1
0
Fork 0

Adapted coding style. Added the current version of the GPL 2.

This commit is contained in:
Tobias Leupold 2014-09-03 16:52:17 +02:00
parent 62d1cd2843
commit 1f29891b5d
3 changed files with 338 additions and 375 deletions

41
COPYING
View File

@ -1,12 +1,12 @@
GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
@ -15,7 +15,7 @@ software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
@ -55,8 +55,8 @@ patent must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and
modification follow.
GNU GENERAL PUBLIC LICENSE
GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains
@ -110,7 +110,7 @@ above, provided that you also meet all of these conditions:
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
@ -168,7 +168,7 @@ access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
@ -225,7 +225,7 @@ impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
@ -255,7 +255,7 @@ make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.
NO WARRANTY
NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
@ -277,9 +277,9 @@ YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
@ -303,17 +303,16 @@ the "copyright" line and a pointer to where the full notice is found.
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:
Gnomovision version 69, Copyright (C) year name of author
Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
@ -336,5 +335,5 @@ necessary. Here is a sample; alter the names:
This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

View File

@ -1,19 +1,23 @@
2013-11-07 Tobias Leupold <tobias.leupold@web.de> (Version 0.1.2)
* Fixed crash when processing GPX files with empty or no path segments. Thanks to Fabian Seitz for the bug report!
* Added exception handler for non-readable or non-existant files or files with no valid GPX data.
* Fixed crash when processing GPX files with empty or no path segments.
Thanks to Fabian Seitz for the bug report!
* Added exception handler for non-readable or non-existant files or files with no valid GPX
data.
2012-08-26 Tobias Leupold <tobias.leupold@web.de> (Version 0.1.1)
* Made the internal data structure simpler. Don't store the IDs of the tracks.
* Combine path segments before doing the Mercator projection, so that rounding errors can't affect the search.
* Made the algorithm to search for combinable paths more effective.
* Draw circles instead of single points (that will not be shown). Added an command line option to drop such single points.
* Made the internal data structure simpler. Don't store the IDs of the tracks.
* Combine path segments before doing the Mercator projection, so that rounding errors can't
affect the search.
* Made the algorithm to search for combinable paths more effective.
* Draw circles instead of single points (that will not be shown). Added an command line option
to drop such single points.
2012-08-25 Tobias Leupold <tobias.leupold@web.de> (Version 0.1)
* Initial release
* Initial release

646
gpx2svg
View File

@ -25,358 +25,318 @@ import math
from xml.dom.minidom import parse as parseXml
def parseGpx(gpxFile):
"""Get the latitude and longitude data of all track segments in a GPX file"""
# Get the XML information
try:
gpx = parseXml(gpxFile)
except IOError as error:
print('Error while reading file: %s. Terminating.' % error, file = sys.stderr)
sys.exit(1)
except:
print('Error while parsing XML data:', file = sys.stderr)
print(sys.exc_info(), file = sys.stderr)
print('Terminating.', file = sys.stderr)
sys.exit(1)
# Iterate over all tracks, track segments and points
gpsData = []
for track in gpx.getElementsByTagName('trk'):
for trackseg in track.getElementsByTagName('trkseg'):
trackSegData = []
for point in trackseg.getElementsByTagName('trkpt'):
trackSegData.append((float(point.attributes['lon'].value), float(point.attributes['lat'].value)))
# Leave out empty segments
if(trackSegData != []):
gpsData.append(trackSegData)
return gpsData
"""Get the latitude and longitude data of all track segments in a GPX file"""
# Get the XML information
try:
gpx = parseXml(gpxFile)
except IOError as error:
print('Error while reading file: %s. Terminating.' % error, file = sys.stderr)
sys.exit(1)
except:
print('Error while parsing XML data:', file = sys.stderr)
print(sys.exc_info(), file = sys.stderr)
print('Terminating.', file = sys.stderr)
sys.exit(1)
# Iterate over all tracks, track segments and points
gpsData = []
