kdt/dilithium/src/aes256ctr.rs

503 lines
12 KiB
Rust

pub const AES256CTR_BLOCKBYTES: usize = 64;
pub struct Aes256ctrCtx {
pub sk_exp: [u64; 120],
pub ivw: [u32; 16],
}
impl Default for Aes256ctrCtx {
fn default() -> Self {
Self {
sk_exp: [0u64; 120],
ivw: [0u32; 16],
}
}
}
fn br_dec32le(src: &[u8]) -> u32 {
src[0] as u32
| (src[1] as u32) << 8
| (src[2] as u32) << 16
| (src[3] as u32) << 24
}
fn br_range_dec32le(v: &mut [u32], mut num: usize, src: &[u8]) {
let mut v_idx: usize = 0;
let mut src_idx: usize = 0;
while num > 0 {
num -= 1;
v[v_idx] = br_dec32le(&src[src_idx..]);
v_idx += 1;
src_idx += 4;
}
}
fn br_swap32(mut x: u32) -> u32 {
x = ((x & 0x00FF00FFu32) << 8) | ((x >> 8) & 0x00FF00FFu32);
(x << 16) | (x >> 16)
}
fn br_enc32le(dst: &mut [u8], x: u32) {
dst[0] = x as u8;
dst[1] = (x >> 8) as u8;
dst[2] = (x >> 16) as u8;
dst[3] = (x >> 24) as u8;
}
fn br_range_enc32le(dst: &mut [u8], v: &[u32], mut num: usize) {
let mut v_idx = 0;
let mut dst_idx = 0;
while num > 0 {
br_enc32le(&mut dst[dst_idx..], v[v_idx]);
v_idx += 1;
dst_idx += 4;
num -= 1;
}
}
fn br_aes_ct64_bitslice_sbox(q: &mut [u64]) {
// This S-box implementation is a straightforward translation of
// the circuit described by Boyar and Peralta in "A new
// combinational logic minimization technique with applications
// to cryptology" (https://eprint.iacr.org/2009/191.pdf).
// Note that variables x(input) and s(output) are numbered
// in "reverse" order (x0 is the high bit, x7 is the low bit).
let x0 = q[7];
let x1 = q[6];
let x2 = q[5];
let x3 = q[4];
let x4 = q[3];
let x5 = q[2];
let x6 = q[1];
let x7 = q[0];
// Top linear transformation.
let y14 = x3 ^ x5;
let y13 = x0 ^ x6;
let y9 = x0 ^ x3;
let y8 = x0 ^ x5;
let t0 = x1 ^ x2;
let y1 = t0 ^ x7;
let y4 = y1 ^ x3;
let y12 = y13 ^ y14;
let y2 = y1 ^ x0;
let y5 = y1 ^ x6;
let y3 = y5 ^ y8;
let t1 = x4 ^ y12;
let y15 = t1 ^ x5;
let y20 = t1 ^ x1;
let y6 = y15 ^ x7;
let y10 = y15 ^ t0;
let y11 = y20 ^ y9;
let y7 = x7 ^ y11;
let y17 = y10 ^ y11;
let y19 = y10 ^ y8;
let y16 = t0 ^ y11;
let y21 = y13 ^ y16;
let y18 = x0 ^ y16;
// Non-linear section.
let t2 = y12 & y15;
let t3 = y3 & y6;
let t4 = t3 ^ t2;
let t5 = y4 & x7;
let t6 = t5 ^ t2;
let t7 = y13 & y16;
let t8 = y5 & y1;
let t9 = t8 ^ t7;
let t10 = y2 & y7;
let t11 = t10 ^ t7;
let t12 = y9 & y11;
let t13 = y14 & y17;
let t14 = t13 ^ t12;
let t15 = y8 & y10;
let t16 = t15 ^ t12;
let t17 = t4 ^ t14;
let t18 = t6 ^ t16;
let t19 = t9 ^ t14;
let t20 = t11 ^ t16;
let t21 = t17 ^ y20;
let t22 = t18 ^ y19;
let t23 = t19 ^ y21;
let t24 = t20 ^ y18;
let t25 = t21 ^ t22;
let t26 = t21 & t23;
let t27 = t24 ^ t26;
let t28 = t25 & t27;
let t29 = t28 ^ t22;
let t30 = t23 ^ t24;
let t31 = t22 ^ t26;
let t32 = t31 & t30;
let t33 = t32 ^ t24;
let t34 = t23 ^ t33;
let t35 = t27 ^ t33;
let t36 = t24 & t35;
let t37 = t36 ^ t34;
let t38 = t27 ^ t36;
let t39 = t29 & t38;
let t40 = t25 ^ t39;
let t41 = t40 ^ t37;
let t42 = t29 ^ t33;
let t43 = t29 ^ t40;
let t44 = t33 ^ t37;
let t45 = t42 ^ t41;
let z0 = t44 & y15;
let z1 = t37 & y6;
let z2 = t33 & x7;
let z3 = t43 & y16;
let z4 = t40 & y1;
let z5 = t29 & y7;
let z6 = t42 & y11;
let z7 = t45 & y17;
let z8 = t41 & y10;
let z9 = t44 & y12;
let z10 = t37 & y3;
let z11 = t33 & y4;
let z12 = t43 & y13;
let z13 = t40 & y5;
let z14 = t29 & y2;
let z15 = t42 & y9;
let z16 = t45 & y14;
let z17 = t41 & y8;
// Bottom linear transformation.
