lokinet/llarp/net.cpp

1010 lines
29 KiB
C++

#include "llarp/net.hpp"
#include "str.hpp"
#ifdef ANDROID
#include "android/ifaddrs.h"
#endif
#ifndef _WIN32
#include <arpa/inet.h>
#include <ifaddrs.h>
#include <net/if.h>
#endif
#include <cstdio>
#include "logger.hpp"
//#include <llarp/net_inaddr.hpp>
#include <llarp/net_addr.hpp>
bool
operator==(const sockaddr& a, const sockaddr& b)
{
if(a.sa_family != b.sa_family)
return false;
switch(a.sa_family)
{
case AF_INET:
return *((const sockaddr_in*)&a) == *((const sockaddr_in*)&b);
case AF_INET6:
return *((const sockaddr_in6*)&a) == *((const sockaddr_in6*)&b);
default:
return false;
}
}
bool
operator<(const sockaddr_in6& a, const sockaddr_in6& b)
{
return memcmp(&a, &b, sizeof(sockaddr_in6)) < 0;
}
bool
operator<(const in6_addr& a, const in6_addr& b)
{
return memcmp(&a, &b, sizeof(in6_addr)) < 0;
}
bool
operator==(const in6_addr& a, const in6_addr& b)
{
return memcmp(&a, &b, sizeof(in6_addr)) == 0;
}
bool
operator==(const sockaddr_in& a, const sockaddr_in& b)
{
return a.sin_port == b.sin_port && a.sin_addr.s_addr == b.sin_addr.s_addr;
}
bool
operator==(const sockaddr_in6& a, const sockaddr_in6& b)
{
return a.sin6_port == b.sin6_port && a.sin6_addr == b.sin6_addr;
}
#ifdef _WIN32
#include <assert.h>
#include <errno.h>
#include <iphlpapi.h>
#include <strsafe.h>
// current strategy: mingw 32-bit builds call an inlined version of the function
// microsoft c++ and mingw 64-bit builds call the normal function
#define DEFAULT_BUFFER_SIZE 15000
// the inline monkey patch for downlevel platforms
#ifndef _MSC_VER
extern "C" DWORD FAR PASCAL
_GetAdaptersAddresses(ULONG Family, ULONG Flags, PVOID Reserved,
PIP_ADAPTER_ADDRESSES pAdapterAddresses,
PULONG pOutBufLen);
#endif
// in any case, we still need to implement some form of
// getifaddrs(3) with compatible semantics on NT...
// daemon.ini section [bind] will have something like
// [bind]
// Ethernet=1090
// inside, since that's what we use in windows to refer to
// network interfaces
struct llarp_nt_ifaddrs_t
{
struct llarp_nt_ifaddrs_t* ifa_next; /* Pointer to the next structure. */
char* ifa_name; /* Name of this network interface. */
unsigned int ifa_flags; /* Flags as from SIOCGIFFLAGS ioctl. */
struct sockaddr* ifa_addr; /* Network address of this interface. */
struct sockaddr* ifa_netmask; /* Netmask of this interface. */
};
// internal struct
struct _llarp_nt_ifaddrs_t
{
struct llarp_nt_ifaddrs_t _ifa;
char _name[256];
struct sockaddr_storage _addr;
struct sockaddr_storage _netmask;
};
static inline void*
_llarp_nt_heap_alloc(const size_t n_bytes)
{
/* Does not appear very safe with re-entrant calls on XP */
return HeapAlloc(GetProcessHeap(), HEAP_GENERATE_EXCEPTIONS, n_bytes);
}
static inline void
_llarp_nt_heap_free(void* mem)
{
HeapFree(GetProcessHeap(), 0, mem);
}
#define llarp_nt_new0(struct_type, n_structs) \
((struct_type*)malloc((size_t)sizeof(struct_type) * (size_t)(n_structs)))
int
llarp_nt_sockaddr_pton(const char* src, struct sockaddr* dst)
{
struct addrinfo hints;
struct addrinfo* result = nullptr;
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_DGRAM;
hints.ai_protocol = IPPROTO_TCP;
hints.ai_flags = AI_NUMERICHOST;
const int status = getaddrinfo(src, nullptr, &hints, &result);
if(!status)
{
memcpy(dst, result->ai_addr, result->ai_addrlen);
freeaddrinfo(result);
return 1;
}
return 0;
}
/* NB: IP_ADAPTER_INFO size varies size due to sizeof (time_t), the API assumes
* 4-byte datatype whilst compiler uses an 8-byte datatype. Size can be forced
* with -D_USE_32BIT_TIME_T with side effects to everything else.