for track in gpx.getElementsByTagName('trk'):
for trackseg in track.getElementsByTagName('trkseg'):
trackSegData = []
for point in trackseg.getElementsByTagName('trkpt'):
trackSegData.append(
(float(point.attributes['lon'].value), float(point.attributes['lat'].value))
)
# Leave out empty segments
if(trackSegData != []):
gpsData.append(trackSegData)
return gpsData
def calcProjection(gpsData):
"""Calculate a plane projection for a GPS dataset"""
projectedData = []
for segment in gpsData:
projectedSegment = []
for coord in segment:
# At the moment, we only have the Mercator projection
projectedSegment.append(mercatorProjection(coord))
projectedData.append(projectedSegment)
return(projectedData)
"""Calculate a plane projection for a GPS dataset"""
projectedData = []
for segment in gpsData:
projectedSegment = []
for coord in segment:
# At the moment, we only have the Mercator projection
projectedSegment.append(mercatorProjection(coord))
projectedData.append(projectedSegment)
return(projectedData)
def mercatorProjection(coord):
"""Calculate the Mercator projection of a coordinate pair"""
# Assuming we're on earth, we have (according to GRS 80):
r = 6378137.0
# As long as meridian = 0 and can't be changed, we don't need:
# meridian = meridian * math.pi / 180.0
# x = r * ((coord[0] * math.pi / 180.0) - meridian)
# Instead, we use this simplified version:
x = r * coord[0] * math.pi / 180.0
y = r * math.log(math.tan((math.pi / 4.0) + ((coord[1] * math.pi / 180.0) / 2.0)))
return((x, y))
"""Calculate the Mercator projection of a coordinate pair"""
# Assuming we're on earth, we have (according to GRS 80):
r = 6378137.0
# As long as meridian = 0 and can't be changed, we don't need:
# meridian = meridian * math.pi / 180.0
# x = r * ((coord[0] * math.pi / 180.0) - meridian)
# Instead, we use this simplified version:
x = r * coord[0] * math.pi / 180.0
y = r * math.log(math.tan((math.pi / 4.0) + ((coord[1] * math.pi / 180.0) / 2.0)))
return((x, y))
def moveProjectedData(gpsData):
"""Move a dataset to 0,0 and return it with the resulting width and height"""
# Find the minimum and maximum x and y coordinates
minX = maxX = gpsData[0][0][0]
minY = maxY = gpsData[0][0][1]
for segment in gpsData:
for coord in segment:
if coord[0] < minX:
minX = coord[0]
if coord[0] > maxX:
maxX = coord[0]
if coord[1] < minY:
minY = coord[1]
if coord[1] > maxY:
maxY = coord[1]
# Move the GPS data to 0,0
movedGpsData = []
for segment in gpsData:
movedSegment = []
for coord in segment:
movedSegment.append((coord[0] - minX, coord[1] - minY))
movedGpsData.append(movedSegment)
# Return the moved data and it's width and height
return(movedGpsData, maxX - minX, maxY - minY)
"""Move a dataset to 0,0 and return it with the resulting width and height"""
# Find the minimum and maximum x and y coordinates
minX = maxX = gpsData[0][0][0]
minY = maxY = gpsData[0][0][1]
for segment in gpsData:
for coord in segment:
if coord[0] < minX:
minX = coord[0]
if coord[0] > maxX:
maxX = coord[0]
if coord[1] < minY:
minY = coord[1]
if coord[1] > maxY:
maxY = coord[1]
# Move the GPS data to 0,0
movedGpsData = []
for segment in gpsData:
movedSegment = []
for coord in segment:
movedSegment.append((coord[0] - minX, coord[1] - minY))
movedGpsData.append(movedSegment)
# Return the moved data and it's width and height
return(movedGpsData, maxX - minX, maxY - minY)
def searchCircularSegments(gpsData):
"""Splits a GPS dataset to tracks that are circular and other tracks"""
circularSegments = []
straightSegments = []
for segment in gpsData:
if segment[0] == segment[len(segment) - 1]:
circularSegments.append(segment)
else:
straightSegments.append(segment)
return(circularSegments, straightSegments)
"""Splits a GPS dataset to tracks that are circular and other tracks"""
circularSegments = []
straightSegments = []
for segment in gpsData:
if segment[0] == segment[len(segment) - 1]:
circularSegments.append(segment)
else:
straightSegments.append(segment)
return(circularSegments, straightSegments)
def combineSegmentPairs(gpsData):
"""Combine segment pairs to one bigger segment"""
combinedData = []
# Walk through the GPS data and search for segment pairs that end with the starting point of another track
while len(gpsData) > 0:
# Get one segment from the source GPS data
firstTrackData = gpsData.pop()
foundMatch = False
# Try to find a matching segment
for i in range(len(gpsData)):
