oxen-core/src/cryptonote_core/cryptonote_tx_utils.cpp

1377 lines
55 KiB
C++

// Copyright (c) 2014-2019, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
#include "cryptonote_tx_utils.h"
#include <random>
#include <unordered_set>
#include "blockchain.h"
#include "common/apply_permutation.h"
#include "common/hex.h"
#include "crypto/crypto.h"
#include "crypto/hash.h"
#include "cryptonote_basic/cryptonote_format_utils.h"
#include "cryptonote_basic/miner.h"
#include "cryptonote_basic/tx_extra.h"
#include "cryptonote_config.h"
#include "epee/int-util.h"
#include "epee/string_tools.h"
#include "multisig/multisig.h"
#include "ringct/rctSigs.h"
using namespace crypto;
namespace cryptonote {
//---------------------------------------------------------------
static void classify_addresses(
const std::vector<tx_destination_entry>& destinations,
const std::optional<cryptonote::tx_destination_entry>& change_addr,
size_t& num_stdaddresses,
size_t& num_subaddresses,
account_public_address& single_dest_subaddress) {
num_stdaddresses = 0;
num_subaddresses = 0;
std::unordered_set<cryptonote::account_public_address> unique_dst_addresses;
bool change_found = false;
for (const tx_destination_entry& dst_entr : destinations) {
if (change_addr && *change_addr == dst_entr && !change_found) {
change_found = true;
continue;
}
if (unique_dst_addresses.count(dst_entr.addr) == 0) {
unique_dst_addresses.insert(dst_entr.addr);
if (dst_entr.is_subaddress) {
++num_subaddresses;
single_dest_subaddress = dst_entr.addr;
} else {
++num_stdaddresses;
}
}
}
log::debug(
globallogcat,
"destinations include {} standard addresses and {} subaddresses",
num_stdaddresses,
num_subaddresses);
}
keypair get_deterministic_keypair_from_height(uint64_t height) {
keypair k;
ec_scalar& sec = k.sec;
for (int i = 0; i < 8; i++) {
uint64_t height_byte = height & ((uint64_t)0xFF << (i * 8));
uint8_t byte = height_byte >> i * 8;
sec[i] = byte;
}
for (int i = 8; i < 32; i++) {
sec[i] = 0x00;
}
generate_keys(k.pub, k.sec, k.sec, true);
return k;
}
bool get_deterministic_output_key(
const account_public_address& address,
const keypair& tx_key,
size_t output_index,
crypto::public_key& output_key) {
crypto::key_derivation derivation{};
bool r = crypto::generate_key_derivation(address.m_view_public_key, tx_key.sec, derivation);
CHECK_AND_ASSERT_MES(
r,
false,
"failed to generate_key_derivation(" << address.m_view_public_key << ", " << tx_key.sec
<< ")");
r = crypto::derive_public_key(derivation, output_index, address.m_spend_public_key, output_key);
CHECK_AND_ASSERT_MES(
r,
false,
"failed to derive_public_key(" << derivation << ", " << output_index << ", "
<< address.m_spend_public_key << ")");
return true;
}
bool validate_governance_reward_key(
uint64_t height,
std::string_view governance_wallet_address_str,
size_t output_index,
const crypto::public_key& output_key,
const cryptonote::network_type nettype) {
keypair gov_key = get_deterministic_keypair_from_height(height);
cryptonote::address_parse_info governance_wallet_address;
cryptonote::get_account_address_from_str(
governance_wallet_address, nettype, governance_wallet_address_str);
crypto::public_key correct_key;
if (!get_deterministic_output_key(
governance_wallet_address.address, gov_key, output_index, correct_key)) {
log::error(
globallogcat,
"Failed to generate deterministic output key for governance wallet output "
"validation");
return false;
}
return correct_key == output_key;
}
uint64_t governance_reward_formula(hf hf_version, uint64_t base_reward) {
return hf_version >= hf::hf17 ? oxen::FOUNDATION_REWARD_HF17
: hf_version >= hf::hf16_pulse
? oxen::FOUNDATION_REWARD_HF15 + oxen::CHAINFLIP_LIQUIDITY_HF16
: hf_version >= hf::hf15_ons ? oxen::FOUNDATION_REWARD_HF15
: base_reward / 20;
}
bool block_has_governance_output(network_type nettype, cryptonote::block const& block) {
bool result =
height_has_governance_output(nettype, block.major_version, get_block_height(block));
return result;
}
bool height_has_governance_output(network_type nettype, hf hard_fork_version, uint64_t height) {
if (height == 0)
return false;
if (hard_fork_version <= hf::hf9_service_nodes || hard_fork_version >= hf::hf19_reward_batching)
return true;
if (height % cryptonote::get_config(nettype).GOVERNANCE_REWARD_INTERVAL_IN_BLOCKS != 0) {
return false;
}
return true;
}
uint64_t derive_governance_from_block_reward(
network_type nettype, const cryptonote::block& block, hf hf_version) {
if (hf_version >= hf::hf15_ons)