let t46 = z15 ^ z16;
let t47 = z10 ^ z11;
let t48 = z5 ^ z13;
let t49 = z9 ^ z10;
let t50 = z2 ^ z12;
let t51 = z2 ^ z5;
let t52 = z7 ^ z8;
let t53 = z0 ^ z3;
let t54 = z6 ^ z7;
let t55 = z16 ^ z17;
let t56 = z12 ^ t48;
let t57 = t50 ^ t53;
let t58 = z4 ^ t46;
let t59 = z3 ^ t54;
let t60 = t46 ^ t57;
let t61 = z14 ^ t57;
let t62 = t52 ^ t58;
let t63 = t49 ^ t58;
let t64 = z4 ^ t59;
let t65 = t61 ^ t62;
let t66 = z1 ^ t63;
let s0 = t59 ^ t63;
let s6 = t56 ^ !t62;
let s7 = t48 ^ !t60;
let t67 = t64 ^ t65;
let s3 = t53 ^ t66;
let s4 = t51 ^ t66;
let s5 = t47 ^ t65;
let s1 = t64 ^ !s3;
let s2 = t55 ^ !t67;
q[7] = s0;
q[6] = s1;
q[5] = s2;
q[4] = s3;
q[3] = s4;
q[2] = s5;
q[1] = s6;
q[0] = s7;
}
fn swapn(cl: u64, ch: u64, s: usize, x: u64, y: &mut u64) -> u64 {
let a = x;
let b = *y;
*y = ((a & ch) >> (s)) | (b & ch); // update y
(a & cl) | ((b & cl) << s) // return x
}
fn swap2(x: u64, y: &mut u64) -> u64 {
swapn(0x5555555555555555u64, 0xAAAAAAAAAAAAAAAAu64, 1, x, y)
}
fn swap4(x: u64, y: &mut u64) -> u64 {
swapn(0x3333333333333333u64, 0xCCCCCCCCCCCCCCCCu64, 2, x, y)
}
fn swap8(x: u64, y: &mut u64) -> u64 {
swapn(0x0F0F0F0F0F0F0F0Fu64, 0xF0F0F0F0F0F0F0F0u64, 4, x, y)
}
fn br_aes_ct64_ortho(q: &mut [u64]) {
q[0] = swap2(q[0], &mut q[1]);
q[2] = swap2(q[2], &mut q[3]);
q[4] = swap2(q[4], &mut q[5]);
q[6] = swap2(q[6], &mut q[7]);
q[0] = swap4(q[0], &mut q[2]);
q[1] = swap4(q[1], &mut q[3]);
q[4] = swap4(q[4], &mut q[6]);
q[5] = swap4(q[5], &mut q[7]);
q[0] = swap8(q[0], &mut q[4]);
q[1] = swap8(q[1], &mut q[5]);
q[2] = swap8(q[2], &mut q[6]);
q[3] = swap8(q[3], &mut q[7]);
}
fn br_aes_ct64_interleave_in(q0: &mut u64, q1: &mut u64, w: &[u32]) {
let mut x0 = w[0] as u64;
let mut x1 = w[1] as u64;
let mut x2 = w[2] as u64;
let mut x3 = w[3] as u64;
x0 |= x0 << 16;
x1 |= x1 << 16;
x2 |= x2 << 16;
x3 |= x3 << 16;
x0 &= 0x0000FFFF0000FFFFu64;
x1 &= 0x0000FFFF0000FFFFu64;
x2 &= 0x0000FFFF0000FFFFu64;
x3 &= 0x0000FFFF0000FFFFu64;
x0 |= x0 << 8;
x1 |= x1 << 8;
x2 |= x2 << 8;
x3 |= x3 << 8;
x0 &= 0x00FF00FF00FF00FFu64;
x1 &= 0x00FF00FF00FF00FFu64;
x2 &= 0x00FF00FF00FF00FFu64;
x3 &= 0x00FF00FF00FF00FFu64;
*q0 = x0 | (x2 << 8);
*q1 = x1 | (x3 << 8);
}
fn br_aes_ct64_interleave_out(w: &mut [u32], q0: u64, q1: u64) {
let mut x0 = q0 & 0x00FF00FF00FF00FFu64;
let mut x1 = q1 & 0x00FF00FF00FF00FFu64;
let mut x2 = (q0 >> 8) & 0x00FF00FF00FF00FFu64;
let mut x3 = (q1 >> 8) & 0x00FF00FF00FF00FFu64;
x0 |= x0 >> 8;
x1 |= x1 >> 8;
x2 |= x2 >> 8;
x3 |= x3 >> 8;
x0 &= 0x0000FFFF0000FFFFu64;
x1 &= 0x0000FFFF0000FFFFu64;
x2 &= 0x0000FFFF0000FFFFu64;