if firstTrackData[len(firstTrackData) - 1] == gpsData[i][0]:
# There is a matching segment, so break here
foundMatch = True
break
if foundMatch == True:
# We found a pair of segments with one shared point, so pop the data of the second
# segment from the source GPS data and create a new segment containing all data, but
# without the overlapping point
firstTrackData.pop()
combinedData.append(firstTrackData + gpsData[i])
gpsData.pop(i)
else:
# No segment with a shared point was found, so just append the data to the output
combinedData.append(firstTrackData)
return(searchCircularSegments(combinedData))
"""Combine segment pairs to one bigger segment"""
combinedData = []
# Walk through the GPS data and search for segment pairs
# that end with the starting point of another track
while len(gpsData) > 0:
# Get one segment from the source GPS data
firstTrackData = gpsData.pop()
foundMatch = False
# Try to find a matching segment
for i in range(len(gpsData)):
if firstTrackData[len(firstTrackData) - 1] == gpsData[i][0]:
# There is a matching segment, so break here
foundMatch = True
break
if foundMatch == True:
# We found a pair of segments with one shared point, so pop the data of the second
# segment from the source GPS data and create a new segment containing all data, but
# without the overlapping point
firstTrackData.pop()
combinedData.append(firstTrackData + gpsData[i])
gpsData.pop(i)
else:
# No segment with a shared point was found, so just append the data to the output
combinedData.append(firstTrackData)
return(searchCircularSegments(combinedData))
def combineSegments(gpsData):
"""Combine all segments of a GPS dataset that can be combined"""
# Search for circular segments. We can't combine them with any other segment.
circularSegments, remainingSegments = searchCircularSegments(gpsData)
# Search for segments that can be combined
while True:
# Look how many tracks we have now
segmentsBefore = len(remainingSegments)
# Search for segments that can be combined
newCircularSegments, remainingSegments = combineSegmentPairs(remainingSegments)
# Add newly found circular segments to processedSegments -- they can't be used anymore
circularSegments = circularSegments + newCircularSegments
if segmentsBefore == len(remainingSegments):
# combineSegmentPairs() did not reduce the number of tracks anymore,
# so we can't combine more tracks and can stop here
break
return(circularSegments + remainingSegments)
"""Combine all segments of a GPS dataset that can be combined"""
# Search for circular segments. We can't combine them with any other segment.
circularSegments, remainingSegments = searchCircularSegments(gpsData)
# Search for segments that can be combined
while True:
# Look how many tracks we have now
segmentsBefore = len(remainingSegments)
# Search for segments that can be combined
newCircularSegments, remainingSegments = combineSegmentPairs(remainingSegments)
# Add newly found circular segments to processedSegments -- they can't be used anymore
circularSegments = circularSegments + newCircularSegments
if segmentsBefore == len(remainingSegments):
# combineSegmentPairs() did not reduce the number of tracks anymore,
# so we can't combine more tracks and can stop here
break
return(circularSegments + remainingSegments)
def scaleCoords(coord, height, scale):
"""Return a scaled pair of coordinates"""
return(coord[0] * scale, (coord[1] * -1 + height) * scale)
"""Return a scaled pair of coordinates"""
return(coord[0] * scale, (coord[1] * -1 + height) * scale)
def createCoordString(segment, height, scale):
"""Create the coordinate part of an SVG path string from a GPS data segment"""
coordString = ''
for coord in segment:
x, y = scaleCoords(coord, height, scale)
coordString = coordString + ' ' + str(x) + ',' + str(y)
return coordString
"""Create the coordinate part of an SVG path string from a GPS data segment"""
coordString = ''
for coord in segment:
x, y = scaleCoords(coord, height, scale)
coordString = coordString + ' ' + str(x) + ',' + str(y)
return coordString
def createPathString(drawCommand):
"""Return a complete path element for a draw command string"""
return '<path d="' + drawCommand + '" style="fill:none;stroke:black" />\n'
"""Return a complete path element for a draw command string"""
return '<path d="' + drawCommand + '" style="fill:none;stroke:black" />\n'