return governance_reward_formula(hf_version);
uint64_t result = 0;
uint64_t snode_reward = 0;
size_t vout_end = block.miner_tx.vout.size();
if (block_has_governance_output(nettype, block))
--vout_end; // skip the governance output, the governance may be the batched amount. we
// want the original base reward
for (size_t vout_index = 1; vout_index < vout_end; ++vout_index) {
tx_out const& output = block.miner_tx.vout[vout_index];
snode_reward += output.amount;
}
uint64_t base_reward = snode_reward * 2; // pre-HF15, SN reward = half of base reward
uint64_t governance = governance_reward_formula(hf_version, base_reward);
uint64_t block_reward = base_reward - governance;
uint64_t actual_reward = 0; // sanity check
for (tx_out const& output : block.miner_tx.vout)
actual_reward += output.amount;
CHECK_AND_ASSERT_MES(
block_reward <= actual_reward,
false,
"Rederiving the base block reward from the service node reward "
"exceeded the actual amount paid in the block, derived block reward: "
<< block_reward << ", actual reward: " << actual_reward);
result = governance;
return result;
}
uint64_t service_node_reward_formula(uint64_t base_reward, hf hard_fork_version) {
return hard_fork_version >= hf::hf15_ons ? oxen::SN_REWARD_HF15
: hard_fork_version >= hf::hf9_service_nodes
? base_reward / 2
: // 50% of base reward up until HF15's fixed payout
0;
}
uint64_t get_portion_of_reward(uint64_t portions, uint64_t total_service_node_reward) {
return mul128_div64(total_service_node_reward, portions, old::STAKING_PORTIONS);
}
std::vector<uint64_t> distribute_reward_by_portions(
const std::vector<service_nodes::payout_entry>& payout,
uint64_t total_reward,
bool distribute_remainder) {
uint64_t paid_reward = 0;
std::vector<uint64_t> result;
result.reserve(payout.size());
for (auto const& entry : payout) {
uint64_t reward = get_portion_of_reward(entry.portions, total_reward);
paid_reward += reward;
result.push_back(reward);
}
if (distribute_remainder && payout.size()) {
uint64_t remainder = total_reward - paid_reward;
result.front() += remainder;
}
return result;
}
static uint64_t calculate_sum_of_portions(
const std::vector<service_nodes::payout_entry>& payout,
uint64_t total_service_node_reward) {
uint64_t reward = 0;
for (auto const& entry : payout)
reward += get_portion_of_reward(entry.portions, total_service_node_reward);
return reward;
}
std::pair<bool, uint64_t> construct_miner_tx(
size_t height,
size_t median_weight,
uint64_t already_generated_coins,
size_t current_block_weight,
uint64_t fee,
transaction& tx,
const oxen_miner_tx_context& miner_tx_context,
const std::vector<cryptonote::batch_sn_payment>& sn_rwds,
const std::string& extra_nonce,
hf hard_fork_version) {
tx.vin.clear();
tx.vout.clear();
tx.extra.clear();
tx.output_unlock_times.clear();
tx.type = txtype::standard;
tx.version = transaction::get_max_version_for_hf(hard_fork_version);
keypair const txkey{hw::get_device("default")};
keypair const gov_key = get_deterministic_keypair_from_height(
height); // NOTE: Always need since we use same key for service node
uint64_t block_rewards = 0;
// NOTE: TX Extra
add_tx_extra<tx_extra_pub_key>(tx, txkey.pub);
if (!extra_nonce.empty()) {
if (!add_extra_nonce_to_tx_extra(tx.extra, extra_nonce))
return std::make_pair(false, block_rewards);
}
// TODO(doyle): We don't need to do this. It's a deterministic key.
if (already_generated_coins != 0)
add_tx_extra<tx_extra_pub_key>(tx, gov_key.pub);
add_service_node_winner_to_tx_extra(tx.extra, miner_tx_context.block_leader.key);
oxen_block_reward_context block_reward_context = {};
block_reward_context.fee = fee;
block_reward_context.height = height;
block_reward_context.block_leader_payouts = miner_tx_context.block_leader.payouts;
block_reward_context.batched_governance = miner_tx_context.batched_governance;
block_reward_parts reward_parts{};
if (!get_oxen_block_reward(
median_weight,
current_block_weight,
already_generated_coins,
hard_fork_version,
reward_parts,
block_reward_context)) {
log::warning(globallogcat, "Failed to calculate block reward");
return std::make_pair(false, block_rewards);
}
// NOTE: Batched Pulse Block Payment Details
//
// Each block accrues a small reward to each service node this amount
// is essentially 16.5 (Coinbase reward for Service Nodes) divided by
// the size of the service node list. (Internally, these rewards are
// calculated with 3 extra digits of precision to reduce integer
// truncation errors).