x3 &= 0x0000FFFF0000FFFFu64;
w[0] = x0 as u32 | (x0 >> 16) as u32;
w[1] = x1 as u32 | (x1 >> 16) as u32;
w[2] = x2 as u32 | (x2 >> 16) as u32;
w[3] = x3 as u32 | (x3 >> 16) as u32;
}
fn sub_word(x: u32) -> u32 {
let mut q = [0u64; 8];
q[0] = x as u64;
br_aes_ct64_ortho(&mut q);
br_aes_ct64_bitslice_sbox(&mut q);
br_aes_ct64_ortho(&mut q);
q[0] as u32
}
const RCON: [u32; 10] =
[0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36];
fn br_aes_ct64_keysched(comp_skey: &mut [u64], key: &[u8]) {
let (mut j, mut k) = (0usize, 0usize);
let mut skey = [0u32; 60];
let key_len = 32usize;
let nk = key_len >> 2;
let nkf = (14 + 1) << 2;
br_range_dec32le(&mut skey, (key_len >> 2) as usize, key);
let mut tmp = skey[(key_len >> 2) - 1];
for i in nk..nkf {
if j == 0 {
tmp = (tmp << 24) | (tmp >> 8);
tmp = sub_word(tmp) ^ RCON[k];
} else if nk > 6 && j == 4 {
tmp = sub_word(tmp);
}
tmp ^= skey[i - nk];
skey[i] = tmp;
j += 1;
if j == nk {
j = 0;
k += 1;
}
}
j = 0;
for idx in (0..nkf).step_by(4) {
let mut q = [0u64; 8];
let (q0, q1) = q.split_at_mut(4);
br_aes_ct64_interleave_in(&mut q0[0], &mut q1[0], &skey[idx..]);
q[1] = q[0];
q[2] = q[0];
q[3] = q[0];
q[5] = q[4];
q[6] = q[4];
q[7] = q[4];
br_aes_ct64_ortho(&mut q);
comp_skey[j] = (q[0] & 0x1111111111111111)
| (q[1] & 0x2222222222222222)
| (q[2] & 0x4444444444444444)
| (q[3] & 0x8888888888888888);
comp_skey[j + 1] = (q[4] & 0x1111111111111111)
| (q[5] & 0x2222222222222222)
| (q[6] & 0x4444444444444444)
| (q[7] & 0x8888888888888888);
j += 2;
}
}
fn br_aes_ct64_skey_expand(skey: &mut [u64], comp_skey: &[u64]) {
const N: usize = 15 << 1;
let mut u = 0;
let mut v = 0;
let mut x0: u64;
let mut x1: u64;
let mut x2: u64;
let mut x3: u64;
while u < N {
x0 = comp_skey[u];
x1 = comp_skey[u];
x2 = comp_skey[u];
x3 = comp_skey[u];
x0 &= 0x1111111111111111;
x1 &= 0x2222222222222222;
x2 &= 0x4444444444444444;
x3 &= 0x8888888888888888;
x1 >>= 1;
x2 >>= 2;
x3 >>= 3;
skey[v] = (x0 << 4).wrapping_sub(x0);
skey[v + 1] = (x1 << 4).wrapping_sub(x1);
skey[v + 2] = (x2 << 4).wrapping_sub(x2);
skey[v + 3] = (x3 << 4).wrapping_sub(x3);
v += 4;
u += 1;
}
}
fn add_round_key(q: &mut [u64], sk: &[u64]) {
q[0] ^= sk[0];
q[1] ^= sk[1];
q[2] ^= sk[2];
q[3] ^= sk[3];
q[4] ^= sk[4];
q[5] ^= sk[5];
q[6] ^= sk[6];
q[7] ^= sk[7];
}
fn shift_rows(q: &mut [u64]) {
for x in q.iter_mut() {
*x = (*x & 0x000000000000FFFF)
| ((*x & 0x00000000FFF00000) >> 4)
| ((*x & 0x00000000000F0000) << 12)
| ((*x & 0x0000FF0000000000) >> 8)
| ((*x & 0x000000FF00000000) << 8)
| ((*x & 0xF000000000000000) >> 12)