def writeSvgData(gpsData, width, height, maxPixels, dropSinglePoints, outfile):
"""Output the SVG data -- quick 'n' dirty, without messing around with dom stuff ;-)"""
# Calculate the scale factor we need to fit the requested maximal output size
if width <= maxPixels and height <= maxPixels:
scale = 1
elif width > height:
scale = maxPixels / width
else:
scale = maxPixels / height
# Open the requested output file or map to /dev/stdout
if outfile != '/dev/stdout':
fp = open(outfile, 'w')
else:
fp = sys.stdout
# Header data
fp.write('<?xml version="1.0" encoding="UTF-8" standalone="no"?>\n')
fp.write('<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"\n "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">\n')
fp.write('<svg xmlns="http://www.w3.org/2000/svg" version="1.1" width="%spx" height="%spx">\n' % (width * scale, height * scale))
# Process all track segments and generate ids and path drawing commands for them
# First, we split the data to circular and straight segments
circularSegments, straightSegments = searchCircularSegments(gpsData)
realCircularSegments = []
singlePoints = []
for segment in circularSegments:
# We can leave out the last point, because it's equal to the first one
segment.pop()
if len(segment) == 1:
# It's a single point
if dropSinglePoints == False:
# We want to keep single points, so add it to singlePoints
singlePoints.append(segment)
else:
realCircularSegments.append(segment)
circularSegments = realCircularSegments
# Draw single points if requested
if len(singlePoints) > 0:
fp.write('<g>\n')
for segment in singlePoints:
x, y = scaleCoords(segment[0], height, scale)
fp.write('<circle cx="' + str(x) + '" cy="' + str(y) + '" r="0.5" style="stroke:none;fill:black"/>\n')
fp.write('</g>\n')
# Draw all circular segments
if len(circularSegments) > 0:
fp.write('<g>\n')
for segment in circularSegments:
fp.write(createPathString('M' + createCoordString(segment, height, scale) + ' Z'))
fp.write('</g>\n')
# Draw all un-closed paths
if len(straightSegments) > 0:
fp.write('<g>\n')
for segment in straightSegments:
d = 'M' + createCoordString(segment, height, scale)
fp.write(createPathString('M' + createCoordString(segment, height, scale)))
fp.write('</g>\n')
# Close the XML
fp.write('</svg>\n')
# Close the file if necessary
if fp != sys.stdout:
fp.close()
"""Output the SVG data -- quick 'n' dirty, without messing around with dom stuff ;-)"""
# Calculate the scale factor we need to fit the requested maximal output size
if width <= maxPixels and height <= maxPixels:
scale = 1
elif width > height:
scale = maxPixels / width
else:
scale = maxPixels / height
# Open the requested output file or map to /dev/stdout
if outfile != '/dev/stdout':
fp = open(outfile, 'w')
else:
fp = sys.stdout
# Header data
fp.write('<?xml version="1.0" encoding="UTF-8" standalone="no"?>\n')
fp.write('<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"\n "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">\n')
fp.write(
'<svg xmlns="http://www.w3.org/2000/svg" version="1.1" width="%spx" height="%spx">\n' % (
width * scale, height * scale
)
)
# Process all track segments and generate ids and path drawing commands for them
# First, we split the data to circular and straight segments
circularSegments, straightSegments = searchCircularSegments(gpsData)
realCircularSegments = []
singlePoints = []
for segment in circularSegments:
# We can leave out the last point, because it's equal to the first one
segment.pop()
if len(segment) == 1:
# It's a single point
if dropSinglePoints == False:
# We want to keep single points, so add it to singlePoints
singlePoints.append(segment)
else:
realCircularSegments.append(segment)
circularSegments = realCircularSegments
# Draw single points if requested
if len(singlePoints) > 0:
fp.write('<g>\n')
for segment in singlePoints:
x, y = scaleCoords(segment[0], height, scale)
fp.write('<circle cx="' + str(x) + '" cy="' + str(y) + '" r="0.5" style="stroke:none;fill:black"/>\n')
fp.write('</g>\n')
# Draw all circular segments
if len(circularSegments) > 0:
fp.write('<g>\n')
for segment in circularSegments:
fp.write(createPathString('M' + createCoordString(segment, height, scale) + ' Z'))
fp.write('</g>\n')
# Draw all un-closed paths
if len(straightSegments) > 0:
fp.write('<g>\n')
for segment in straightSegments:
d = 'M' + createCoordString(segment, height, scale)
