
};
template<class T> void NoopDestructor(T *) {}
template<class T> void GObjectDestructor(T *ptr) { g_object_unref(ptr); }
template<class T> void GFreeDestructor(T *ptr) { g_free(static_cast<void *>(ptr)); }
/**
* Copies strings from a collection into a newly allocated, NULL
* terminated array. Copying the strings is optional. Suggested
* usage is:
*
* C collection;
* collection.push_back(...);
* boost::scoped_array<char *> array(AllocStringArray(collection));
*
*/
template<typename T> char **AllocStringArray(const T &strings,
const char **(*allocArray)(size_t) = NULL,
void (*freeArray)(const char **) = NULL,
const char *(*copyString)(const char *) = NULL,
const void (*freeString)(char *) = NULL)
{
size_t arraySize = strings.size() + 1;
const char **array = NULL;
array = allocArray ? allocArray(arraySize) : new const char *[arraySize];
if (!array) {
throw std::bad_alloc();
}
try {
memset(array, 0, sizeof(*array) * arraySize);
size_t i = 0;
BOOST_FOREACH(const std::string &str, strings) {
array[i] = copyString ? copyString(str.c_str()) : str.c_str();
if (!array[i]) {
throw std::bad_alloc();
}
i++;
}
} catch (...) {
if (freeString) {
for (const char **ptr = array;
*ptr;
ptr++) {
freeString(const_cast<char *>(*ptr));
}
}
if (freeArray) {
freeArray(array);
}
throw;
}
return const_cast<char **>(array);
}
/**
* Wraps a G[S]List of pointers to a specific type.
* Can be used with boost::FOREACH and provides forward iterators
* (two-way iterators and reverse iterators also possible, but not implemented).
* Frees the list and optionally (not turned on by default) also frees
* the data contained in it, using the provided destructor class.
* Use GObjectDestructor for GObject instances.
*
* @param T the type of the instances pointed to inside the list
* @param L GList or GSList
* @param D destructor function freeing a T instance
*/
template< class T, class L, void (*D)(T*) = NoopDestructor<T> > struct GListCXX : boost::noncopyable {
L *m_list;
static void listFree(GSList *l) { g_slist_free(l); }
static void listFree(GList *l) { g_list_free(l); }
static GSList *listPrepend(GSList *list, T *entry) { return g_slist_prepend(list, (gpointer)entry); }
static GList *listPrepend(GList *list, T *entry) { return g_list_prepend(list, (gpointer)entry); }
static GSList *listAppend(GSList *list, T *entry) { return g_slist_append(list, (gpointer)entry); }
static GList *listAppend(GList *list, T *entry) { return g_list_append(list, (gpointer)entry); }
public:
typedef T * value_type;
/** by default initialize an empty list; if parameter is not NULL,
owership is transferred to the new instance of GListCXX */
GListCXX(L *list = NULL) : m_list(list) {}
/** free list */
~GListCXX() { clear(); }
/** free old content, take owership of new one */
void reset(L *list = NULL) {
clear();
m_list = list;
}
bool empty() { return m_list == NULL; }
/** clear error if any is set */
void clear() {
#if 1
BOOST_FOREACH(T *entry, *this) {
D(entry);
}
#else
for (iterator it = begin();
it != end();
++it) {
D(*it);
}
#endif
listFree(m_list);
m_list = NULL;
}
/**
* Use this when passing GListCXX instance to C functions which need to set it.
* Make sure the pointer isn't set yet (new GListCXX instance or cleared).
*/
operator L ** () { return &m_list; }
/**
* Cast to plain G[S]List, for use in functions which do not modify the list.
*/
operator L * () { return m_list; }
class iterator : public std::iterator<std::forward_iterator_tag, T *> {
L *m_entry;
public:
iterator(L *list) : m_entry(list) {}
iterator(const iterator &other) : m_entry(other.m_entry) {}
/**
* boost::foreach needs a reference as return code here,
* which forces us to do type casting on the address of the void * pointer,
* then dereference the pointer. The reason is that typecasting the
* pointer value directly yields an rvalue, which can't be used to initialize
* the reference return value.
*/
T * &operator -> () const { return *getEntryPtr(); }
T * &operator * () const { return *getEntryPtr(); }
iterator & operator ++ () { m_entry = m_entry->next; return *this; }
iterator operator ++ (int) { return iterator(m_entry->next); }
bool operator == (const iterator &other) { return m_entry == other.m_entry; }
bool operator != (const iterator &other) { return m_entry != other.m_entry; }
private:
/**
* Used above, necessary to hide the fact that we do type
* casting tricks. Otherwise the compiler will complain about
* *(T **)&m_entry->data with "dereferencing type-punned
* pointer will break strict-aliasing rules".