*
* Only supports IPv4 addressing similar to SIOCGIFCONF socket option.
*
* Interfaces that are not "operationally up" will return the address 0.0.0.0,
* this includes adapters with static IP addresses but with disconnected cable.
* This is documented under the GetIpAddrTable API. Interface status can only
* be determined by the address, a separate flag is introduced with the
* GetAdapterAddresses API.
*
* The IPv4 loopback interface is not included.
*
* Available in Windows 2000 and Wine 1.0.
*/
static bool
_llarp_nt_getadaptersinfo(struct llarp_nt_ifaddrs_t** ifap)
{
DWORD dwRet;
ULONG ulOutBufLen = DEFAULT_BUFFER_SIZE;
PIP_ADAPTER_INFO pAdapterInfo = nullptr;
PIP_ADAPTER_INFO pAdapter = nullptr;
/* loop to handle interfaces coming online causing a buffer overflow
* between first call to list buffer length and second call to enumerate.
*/
for(unsigned i = 3; i; i--)
{
#ifdef DEBUG
fprintf(stderr, "IP_ADAPTER_INFO buffer length %lu bytes.\n", ulOutBufLen);
#endif
pAdapterInfo = (IP_ADAPTER_INFO*)_llarp_nt_heap_alloc(ulOutBufLen);
dwRet = GetAdaptersInfo(pAdapterInfo, &ulOutBufLen);
if(ERROR_BUFFER_OVERFLOW == dwRet)
{
_llarp_nt_heap_free(pAdapterInfo);
pAdapterInfo = nullptr;
}
else
{
break;
}
}
switch(dwRet)
{
case ERROR_SUCCESS: /* NO_ERROR */
break;
case ERROR_BUFFER_OVERFLOW:
errno = ENOBUFS;
if(pAdapterInfo)
_llarp_nt_heap_free(pAdapterInfo);
return false;
default:
errno = dwRet;
#ifdef DEBUG
fprintf(stderr, "system call failed: %lu\n", GetLastError());
#endif
if(pAdapterInfo)
_llarp_nt_heap_free(pAdapterInfo);
return false;
}
/* count valid adapters */
int n = 0, k = 0;
for(pAdapter = pAdapterInfo; pAdapter; pAdapter = pAdapter->Next)
{
for(IP_ADDR_STRING* pIPAddr = &pAdapter->IpAddressList; pIPAddr;
pIPAddr = pIPAddr->Next)
{
/* skip null adapters */
if(strlen(pIPAddr->IpAddress.String) == 0)
continue;
++n;
}
}
#ifdef DEBUG
fprintf(stderr, "GetAdaptersInfo() discovered %d interfaces.\n", n);
#endif
/* contiguous block for adapter list */
struct _llarp_nt_ifaddrs_t* ifa =
llarp_nt_new0(struct _llarp_nt_ifaddrs_t, n);
struct _llarp_nt_ifaddrs_t* ift = ifa;
/* now populate list */
for(pAdapter = pAdapterInfo; pAdapter; pAdapter = pAdapter->Next)
{
for(IP_ADDR_STRING* pIPAddr = &pAdapter->IpAddressList; pIPAddr;
pIPAddr = pIPAddr->Next)
{
/* skip null adapters */
if(strlen(pIPAddr->IpAddress.String) == 0)
continue;
/* address */
ift->_ifa.ifa_addr = (struct sockaddr*)&ift->_addr;
assert(1
== llarp_nt_sockaddr_pton(pIPAddr->IpAddress.String,
ift->_ifa.ifa_addr));
/* name */
#ifdef DEBUG
fprintf(stderr, "name:%s IPv4 index:%lu\n", pAdapter->AdapterName,
pAdapter->Index);
#endif
ift->_ifa.ifa_name = ift->_name;
StringCchCopyN(ift->_ifa.ifa_name, 128, pAdapter->AdapterName, 128);
/* flags: assume up, broadcast and multicast */
ift->_ifa.ifa_flags = IFF_UP | IFF_BROADCAST | IFF_MULTICAST;
if(pAdapter->Type == MIB_IF_TYPE_LOOPBACK)
ift->_ifa.ifa_flags |= IFF_LOOPBACK;
/* netmask */