//
// The service node list is adjusted to only accrue for nodes
// that have been active (i.e. without decommission or ip penalty)
// for greater than 1 day.
//
// By default, when Pulse round is 0, the Block Producer is the Block
// Leader. Transaction fees are given to the Block Leader.
// This is the common case, and the transaction fees incentivise the
// block producer to produce the block and not stall the network.
//
// On alternative rounds, transaction fees are given to the alternative
// block producer (which is now different from the Block Leader). The
// original block producer still accrues their share of the coinbase. A Pulse
// round's failure is determined by the non-participation of the members of
// the quorum, so failing a round's onus is not always on the original block
// producer (it could be the validators colluding) hence why they still
// receive the coinbase.
//
// Allocating the transaction fee to alternative block producers on
// alternative rounds dis-incentivizes members in the quorum from
// intentionally not participating in the quorum to try and attain a spot as
// the subsequent alternative leader and snag a reward. The reward they
// receive instead is just the transaction fee.
//
// Purposely not participating to exploit alternative round transaction fees
// is further dis-incentivized as it is recorded on their behaviour metrics
// (multiple non-participation marks over the monitoring period will induce
// a decommission) by members of the quorum.
std::vector<reward_payout> rewards;
std::vector<batch_sn_payment> batched_rewards;
const network_type nettype = miner_tx_context.nettype;
if (hard_fork_version >= hf::hf9_service_nodes)
CHECK_AND_ASSERT_MES(
miner_tx_context.block_leader.payouts.size(),
std::make_pair(false, block_rewards),
"Constructing a block leader reward for block but no payout entries specified");
// NOTE: Add Block Producer Reward
service_nodes::payout const& leader = miner_tx_context.block_leader;
if (miner_tx_context.pulse) {
// PULSE BLOCKS
CHECK_AND_ASSERT_MES(
miner_tx_context.pulse_block_producer.payouts.size(),
std::make_pair(false, block_rewards),
"Constructing a reward for block produced by pulse but no payout entries "
"specified");
CHECK_AND_ASSERT_MES(
miner_tx_context.pulse_block_producer.key,
std::make_pair(false, block_rewards),
"Null Key given for Pulse Block Producer");
CHECK_AND_ASSERT_MES(
hard_fork_version >= hf::hf16_pulse,
std::make_pair(false, block_rewards),
"Pulse Block Producer is not valid until HF16, current HF"
<< static_cast<int>(hard_fork_version));
uint64_t leader_reward = reward_parts.service_node_total;
if (miner_tx_context.block_leader.key == miner_tx_context.pulse_block_producer.key) {
leader_reward += reward_parts.miner_fee;
} else if (reward_parts.miner_fee) {
// Alternative Block Producer (receives just miner fee, if there is one)
const auto& p_payouts = miner_tx_context.pulse_block_producer.payouts;
std::vector<uint64_t> split_rewards = distribute_reward_by_portions(
p_payouts, reward_parts.miner_fee, true /*distribute_remainder*/);
if (hard_fork_version >= hf::hf19_reward_batching) {
for (size_t i = 0; i < p_payouts.size(); i++)
batched_rewards.emplace_back(p_payouts[i].address, split_rewards[i]);
} else {
for (size_t i = 0; i < p_payouts.size(); i++)
rewards.push_back({reward_type::snode, p_payouts[i].address, split_rewards[i]});
}
}
std::vector<uint64_t> split_rewards = distribute_reward_by_portions(
leader.payouts, leader_reward, true /*distribute_remainder*/);
if (hard_fork_version >= hf::hf19_reward_batching) {
for (size_t i = 0; i < leader.payouts.size(); i++)
batched_rewards.emplace_back(leader.payouts[i].address, split_rewards[i]);
} else {
for (size_t i = 0; i < leader.payouts.size(); i++)
rewards.push_back(
{reward_type::snode, leader.payouts[i].address, split_rewards[i]});
}
} else {
// MINED BLOCKS
CHECK_AND_ASSERT_MES(