*
* That warning is about breaking assumptions that the compiler
* uses for optimizations. The hope is that those optimzations
* aren't done here, and/or are disabled by using a function.
*/
T** getEntryPtr() const { return (T **)&m_entry->data; }
};
iterator begin() { return iterator(m_list); }
iterator end() { return iterator(NULL); }
class const_iterator : public std::iterator<std::forward_iterator_tag, T *> {
L *m_entry;
T *m_value;
public:
const_iterator(L *list) : m_entry(list) {}
const_iterator(const const_iterator &other) : m_entry(other.m_entry) {}
T * &operator -> () const { return *getEntryPtr(); }
T * &operator * () const { return *getEntryPtr(); }
const_iterator & operator ++ () { m_entry = m_entry->next; return *this; }
const_iterator operator ++ (int) { return iterator(m_entry->next); }
bool operator == (const const_iterator &other) { return m_entry == other.m_entry; }
bool operator != (const const_iterator &other) { return m_entry != other.m_entry; }
private:
T** getEntryPtr() const { return (T **)&m_entry->data; }
};
const_iterator begin() const { return const_iterator(m_list); }
const_iterator end() const { return const_iterator(NULL); }
void push_back(T *entry) { m_list = listAppend(m_list, entry); }
void push_front(T *entry) { m_list = listPrepend(m_list, entry); }
};
/** use this for a list which owns the strings it points to */
typedef GListCXX<char, GList, GFreeDestructor<char> > GStringListFreeCXX;
/** use this for a list which does not own the strings it points to */
typedef GListCXX<char, GList> GStringListNoFreeCXX;
/**
* Wraps a C gchar array and takes care of freeing the memory.
*/
class PlainGStr : public boost::shared_ptr<gchar>
{
public:
PlainGStr() {}
PlainGStr(gchar *str) : boost::shared_ptr<char>(str, g_free) {}
PlainGStr(const PlainGStr &other) : boost::shared_ptr<gchar>(other) {}
operator const gchar *() const { return &**this; }
const gchar *c_str() const { return &**this; }
void reset(gchar *str) { *this = PlainGStr(str); }
};
/**
* Wraps a glib string array, frees with g_strfreev().
*/
class PlainGStrArray : public boost::shared_ptr<gchar *>
{
public:
PlainGStrArray() {}
PlainGStrArray(gchar **array) : boost::shared_ptr<char *>(array, g_strfreev) {}
PlainGStrArray(const PlainGStrArray &other) : boost::shared_ptr<char *>(other) {}
operator gchar * const *() const { return &**this; }
gchar * &at(size_t index) { return get()[index]; }
private:
// Hide this operator because boost::shared_ptr has problems with it,
// probably because of missing traits for a pointer type. Instead use
// at().
gchar * operator[] (size_t index);
};
// empty template, need specialization based on parameter and return types
template <class T, class F, F *finish, class A1, class A2, class A3, class A4, class A5> struct GAsyncReady5 {};
template <class T, class F, F *finish, class A1, class A2, class A3, class A4> struct GAsyncReady4 {};
template <class T, class F, F *finish, class A1, class A2, class A3> struct GAsyncReady3 {};
template <class T, class F, F *finish, class A1, class A2> struct GAsyncReady2 {};
template <class T, class F, F *finish, class A1> struct GAsyncReady1 {};
// empty template, need specializations based on arity
template<class F, F *finish, int arity> struct GAsyncReadyCXX {};
// five parameters of finish function
template<class F, F *finish> struct GAsyncReadyCXX<F, finish, 5> :
public GAsyncReady5<typename boost::function_traits<F>::result_type,
F, finish,
typename boost::function_traits<F>::arg1_type,
typename boost::function_traits<F>::arg2_type,
typename boost::function_traits<F>::arg3_type,
typename boost::function_traits<F>::arg4_type,
typename boost::function_traits<F>::arg5_type>
{
};
// four parameters
template<class F, F *finish> struct GAsyncReadyCXX<F, finish, 4> :
public GAsyncReady4<typename boost::function_traits<F>::result_type,
F, finish,
typename boost::function_traits<F>::arg1_type,
typename boost::function_traits<F>::arg2_type,
typename boost::function_traits<F>::arg3_type,
typename boost::function_traits<F>::arg4_type>
{
};
// three parameters
template<class F, F *finish> struct GAsyncReadyCXX<F, finish, 3> :
public GAsyncReady3<typename boost::function_traits<F>::result_type,
F, finish,
typename boost::function_traits<F>::arg1_type,
typename boost::function_traits<F>::arg2_type,
typename boost::function_traits<F>::arg3_type>
{
};
// two parameters
template<class F, F *finish> struct GAsyncReadyCXX<F, finish, 2> :
public GAsyncReady2<typename boost::function_traits<F>::result_type,
F, finish,
typename boost::function_traits<F>::arg1_type,
typename boost::function_traits<F>::arg2_type>
{
};
// one parameter
template<class F, F *finish> struct GAsyncReadyCXX<F, finish, 1> :
public GAsyncReady1<typename boost::function_traits<F>::result_type,
F, finish,
typename boost::function_traits<F>::arg1_type>
{
};
// For finish functions with return parameters the assumption is that
// they have a non-void return value. Otherwise there would be no need
// for the return parameters.