fp.write(createPathString('M' + createCoordString(segment, height, scale)))
fp.write('</g>\n')
# Close the XML
fp.write('</svg>\n')
# Close the file if necessary
if fp != sys.stdout:
fp.close()
def main():
# Setup the command line argument parser
cmdArgParser = argparse.ArgumentParser(
description = 'Convert GPX formatted geodata to Scalable Vector Graphics (SVG)',
epilog = 'gpx2svg %s - http://nasauber.de/opensource/gpx2svg/' % __version__
)
cmdArgParser.add_argument(
'-i', metavar = 'FILE', nargs = '?', type = str, default = '/dev/stdin',
help = 'GPX input file (default: read from STDIN)'
)
cmdArgParser.add_argument(
'-o', metavar = 'FILE', nargs = '?', type = str, default = '/dev/stdout',
help = 'SVG output file (default: write to STDOUT)'
)
cmdArgParser.add_argument(
'-m', metavar = 'PIXELS', nargs = '?', type = int, default = 3000,
help = 'Maximum width or height of the SVG output in pixels (default: 3000)'
)
cmdArgParser.add_argument(
'-d', action = 'store_true',
help = 'Drop single points (default: draw a circle with 1px diameter)'
)
cmdArgParser.add_argument(
'-r', action = 'store_true',
help = '"Raw" conversion: Create one SVG path per track segment, don\'t try to combine paths that end with the starting point of another path'
)
# Get the given arguments
cmdArgs = cmdArgParser.parse_args()
# Map "-" to STDIN or STDOUT
if cmdArgs.i == '-':
cmdArgs.i = '/dev/stdin'
if cmdArgs.o == '-':
cmdArgs.o = '/dev/stdout'
# Get the latitude and longitude data from the given GPX file or STDIN
gpsData = parseGpx(cmdArgs.i)
# Check if we actually _have_ data
if gpsData == []:
print('No data to convert. Terminating.', file = sys.stderr)
sys.exit(1)
# Try to combine all track segments that can be combined if not requested otherwise
if not cmdArgs.r:
gpsData = combineSegments(gpsData)
# Calculate a plane projection for a GPS dataset
# At the moment, we only have the Mercator projection
gpsData = calcProjection(gpsData)
# Move the projected data to the 0,0 origin of a cartesial coordinate system
# and get the raw width and height of the resulting vector data
gpsData, width, height = moveProjectedData(gpsData)
# Write the resulting SVG data to the requested output file or STDOUT
writeSvgData(gpsData, width, height, cmdArgs.m, cmdArgs.d, cmdArgs.o)
# Setup the command line argument parser
cmdArgParser = argparse.ArgumentParser(
description = 'Convert GPX formatted geodata to Scalable Vector Graphics (SVG)',
epilog = 'gpx2svg %s - http://nasauber.de/opensource/gpx2svg/' % __version__
)
cmdArgParser.add_argument(
'-i', metavar = 'FILE', nargs = '?', type = str, default = '/dev/stdin',
help = 'GPX input file (default: read from STDIN)'
)
cmdArgParser.add_argument(
'-o', metavar = 'FILE', nargs = '?', type = str, default = '/dev/stdout',
help = 'SVG output file (default: write to STDOUT)'
)
cmdArgParser.add_argument(
'-m', metavar = 'PIXELS', nargs = '?', type = int, default = 3000,
help = 'Maximum width or height of the SVG output in pixels (default: 3000)'
)
cmdArgParser.add_argument(
'-d', action = 'store_true',
help = 'Drop single points (default: draw a circle with 1px diameter)'
)
cmdArgParser.add_argument(
'-r', action = 'store_true',
help = (
'"Raw" conversion: Create one SVG path per track segment, '
'don\'t try to combine paths that end with the starting point of another path'
)
)
# Get the given arguments
cmdArgs = cmdArgParser.parse_args()
# Map "-" to STDIN or STDOUT
if cmdArgs.i == '-':
cmdArgs.i = '/dev/stdin'
if cmdArgs.o == '-':
cmdArgs.o = '/dev/stdout'
# Get the latitude and longitude data from the given GPX file or STDIN
gpsData = parseGpx(cmdArgs.i)
# Check if we actually _have_ data
if gpsData == []:
print('No data to convert. Terminating.', file = sys.stderr)
sys.exit(1)
# Try to combine all track segments that can be combined if not requested otherwise
if not cmdArgs.r:
gpsData = combineSegments(gpsData)
# Calculate a plane projection for a GPS dataset
# At the moment, we only have the Mercator projection
gpsData = calcProjection(gpsData)
# Move the projected data to the 0,0 origin of a cartesial coordinate system
# and get the raw width and height of the resulting vector data
gpsData, width, height = moveProjectedData(gpsData)
# Write the resulting SVG data to the requested output file or STDOUT
writeSvgData(gpsData, width, height, cmdArgs.m, cmdArgs.d, cmdArgs.o)
if __name__ == '__main__':
main()
main()