miner_tx_context.pulse_block_producer.payouts.empty(),
std::make_pair(false, block_rewards),
"Constructing a reward for block produced by miner but payout entries specified");
if (uint64_t miner_amount = reward_parts.base_miner + reward_parts.miner_fee;
miner_amount) {
if (hard_fork_version >= hf::hf19_reward_batching) {
batched_rewards.emplace_back(miner_tx_context.miner_block_producer, miner_amount);
} else {
rewards.push_back(
{reward_type::miner, miner_tx_context.miner_block_producer, miner_amount});
}
}
if (hard_fork_version >= hf::hf9_service_nodes) {
auto split_rewards = distribute_reward_by_portions(
leader.payouts,
reward_parts.service_node_total,
hard_fork_version >= hf::hf16_pulse /*distribute_remainder*/);
if (hard_fork_version >= hf::hf19_reward_batching) {
for (size_t i = 0; i < leader.payouts.size(); i++)
batched_rewards.emplace_back(leader.payouts[i].address, split_rewards[i]);
} else {
for (size_t i = 0; i < leader.payouts.size(); i++)
rewards.push_back(
{reward_type::snode, leader.payouts[i].address, split_rewards[i]});
}
}
}
// NOTE: Add Governance Payout
if (already_generated_coins != 0) {
if (reward_parts.governance_paid == 0) {
CHECK_AND_ASSERT_MES(
hard_fork_version >= hf::hf10_bulletproofs,
std::make_pair(false, block_rewards),
"Governance reward can NOT be 0 before hardfork 10, hard_fork_version: "
<< static_cast<int>(hard_fork_version));
}
// Governance reward paid out through SN rewards batching from HF19
else if (hard_fork_version < hf::hf19_reward_batching) {
cryptonote::address_parse_info governance_wallet_address;
cryptonote::get_account_address_from_str(
governance_wallet_address,
nettype,
cryptonote::get_config(nettype).governance_wallet_address(hard_fork_version));
rewards.push_back(
{reward_type::governance,
governance_wallet_address.address,
reward_parts.governance_paid});
}
}
uint64_t total_sn_rewards = 0;
// Add batched SN rewards to the block:
if (!sn_rwds.empty()) {
assert(hard_fork_version >= hf::hf19_reward_batching);
for (const auto& reward : sn_rwds) {
assert(reward.amount % BATCH_REWARD_FACTOR == 0);
auto atomic_amt = reward.amount / BATCH_REWARD_FACTOR;
rewards.emplace_back(reward_type::snode, reward.address_info.address, atomic_amt);
total_sn_rewards += atomic_amt;
}
}
if (hard_fork_version < hf::hf19_reward_batching) {
CHECK_AND_ASSERT_MES(
rewards.size() <= 9,
std::make_pair(false, block_rewards),
"More rewards specified than supported, number of rewards: "
<< rewards.size() << ", capacity: " << rewards.size());
CHECK_AND_ASSERT_MES(
rewards.size() > 0,
std::make_pair(false, block_rewards),
"Zero rewards are to be payed out, there should be at least 1");
}
// NOTE: Make TX Outputs
uint64_t summary_amounts = 0;
for (auto it = rewards.begin(); it != rewards.end(); ++it) {
auto const& [type, address, amount] = *it;
assert(amount > 0);
crypto::public_key out_eph_public_key{};
// TODO(doyle): I don't think txkey is necessary, just use the governance key?
keypair const& derivation_pair = (type == reward_type::miner) ? txkey : gov_key;
crypto::key_derivation derivation{};
if (!get_deterministic_output_key(
address, derivation_pair, it - rewards.begin(), out_eph_public_key)) {
log::error(globallogcat, "Failed to generate output one-time public key");
return std::make_pair(false, block_rewards);
}
txout_to_key tk{};
tk.key = out_eph_public_key;
tx_out out{};
out.target = tk;
out.amount = amount;
tx.vout.push_back(out);
tx.output_unlock_times.push_back(height + MINED_MONEY_UNLOCK_WINDOW);
summary_amounts += amount;
}
uint64_t expected_amount;
if (hard_fork_version <= hf::hf15_ons) {
// NOTE: Use the amount actually paid out when we split the service node
// reward (across up to 4 recipients) which may actually pay out less than
// the total reward allocated for Service Nodes (due to remainder from
// division). This occurred prior to HF15, after that we redistribute dust
// properly.