ift->_ifa.ifa_netmask = (sockaddr*)&ift->_netmask;
assert(1
== llarp_nt_sockaddr_pton(pIPAddr->IpMask.String,
ift->_ifa.ifa_netmask));
/* next */
if(k++ < (n - 1))
{
ift->_ifa.ifa_next = (struct llarp_nt_ifaddrs_t*)(ift + 1);
ift = (struct _llarp_nt_ifaddrs_t*)(ift->_ifa.ifa_next);
}
else
{
ift->_ifa.ifa_next = nullptr;
}
}
}
if(pAdapterInfo)
_llarp_nt_heap_free(pAdapterInfo);
*ifap = (struct llarp_nt_ifaddrs_t*)ifa;
return true;
}
#if 0
/* Supports both IPv4 and IPv6 addressing. The size of IP_ADAPTER_ADDRESSES
* changes between Windows XP, XP SP1, and Vista with additional members.
*
* Interfaces that are not "operationally up" will typically return a host
* IP address with the defined IPv4 link-local prefix 169.254.0.0/16.
* Adapters with a static configured IP address but down will return both
* the IPv4 link-local prefix and the static address.
*
* It is easier to say "not up" rather than "down" as this API returns six
* effective down status values: down, testing, unknown, dormant, not present,
* and lower layer down.
*
* Available in Windows XP and Wine 1.3.
*
* NOTE(despair): an inline implementation is provided, much like
* getaddrinfo(3) for old hosts. See "win32_intrnl.*"
*/
static bool
_llarp_nt_getadaptersaddresses(struct llarp_nt_ifaddrs_t** ifap)
{
DWORD dwSize = DEFAULT_BUFFER_SIZE, dwRet;
IP_ADAPTER_ADDRESSES *pAdapterAddresses = nullptr, *adapter;
/* loop to handle interfaces coming online causing a buffer overflow
* between first call to list buffer length and second call to enumerate.
*/
for(unsigned i = 3; i; i--)
{
#ifdef DEBUG
fprintf(stderr, "IP_ADAPTER_ADDRESSES buffer length %lu bytes.\n", dwSize);
#endif
pAdapterAddresses = (IP_ADAPTER_ADDRESSES*)_llarp_nt_heap_alloc(dwSize);
dwRet = _GetAdaptersAddresses(
AF_UNSPEC,
GAA_FLAG_INCLUDE_PREFIX | GAA_FLAG_SKIP_ANYCAST
| GAA_FLAG_SKIP_DNS_SERVER | GAA_FLAG_SKIP_FRIENDLY_NAME
| GAA_FLAG_SKIP_MULTICAST,
nullptr, pAdapterAddresses, &dwSize);
if(ERROR_BUFFER_OVERFLOW == dwRet)
{
_llarp_nt_heap_free(pAdapterAddresses);
pAdapterAddresses = nullptr;
}
else
{
break;
}
}
switch(dwRet)
{
case ERROR_SUCCESS:
break;
case ERROR_BUFFER_OVERFLOW:
errno = ENOBUFS;
if(pAdapterAddresses)
_llarp_nt_heap_free(pAdapterAddresses);
return FALSE;
default:
errno = _doserrno;
if(pAdapterAddresses)
_llarp_nt_heap_free(pAdapterAddresses);
return FALSE;
}
/* count valid adapters */
int n = 0, k = 0;
for(adapter = pAdapterAddresses; adapter; adapter = adapter->Next)
{
for(IP_ADAPTER_UNICAST_ADDRESS* unicast = adapter->FirstUnicastAddress;
unicast; unicast = unicast->Next)
{
/* ensure IP adapter */
if(AF_INET != unicast->Address.lpSockaddr->sa_family
&& AF_INET6 != unicast->Address.lpSockaddr->sa_family)
{
continue;
}
++n;
}
}
/* contiguous block for adapter list */
struct _llarp_nt_ifaddrs_t* ifa =
llarp_nt_new0(struct _llarp_nt_ifaddrs_t, n);
struct _llarp_nt_ifaddrs_t* ift = ifa;
/* now populate list */
for(adapter = pAdapterAddresses; adapter; adapter = adapter->Next)