//
// result = GObject, GAsyncResult, A3, A4, A5
template<class T, class F, F *finish, class A1, class A3, class A4, class A5> struct GAsyncReady5<T, F, finish, A1, GAsyncResult *, A3, A4, A5>
{
typedef typename boost::remove_pointer<A3>::type A3_t;
typedef typename boost::remove_pointer<A4>::type A4_t;
typedef typename boost::remove_pointer<A5>::type A5_t;
typedef boost::function<void (T, A3_t, A4_t, A5_t)> CXXFunctionCB_t;
static void handleGLibResult(GObject *sourceObject,
GAsyncResult *result,
gpointer userData) throw () {
try {
A3_t retval1 = boost::value_initialized<A3_t>();
A4_t retval2 = boost::value_initialized<A4_t>();
A5_t retval3 = boost::value_initialized<A5_t>();
T t = finish(reinterpret_cast<A1>(sourceObject),
result, &retval1, &retval2, &retval3);
std::unique_ptr<CXXFunctionCB_t> cb(static_cast<CXXFunctionCB_t *>(userData));
(*cb)(t, retval1, retval2, retval3);
} catch (...) {
// called from C, must not let exception escape
Exception::handle(HANDLE_EXCEPTION_FATAL);
}
}
};
// result = GObject, GAsyncResult, A3, A4, GError
template<class T, class F, F *finish, class A1, class A3, class A4> struct GAsyncReady5<T, F, finish, A1, GAsyncResult *, A3, A4, GError **>
{
typedef typename boost::remove_pointer<A3>::type A3_t;
typedef typename boost::remove_pointer<A4>::type A4_t;
typedef boost::function<void (T, A3_t, A4_t, const GError *)> CXXFunctionCB_t;
static void handleGLibResult(GObject *sourceObject,
GAsyncResult *result,
gpointer userData) throw () {
try {
GErrorCXX gerror;
A3_t retval1 = boost::value_initialized<A3_t>();
A4_t retval2 = boost::value_initialized<A4_t>();
T t = finish(reinterpret_cast<A1>(sourceObject),
result, &retval1, &retval2, gerror);
std::unique_ptr<CXXFunctionCB_t> cb(static_cast<CXXFunctionCB_t *>(userData));
(*cb)(t, retval1, retval2, gerror);
} catch (...) {
// called from C, must not let exception escape
Exception::handle(HANDLE_EXCEPTION_FATAL);
}
}
};
// result = GObject, GAsyncResult, A3, A4
template<class T, class F, F *finish, class A1, class A3, class A4> struct GAsyncReady4<T, F, finish, A1, GAsyncResult *, A3, A4>
{
typedef typename boost::remove_pointer<A3>::type A3_t;
typedef typename boost::remove_pointer<A4>::type A4_t;
typedef boost::function<void (T, A3_t, A4_t)> CXXFunctionCB_t;
static void handleGLibResult(GObject *sourceObject,
GAsyncResult *result,
gpointer userData) throw () {
try {
A3_t retval1 = boost::value_initialized<A3_t>();
A4_t retval2 = boost::value_initialized<A4_t>();
T t = finish(reinterpret_cast<A1>(sourceObject),
result, &retval1, &retval2);
std::unique_ptr<CXXFunctionCB_t> cb(static_cast<CXXFunctionCB_t *>(userData));
(*cb)(t, retval1, retval2);
} catch (...) {
// called from C, must not let exception escape
Exception::handle(HANDLE_EXCEPTION_FATAL);
}
}
};
// result = GObject, GAsyncResult, A3, GError
template<class T, class F, F *finish, class A1, class A3> struct GAsyncReady4<T, F, finish, A1, GAsyncResult *, A3, GError **>
{
typedef typename boost::remove_pointer<A3>::type A3_t;
typedef boost::function<void (T, A3_t, const GError *)> CXXFunctionCB_t;
static void handleGLibResult(GObject *sourceObject,
GAsyncResult *result,
gpointer userData) throw () {
try {
GErrorCXX gerror;
A3_t retval = boost::value_initialized<A3_t>();
T t = finish(reinterpret_cast<A1>(sourceObject),
result, &retval, gerror);
std::unique_ptr<CXXFunctionCB_t> cb(static_cast<CXXFunctionCB_t *>(userData));
(*cb)(t, retval, gerror);
} catch (...) {
// called from C, must not let exception escape
Exception::handle(HANDLE_EXCEPTION_FATAL);
}
}
};
// res = GObject, GAsyncResult, GError
template <class T, class F, F *finish, class A1> struct GAsyncReady3<T, F, finish, A1, GAsyncResult *, GError **>{
typedef boost::function<void (T, const GError *)> CXXFunctionCB_t;
static void handleGLibResult(GObject *sourceObject,