| ((*x & 0x0FFF000000000000) << 4)
}
}
fn rotr32(x: u64) -> u64 {
(x << 32) | (x >> 32)
}
fn mix_columns(q: &mut [u64]) {
let q0 = q[0];
let q1 = q[1];
let q2 = q[2];
let q3 = q[3];
let q4 = q[4];
let q5 = q[5];
let q6 = q[6];
let q7 = q[7];
let r0 = (q0 >> 16) | (q0 << 48);
let r1 = (q1 >> 16) | (q1 << 48);
let r2 = (q2 >> 16) | (q2 << 48);
let r3 = (q3 >> 16) | (q3 << 48);
let r4 = (q4 >> 16) | (q4 << 48);
let r5 = (q5 >> 16) | (q5 << 48);
let r6 = (q6 >> 16) | (q6 << 48);
let r7 = (q7 >> 16) | (q7 << 48);
q[0] = q7 ^ r7 ^ r0 ^ rotr32(q0 ^ r0);
q[1] = q0 ^ r0 ^ q7 ^ r7 ^ r1 ^ rotr32(q1 ^ r1);
q[2] = q1 ^ r1 ^ r2 ^ rotr32(q2 ^ r2);
q[3] = q2 ^ r2 ^ q7 ^ r7 ^ r3 ^ rotr32(q3 ^ r3);
q[4] = q3 ^ r3 ^ q7 ^ r7 ^ r4 ^ rotr32(q4 ^ r4);
q[5] = q4 ^ r4 ^ r5 ^ rotr32(q5 ^ r5);
q[6] = q5 ^ r5 ^ r6 ^ rotr32(q6 ^ r6);
q[7] = q6 ^ r6 ^ r7 ^ rotr32(q7 ^ r7);
}
fn inc4_be(x: u32) -> u32 {
let t = br_swap32(x) + 4;
br_swap32(t)
}
fn aes_ctr4x(out: &mut [u8], ivw: &mut [u32], sk_exp: &[u64]) {
let mut w = [0u32; 16];
w.copy_from_slice(&ivw);
let mut q = [0u64; 8];
let (q0, q1) = q.split_at_mut(4);
for i in 0..4 {
br_aes_ct64_interleave_in(&mut q0[i], &mut q1[i], &w[(i << 2)..]);
}
br_aes_ct64_ortho(&mut q);
add_round_key(&mut q, sk_exp);
for i in 1..14 {
br_aes_ct64_bitslice_sbox(&mut q);
shift_rows(&mut q);
mix_columns(&mut q);
add_round_key(&mut q, &sk_exp[(i << 3)..]);
}
br_aes_ct64_bitslice_sbox(&mut q);
shift_rows(&mut q);
add_round_key(&mut q, &sk_exp[112..]);
br_aes_ct64_ortho(&mut q);
for i in 0..4 {
br_aes_ct64_interleave_out(&mut w[(i << 2)..], q[i], q[i + 4]);
}
br_range_enc32le(out, &w, 16);
// Increase counter for next 4 blocks
ivw[3] = inc4_be(ivw[3]);
ivw[7] = inc4_be(ivw[7]);
ivw[11] = inc4_be(ivw[11]);
ivw[15] = inc4_be(ivw[15]);
}
fn br_aes_ct64_ctr_init(sk_exp: &mut [u64], key: &[u8]) {
let mut skey = [0u64; 30];
br_aes_ct64_keysched(&mut skey, key);
br_aes_ct64_skey_expand(sk_exp, &skey);
}
pub fn aes256ctr_init(s: &mut Aes256ctrCtx, key: &[u8], nonce: [u8; 12]) {
br_aes_ct64_ctr_init(&mut s.sk_exp, &key);
br_range_dec32le(&mut s.ivw, 3, &nonce);
let mut slice = [0u32; 3];
slice.copy_from_slice(&s.ivw[..3]);
s.ivw[4..7].copy_from_slice(&slice);
s.ivw[8..11].copy_from_slice(&slice);
s.ivw[12..15].copy_from_slice(&slice);
s.ivw[3] = br_swap32(0);
s.ivw[7] = br_swap32(1);
s.ivw[11] = br_swap32(2);
s.ivw[15] = br_swap32(3);
}
pub fn aes256ctr_squeezeblocks(
out: &mut [u8],
mut nblocks: u64,
s: &mut Aes256ctrCtx,
) {
let mut idx = 0;
while nblocks > 0 {
aes_ctr4x(&mut out[idx..], &mut s.ivw, &s.sk_exp);
idx += 64;
nblocks -= 1;
}
}