{
int unicastIndex = 0;
for(IP_ADAPTER_UNICAST_ADDRESS* unicast = adapter->FirstUnicastAddress;
unicast; unicast = unicast->Next, ++unicastIndex)
{
/* ensure IP adapter */
if(AF_INET != unicast->Address.lpSockaddr->sa_family
&& AF_INET6 != unicast->Address.lpSockaddr->sa_family)
{
continue;
}
/* address */
ift->_ifa.ifa_addr = (sockaddr*)&ift->_addr;
memcpy(ift->_ifa.ifa_addr, unicast->Address.lpSockaddr,
unicast->Address.iSockaddrLength);
/* name */
#ifdef DEBUG
fprintf(stderr, "name:%s IPv4 index:%lu IPv6 index:%lu\n",
adapter->AdapterName, adapter->IfIndex, adapter->Ipv6IfIndex);
#endif
ift->_ifa.ifa_name = ift->_name;
StringCchCopyN(ift->_ifa.ifa_name, 256, adapter->AdapterName, 256);
/* flags */
ift->_ifa.ifa_flags = 0;
if(IfOperStatusUp == adapter->OperStatus)
ift->_ifa.ifa_flags |= IFF_UP;
if(IF_TYPE_SOFTWARE_LOOPBACK == adapter->IfType)
ift->_ifa.ifa_flags |= IFF_LOOPBACK;
if(!(adapter->Flags & IP_ADAPTER_NO_MULTICAST))
ift->_ifa.ifa_flags |= IFF_MULTICAST;
/* netmask */
ift->_ifa.ifa_netmask = (sockaddr*)&ift->_netmask;
/* pre-Vista must hunt for matching prefix in linked list, otherwise use
* OnLinkPrefixLength from IP_ADAPTER_UNICAST_ADDRESS structure.
* FirstPrefix requires Windows XP SP1, from SP1 to pre-Vista provides a
* single adapter prefix for each IP address. Vista and later provides
* host IP address prefix, subnet IP address, and subnet broadcast IP
* address. In addition there is a multicast and broadcast address
* prefix.
*/
ULONG prefixLength = 0;
#if defined(_WIN32) && (_WIN32_WINNT >= 0x0600)
/* For a unicast IPv4 address, any value greater than 32 is an illegal
* value. For a unicast IPv6 address, any value greater than 128 is an
* illegal value. A value of 255 is commonly used to represent an illegal
* value.
*
* Windows 7 SP1 returns 64 for Teredo links which is incorrect.
*/
#define IN6_IS_ADDR_TEREDO(addr) \
(((const uint32_t*)(addr))[0] == ntohl(0x20010000))
if(AF_INET6 == unicast->Address.lpSockaddr->sa_family &&
/* TunnelType only applies to one interface on the adapter and no
* convenient method is provided to determine which.
*/
TUNNEL_TYPE_TEREDO == adapter->TunnelType &&
/* Test the interface with the known Teredo network prefix.
*/
IN6_IS_ADDR_TEREDO(
&((struct sockaddr_in6*)(unicast->Address.lpSockaddr))->sin6_addr)
&&
/* Test that this version is actually wrong, subsequent releases from
* Microsoft may resolve the issue.
*/
32 != unicast->OnLinkPrefixLength)
{
#ifdef DEBUG
fprintf(stderr,
"IPv6 Teredo tunneling adapter %s prefix length is an "
"illegal value %lu, overriding to 32.\n",
adapter->AdapterName, unicast->OnLinkPrefixLength);
#endif
prefixLength = 32;
}
else
prefixLength = unicast->OnLinkPrefixLength;
#else
/* The order of linked IP_ADAPTER_UNICAST_ADDRESS structures pointed to by
* the FirstUnicastAddress member does not have any relationship with the
* order of linked IP_ADAPTER_PREFIX structures pointed to by the
* FirstPrefix member.