GAsyncResult *result,
gpointer userData) throw () {
try {
GErrorCXX gerror;
T t = finish(reinterpret_cast<A1>(sourceObject),
result, gerror);
std::unique_ptr<CXXFunctionCB_t> cb(static_cast<CXXFunctionCB_t *>(userData));
(*cb)(t, gerror);
} catch (...) {
// called from C, must not let exception escape
Exception::handle(HANDLE_EXCEPTION_FATAL);
}
}
};
// void = GObject, GAsyncResult, GError
template<class F, F *finish, class A1> struct GAsyncReady3<void, F, finish, A1, GAsyncResult *, GError **>
{
typedef boost::function<void (const GError *)> CXXFunctionCB_t;
static void handleGLibResult(GObject *sourceObject,
GAsyncResult *result,
gpointer userData) throw () {
try {
GErrorCXX gerror;
finish(reinterpret_cast<A1>(sourceObject),
result, gerror);
std::unique_ptr<CXXFunctionCB_t> cb(static_cast<CXXFunctionCB_t *>(userData));
(*cb)(gerror);
} catch (...) {
// called from C, must not let exception escape
Exception::handle(HANDLE_EXCEPTION_FATAL);
}
}
};
// result = GObject, GAsyncResult
template<class T, class F, F *finish, class A1> struct GAsyncReady2<T, F, finish, A1, GAsyncResult *>
{
typedef boost::function<void (T)> CXXFunctionCB_t;
static void handleGLibResult(GObject *sourceObject,
GAsyncResult *result,
gpointer userData) throw () {
try {
T t = finish(reinterpret_cast<A1>(sourceObject),
result);
std::unique_ptr<CXXFunctionCB_t> cb(static_cast<CXXFunctionCB_t *>(userData));
(*cb)(t);
} catch (...) {
// called from C, must not let exception escape
Exception::handle(HANDLE_EXCEPTION_FATAL);
}
}
};
// result = GAsyncResult, GError
template<class T, class F, F *finish> struct GAsyncReady2<T, F, finish, GAsyncResult *, GError **> {
public:
typedef boost::function<void (T, const GError *)> CXXFunctionCB_t;
static void handleGLibResult(GObject *sourceObject,
GAsyncResult *result,
gpointer userData) throw () {
try {
GErrorCXX gerror;
T t = finish(result, gerror);
std::unique_ptr<CXXFunctionCB_t> cb(static_cast<CXXFunctionCB_t *>(userData));
(*cb)(t, gerror);
} catch (...) {
// called from C, must not let exception escape
Exception::handle(HANDLE_EXCEPTION_FATAL);
}
}
};
// void = GObject, GAsyncResult
template<class F, F *finish, class A1> struct GAsyncReady2<void, F, finish, A1, GAsyncResult *>
{
typedef boost::function<void ()> CXXFunctionCB_t;
static void handleGLibResult(GObject *sourceObject,
GAsyncResult *result,
gpointer userData) throw () {
try {
finish(reinterpret_cast<A1>(sourceObject),
result);
std::unique_ptr<CXXFunctionCB_t> cb(static_cast<CXXFunctionCB_t *>(userData));
(*cb)();
} catch (...) {
// called from C, must not let exception escape
Exception::handle(HANDLE_EXCEPTION_FATAL);
}
}
};
// void = GAsyncResult, GError
template<class F, F *finish> struct GAsyncReady2<void, F, finish, GAsyncResult *, GError **>
{
typedef boost::function<void (const GError *)> CXXFunctionCB_t;
static void handleGLibResult(GObject *sourceObject,
GAsyncResult *result,
gpointer userData) throw () {
try {
GErrorCXX gerror;
finish(result, gerror);
std::unique_ptr<CXXFunctionCB_t> cb(static_cast<CXXFunctionCB_t *>(userData));
(*cb)(gerror);
} catch (...) {
// called from C, must not let exception escape
Exception::handle(HANDLE_EXCEPTION_FATAL);
}
}
};
/**
* convenience macro for picking the GAsyncReadyCXX that matches the _prepare call:
* first switch based on arity of the finish function, then on its type
*/
#define SYNCEVO_GLIB_CALL_ASYNC_CXX(_prepare) \
GAsyncReadyCXX< boost::remove_pointer<BOOST_TYPEOF(_prepare ## _finish)>::type, \
& _prepare ## _finish, \
boost::function_traits<boost::remove_pointer<BOOST_TYPEOF(_prepare ## _finish)>::type>::arity >
/**
* Macro for asynchronous methods which use a GAsyncReadyCallback to
* indicate completion. The assumption is that there is a matching
* _finish function for the function which starts the operation.
*
* The boost::function callback will be called exactly once, with the
* following parameters:
* - return value of the _finish call, if non-void
* - all return parameters of the _finish call, in the order
* in which they appear there
* - a GError is passed as "const GError *", with NULL if the
* _finish function did not set an error; it does not have to
* be freed.
*
* Other parameters must be freed if required by the _finish semantic.
*
* Use boost::bind() with a boost::weak_ptr as second
* parameter when the callback belongs to an instance which is
* not guaranteed to be around when the operation completes.
*
* Example:
*
* static void asyncCB(const GError *gerror, const char *func, bool &failed, bool &done) {
* done = true;
* if (gerror) {
* failed = true;
* // log gerror->message or store in GErrorCXX
* }
* }
*
* bool done = false, failed = false;
* SYNCEVO_GLIB_CALL_ASYNC(folks_individual_aggregator_prepare,
* boost::bind(asyncCB, _1,
* "folks_individual_aggregator_prepare",
* boost::ref(failed), boost::ref(done)),
* aggregator);
*
* // Don't continue unless finished, because the callback will write
* // into "done" and possibly "failed".
* while (!done) {
* g_main_context_iteration(NULL, true);
* }
*
* @param _prepare name of the function which starts the operation
* @param _cb boost::function with GError pointer and optional result value;
* exceptions are considered fatal
* @param _args parameters of _prepare, without the final GAsyncReadyCallback + user_data pair;
* usually at least a GCancellable pointer is part of the arguments
*/
#define SYNCEVO_GLIB_CALL_ASYNC(_prepare, _cb, _args...) \
_prepare(_args, \
SYNCEVO_GLIB_CALL_ASYNC_CXX(_prepare)::handleGLibResult, \
new SYNCEVO_GLIB_CALL_ASYNC_CXX(_prepare)::CXXFunctionCB_t(_cb))
// helper class for finish method with some kind of result other than void
template<class T> class GAsyncReadyDoneCXX
{
public:
template<class R> static void storeResult(GErrorCXX &gerrorStorage,
R &resultStorage,
bool &done,
T result,
const GError *gerror) {
done = true;
gerrorStorage = gerror;
resultStorage = result;
}
template<class R> static boost::function<void (T, const GError *)> createCB(R &result, GErrorCXX &gerror, bool &done) {
return boost::bind(storeResult<R>, boost::ref(gerror), boost::ref(result), boost::ref(done), _1, _2);
}
};
// helper class for finish method with void result
template<> class GAsyncReadyDoneCXX<void>
{
public:
static void storeResult(GErrorCXX &gerrorStorage,
bool &done,
const GError *gerror) {
done = true;
gerrorStorage = gerror;
}
static boost::function<void (const GError *)> createCB(const int *dummy, GErrorCXX &gerror, bool &done) {
return boost::bind(storeResult, boost::ref(gerror), boost::ref(done), _1);
}
};
/**
* Like SYNCEVO_GLIB_CALL_ASYNC, but blocks until the operation
* has finished.
*
* @param _res an instance which will hold the result when done, NULL when result is void
* @param _gerror a GErrorCXX instance which will hold an error
* pointer afterwards in case of a failure
*/
#define SYNCEVO_GLIB_CALL_SYNC(_res, _gerror, _prepare, _args...) \
do { \
bool done = false; \
SYNCEVO_GLIB_CALL_ASYNC(_prepare, \
GAsyncReadyDoneCXX<boost::function<BOOST_TYPEOF(_prepare ## _finish)>::result_type>::createCB(_res, _gerror, done), \
_args); \
GRunWhile(! boost::lambda::var(done)); \
} while (false); \
#endif // HAVE_GLIB
SE_END_CXX
#endif // INCL_GLIB_SUPPORT