*
* Example enumeration:
* [ no subnet ]
* ::1/128 - address
* ff00::%1/8 - multicast (no IPv6 broadcast)
* 127.0.0.0/8 - subnet
* 127.0.0.1/32 - address
* 127.255.255.255/32 - subnet broadcast
* 224.0.0.0/4 - multicast
* 255.255.255.255/32 - broadcast
*
* Which differs from most adapters listing three IPv6:
* fe80::%10/64 - subnet
* fe80::51e9:5fe5:4202:325a%10/128 - address
* ff00::%10/8 - multicast
*
* !IfOperStatusUp IPv4 addresses are skipped:
* fe80::%13/64 - subnet
* fe80::d530:946d:e8df:8c91%13/128 - address
* ff00::%13/8 - multicast
* [ no subnet ]
* [ no address ]
* 224.0.0.0/4 - multicast
* 255.255.255.255/32 - broadcast
*
* On PTP links no multicast or broadcast addresses are returned:
* [ no subnet ]
* fe80::5efe:10.203.9.30/128 - address
* [ no multicast ]
* [ no multicast ]
* [ no broadcast ]
*
* Active primary IPv6 interfaces are a bit overloaded:
* ::/0 - default route
* 2001::/32 - global subnet
* 2001:0:4137:9e76:2443:d6:ba87:1a2a/128 - global address
* fe80::/64 - link-local subnet
* fe80::2443:d6:ba87:1a2a/128 - link-local address
* ff00::/8 - multicast
*/
#define IN_LINKLOCAL(a) ((((uint32_t)(a)) & 0xaffff0000) == 0xa9fe0000)
for(IP_ADAPTER_PREFIX* prefix = adapter->FirstPrefix; prefix;
prefix = prefix->Next)
{
LPSOCKADDR lpSockaddr = prefix->Address.lpSockaddr;
if(lpSockaddr->sa_family != unicast->Address.lpSockaddr->sa_family)
continue;
/* special cases */
/* RFC2863: IPv4 interface not up */
if(AF_INET == lpSockaddr->sa_family
&& adapter->OperStatus != IfOperStatusUp)
{
/* RFC3927: link-local IPv4 always has 16-bit CIDR */
if(IN_LINKLOCAL(
ntohl(((struct sockaddr_in*)(unicast->Address.lpSockaddr))
->sin_addr.s_addr)))
{
#ifdef DEBUG
fprintf(stderr,
"Assuming 16-bit prefix length for link-local IPv4 "
"adapter %s.\n",
adapter->AdapterName);
#endif
prefixLength = 16;
}
else
{
#ifdef DEBUG
fprintf(stderr, "Prefix length unavailable for IPv4 adapter %s.\n",
adapter->AdapterName);
#endif
}
break;
}
/* default IPv6 route */
if(AF_INET6 == lpSockaddr->sa_family && 0 == prefix->PrefixLength
&& IN6_IS_ADDR_UNSPECIFIED(
&((struct sockaddr_in6*)(lpSockaddr))->sin6_addr))
{
#ifdef DEBUG
fprintf(stderr,
"Ingoring unspecified address prefix on IPv6 adapter %s.\n",
adapter->AdapterName);
#endif
continue;
}
/* Assume unicast address for first prefix of operational adapter */
if(AF_INET == lpSockaddr->sa_family)
assert(!IN_MULTICAST(
ntohl(((struct sockaddr_in*)(lpSockaddr))->sin_addr.s_addr)));
if(AF_INET6 == lpSockaddr->sa_family)
assert(!IN6_IS_ADDR_MULTICAST(
&((struct sockaddr_in6*)(lpSockaddr))->sin6_addr));
/* Assume subnet or host IP address for XP backward compatibility */
prefixLength = prefix->PrefixLength;
break;
}
#endif /* defined( _WIN32 ) && ( _WIN32_WINNT >= 0x0600 ) */
/* map prefix to netmask */
ift->_ifa.ifa_netmask->sa_family = unicast->Address.lpSockaddr->sa_family;
switch(unicast->Address.lpSockaddr->sa_family)
{
case AF_INET:
if(0 == prefixLength || prefixLength > 32)
{
#ifdef DEBUG
fprintf(stderr,
"IPv4 adapter %s prefix length is an illegal value "
"%lu, overriding to 32.\n",
adapter->AdapterName, prefixLength);
#endif
prefixLength = 32;
}
/* NB: left-shift of full bit-width is undefined in C standard. */
((struct sockaddr_in*)ift->_ifa.ifa_netmask)->sin_addr.s_addr =
htonl(0xffffffffU << (32 - prefixLength));
break;
case AF_INET6:
if(0 == prefixLength || prefixLength > 128)
{
#ifdef DEBUG
fprintf(stderr,
"IPv6 adapter %s prefix length is an illegal value "
"%lu, overriding to 128.\n",
adapter->AdapterName, prefixLength);
#endif
prefixLength = 128;
}
for(LONG i = prefixLength, j = 0; i > 0; i -= 8, ++j)
{
((struct sockaddr_in6*)ift->_ifa.ifa_netmask)
->sin6_addr.s6_addr[j] =
i >= 8 ? 0xff : (ULONG)((0xffU << (8 - i)) & 0xffU);
}
break;
}
/* next */
if(k++ < (n - 1))
{
ift->_ifa.ifa_next = (struct llarp_nt_ifaddrs_t*)(ift + 1);
ift = (struct _llarp_nt_ifaddrs_t*)(ift->_ifa.ifa_next);
}
}
}
if(pAdapterAddresses)
_llarp_nt_heap_free(pAdapterAddresses);
*ifap = (struct llarp_nt_ifaddrs_t*)ifa;
return TRUE;
}
#endif
// an implementation of if_nametoindex(3) based on GetAdapterIndex(2)
// with a fallback to GetAdaptersAddresses(2) commented out for now
// unless it becomes evident that the first codepath fails in certain
// edge cases?
static unsigned
_llarp_nt_getadaptersaddresses_nametoindex(const char* ifname)
{
ULONG ifIndex;
DWORD /* dwSize = 4096,*/ dwRet;
// IP_ADAPTER_ADDRESSES *pAdapterAddresses = nullptr, *adapter;
char szAdapterName[256];
if(!ifname)
return 0;
StringCchCopyN(szAdapterName, sizeof(szAdapterName), ifname, 256);
dwRet = GetAdapterIndex((LPWSTR)szAdapterName, &ifIndex);
if(!dwRet)
return ifIndex;
else
return 0;
#if 0
/* fallback to finding index via iterating adapter list */
/* loop to handle interfaces coming online causing a buffer overflow
* between first call to list buffer length and second call to enumerate.
*/
for(unsigned i = 3; i; i--)
{
pAdapterAddresses = (IP_ADAPTER_ADDRESSES*)_llarp_nt_heap_alloc(dwSize);
dwRet = _GetAdaptersAddresses(
AF_UNSPEC,
GAA_FLAG_SKIP_ANYCAST | GAA_FLAG_SKIP_DNS_SERVER
| GAA_FLAG_SKIP_FRIENDLY_NAME | GAA_FLAG_SKIP_MULTICAST,
nullptr, pAdapterAddresses, &dwSize);
if(ERROR_BUFFER_OVERFLOW == dwRet)
{
_llarp_nt_heap_free(pAdapterAddresses);
pAdapterAddresses = nullptr;
}
else
{
break;
}
}
switch(dwRet)
{
case ERROR_SUCCESS:
break;
case ERROR_BUFFER_OVERFLOW:
errno = ENOBUFS;
if(pAdapterAddresses)
_llarp_nt_heap_free(pAdapterAddresses);
return 0;
default:
errno = _doserrno;
if(pAdapterAddresses)
_llarp_nt_heap_free(pAdapterAddresses);
return 0;
}
for(adapter = pAdapterAddresses; adapter; adapter = adapter->Next)
{
if(0 == strcmp(szAdapterName, adapter->AdapterName))
{
//ifIndex = AF_INET6 == iffamily ? adapter->Ipv6IfIndex : adapter->IfIndex;
_llarp_nt_heap_free(pAdapterAddresses);
return ifIndex;
}
}
if(pAdapterAddresses)
_llarp_nt_heap_free(pAdapterAddresses);
return 0;
#endif
}
// the emulated getifaddrs(3) itself.
static bool
llarp_nt_getifaddrs(struct llarp_nt_ifaddrs_t** ifap)
{
assert(nullptr != ifap);
#ifdef DEBUG
fprintf(stderr, "llarp_nt_getifaddrs (ifap:%p error:%p)\n", (void*)ifap,
(void*)errno);
#endif
return _llarp_nt_getadaptersinfo(ifap);
}
static void
llarp_nt_freeifaddrs(struct llarp_nt_ifaddrs_t* ifa)
{
if(!ifa)
return;
free(ifa);
}
// emulated if_nametoindex(3)
static unsigned
llarp_nt_if_nametoindex(const char* ifname)
{
if(!ifname)
return 0;
return _llarp_nt_getadaptersaddresses_nametoindex(ifname);
}
// fix up names for win32
#define ifaddrs llarp_nt_ifaddrs_t
#define getifaddrs llarp_nt_getifaddrs
#define freeifaddrs llarp_nt_freeifaddrs
#define if_nametoindex llarp_nt_if_nametoindex
#endif
// jeff's original code
bool
llarp_getifaddr(const char* ifname, int af, struct sockaddr* addr)
{
ifaddrs* ifa = nullptr;
bool found = false;
socklen_t sl = sizeof(sockaddr_in6);
if(af == AF_INET)
sl = sizeof(sockaddr_in);
#ifndef _WIN32
if(getifaddrs(&ifa) == -1)
#else
if(!getifaddrs(&ifa))
#endif
return false;
ifaddrs* i = ifa;
while(i)
{
if(i->ifa_addr)
{
// llarp::LogInfo(__FILE__, "scanning ", i->ifa_name, " af: ",
// std::to_string(i->ifa_addr->sa_family));
if(llarp::StrEq(i->ifa_name, ifname) && i->ifa_addr->sa_family == af)
{
// can't do this here
// llarp::Addr a(*i->ifa_addr);
// if(!a.isPrivate())
//{
// llarp::LogInfo(__FILE__, "found ", ifname, " af: ", af);
memcpy(addr, i->ifa_addr, sl);
if(af == AF_INET6)
{
// set scope id
sockaddr_in6* ip6addr = (sockaddr_in6*)addr;
ip6addr->sin6_scope_id = if_nametoindex(ifname);
ip6addr->sin6_flowinfo = 0;
}
found = true;
break;
}
//}
}
i = i->ifa_next;
}
if(ifa)
freeifaddrs(ifa);
return found;
}
struct privatesInUse
llarp_getPrivateIfs()
{
struct privatesInUse result;
// mark all available for use
result.ten = false;
result.oneSeven = false;
result.oneNine = false;
ifaddrs* ifa = nullptr;
#ifndef _WIN32
if(getifaddrs(&ifa) == -1)
#else
if(!getifaddrs(&ifa))
#endif
return result;
ifaddrs* i = ifa;
while(i)
{
if(i->ifa_addr && i->ifa_addr->sa_family == AF_INET)
{
// llarp::LogInfo("scanning ", i->ifa_name, " af: ",
// std::to_string(i->ifa_addr->sa_family));
llarp::Addr test(*i->ifa_addr);
uint32_t byte = test.getHostLong();
if(test.isTenPrivate(byte))
{
llarp::LogDebug("private interface ", i->ifa_name, " ", test, " found");
result.ten = true;
}
else if(test.isOneSevenPrivate(byte))
{
llarp::LogDebug("private interface ", i->ifa_name, " ", test, " found");
result.oneSeven = true;
}
else if(test.isOneNinePrivate(byte))
{
llarp::LogDebug("private interface ", i->ifa_name, " ", test, " found");
result.oneNine = true;
}
}
i = i->ifa_next;
}
if(ifa)
freeifaddrs(ifa);
return result;
}
namespace llarp
{
bool
GetBestNetIF(std::string& ifname, int af)
{
ifaddrs* ifa = nullptr;
bool found = false;
#ifndef _WIN32
if(getifaddrs(&ifa) == -1)
#else
if(!getifaddrs(&ifa))
#endif
return false;
ifaddrs* i = ifa;
while(i)
{
if(i->ifa_addr)
{
if(i->ifa_addr->sa_family == af)
{
llarp::Addr a(*i->ifa_addr);
if(!(a.isPrivate() || a.isLoopback() || (a.getHostLong() == 0)))
{
ifname = i->ifa_name;
found = true;
break;
}
}
}
i = i->ifa_next;
}
if(ifa)
freeifaddrs(ifa);
return found;
}
std::string
findFreePrivateRange()
{
// pick ip
struct privatesInUse ifsInUse = llarp_getPrivateIfs();
std::string ip = "";
if(!ifsInUse.ten)
{
ip = "10.200.0.1/24";
}
else if(!ifsInUse.oneSeven)
{
ip = "172.16.10.1/24";
}
else if(!ifsInUse.oneNine)
{
ip = "192.168.10.1/24";
}
else
{
llarp::LogError(
"Couldn't easily detect a private range to map lokinet onto");
return "";
}
llarp::LogDebug("Detected " + ip
+ " is available for use, configuring as such");
return ip;
}
std::string
findFreeLokiTunIfName()
{
uint8_t num = 0;
while(num < 255)
{
std::string iftestname = "lokitun" + std::to_string(num);
struct sockaddr addr;
bool found = llarp_getifaddr(iftestname.c_str(), AF_INET, &addr);
if(!found)
{
llarp::LogDebug("Detected " + iftestname
+ " is available for use, configuring as such");
break;
}
num++;
}
if(num == 255)
{
// llarp::LogError("Could not find any free lokitun interface names");
return "";
}
// include lokitun prefix to communicate result is valid
return "lokitun" + std::to_string(num);
}
bool
GetIFAddr(const std::string& ifname, Addr& addr, int af)
{
sockaddr_storage s;
sockaddr* sptr = (sockaddr*)&s;
if(!llarp_getifaddr(ifname.c_str(), af, sptr))
return false;
addr = *sptr;
return true;
}
bool
AllInterfaces(int af, Addr& result)
{
if(af == AF_INET)
{
sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(INADDR_ANY);
addr.sin_port = htons(0);
result = addr;
return true;
}
else if(af == AF_INET6)
{
sockaddr_in6 addr6;
addr6.sin6_family = AF_INET6;
addr6.sin6_port = htons(0);
addr6.sin6_addr = IN6ADDR_ANY_INIT;
result = addr6;
return true;
}
else
{
// TODO: implement sockaddr_ll
}
return false;
}
bool
IsBogon(const in6_addr& addr)
{
#ifdef TESTNET
return false;
#else
if(!ipv6_is_siit(addr))
return false;
return IsIPv4Bogon(ipaddr_ipv4_bits(addr.s6_addr[12], addr.s6_addr[13],
addr.s6_addr[14], addr.s6_addr[15]));
#endif
}
bool
IsBogonRange(__attribute__((unused)) const in6_addr& host,
__attribute__((unused)) const in6_addr& netmask)
{
// TODO: implement me
return true;
}
bool
IsIPv4Bogon(const huint32_t& addr)
{
static std::vector< IPRange > bogonRanges = {
iprange_ipv4(0, 0, 0, 0, 8), iprange_ipv4(10, 0, 0, 0, 8),
iprange_ipv4(21, 0, 0, 0, 8), iprange_ipv4(100, 64, 0, 0, 10),
iprange_ipv4(127, 0, 0, 0, 8), iprange_ipv4(169, 254, 0, 0, 8),
iprange_ipv4(172, 16, 0, 0, 12), iprange_ipv4(192, 0, 0, 0, 24),
iprange_ipv4(192, 0, 2, 0, 24), iprange_ipv4(192, 88, 99, 0, 24),
iprange_ipv4(192, 168, 0, 0, 16), iprange_ipv4(198, 18, 0, 0, 15),
iprange_ipv4(198, 51, 100, 0, 24), iprange_ipv4(203, 0, 113, 0, 24),
iprange_ipv4(224, 0, 0, 0, 4), iprange_ipv4(240, 0, 0, 0, 4)};
for(const auto& bogon : bogonRanges)
{
if(bogon.Contains(addr))
{
return true;
}
}
return false;
}
} // namespace llarp