expected_amount =
reward_parts.base_miner + reward_parts.miner_fee + reward_parts.governance_paid;
for (const auto& [type, address, amount] : rewards)
if (type == reward_type::snode)
expected_amount += amount;
} else if (hard_fork_version < hf::hf19_reward_batching)
expected_amount = reward_parts.base_miner + reward_parts.miner_fee +
reward_parts.service_node_total + reward_parts.governance_paid;
else
expected_amount = total_sn_rewards;
CHECK_AND_ASSERT_MES(
summary_amounts == expected_amount,
std::make_pair(false, block_rewards),
"Failed to construct miner tx, summary_amounts = "
<< summary_amounts << " not equal total block_reward = " << expected_amount);
CHECK_AND_ASSERT_MES(
tx.vout.size() == rewards.size(),
std::make_pair(false, block_rewards),
"TX output mis-match with rewards expected: " << rewards.size()
<< ", tx outputs: " << tx.vout.size());
block_rewards = std::accumulate(
batched_rewards.begin(), batched_rewards.end(), uint64_t{0}, [](uint64_t x, auto&& y) {
return x + y.amount;
});
// lock
tx.unlock_time = height + MINED_MONEY_UNLOCK_WINDOW;
tx.vin.push_back(txin_gen{height});
tx.invalidate_hashes();
return std::make_pair(true, block_rewards);
}
bool get_oxen_block_reward(
size_t median_weight,
size_t current_block_weight,
uint64_t already_generated_coins,
hf hard_fork_version,
block_reward_parts& result,
const oxen_block_reward_context& oxen_context) {
result = {};
uint64_t base_reward, base_reward_unpenalized;
if (!get_base_block_reward(
median_weight,
current_block_weight,
already_generated_coins,
base_reward,
base_reward_unpenalized,
hard_fork_version,
oxen_context.height)) {
log::error(globallogcat, "Failed to calculate base block reward");
return false;
}
if (base_reward == 0) {
log::error(globallogcat, "Unexpected base reward of 0");
return false;
}
if (already_generated_coins == 0) {
result.original_base_reward = result.base_miner = base_reward;
return true;
}
// We base governance fees and SN rewards based on the block reward formula. (Prior to HF13,
// however, they were accidentally based on the block reward formula *after* subtracting a
// potential penalty if the block producer includes txes beyond the median size limit).
result.original_base_reward = hard_fork_version >= hf::hf13_enforce_checkpoints
? base_reward_unpenalized
: base_reward;
// There is a goverance fee due every block. Beginning in hardfork 10 this is still subtracted
// from the block reward as if it was paid, but the actual payments get batched into rare, large
// accumulated payments. (Before hardfork 10 they are included in every block, unbatched).
result.governance_due =
governance_reward_formula(hard_fork_version, result.original_base_reward);
result.governance_paid = hard_fork_version >= hf::hf10_bulletproofs
? oxen_context.batched_governance
: result.governance_due;
uint64_t const service_node_reward =
service_node_reward_formula(result.original_base_reward, hard_fork_version);
if (hard_fork_version < hf::hf16_pulse) {
result.service_node_total =
calculate_sum_of_portions(oxen_context.block_leader_payouts, service_node_reward);
// The base_miner amount is everything left in the base reward after subtracting off the
// service node and governance fee amounts (the due amount in the latter case). (Any penalty
// for exceeding the block limit is already removed from base_reward).
uint64_t non_miner_amounts = result.governance_due + result.service_node_total;
result.base_miner = base_reward > non_miner_amounts ? base_reward - non_miner_amounts : 0;
result.miner_fee = oxen_context.fee;
} else {
result.service_node_total = service_node_reward;
uint64_t const penalty = base_reward_unpenalized - base_reward;
result.miner_fee = penalty >= oxen_context.fee ? 0 : oxen_context.fee - penalty;
// In HF16, the block producer changes between the Miner and Service Node
// depending on the state of the Service Node network. The producer is no
// longer allocated a block reward (unless they are a Service Node) but
// always receive the transaction fees. Any penalty for exceeding the
// block limit must now be paid from the common reward received by all
// Block Producer's (i.e. their transaction fees for constructing the
// block).
uint64_t allocated = result.governance_due + result.service_node_total;
uint64_t remainder = base_reward_unpenalized - allocated;
if (allocated > base_reward_unpenalized || remainder != 0) {
if (allocated > base_reward_unpenalized)
log::error(
globallogcat,
"We allocated more reward {} than what was available {}",
cryptonote::print_money(allocated),
cryptonote::print_money(base_reward_unpenalized));
else
log::error(
globallogcat,
"We allocated reward but there was still {} oxen left to distribute.",
cryptonote::print_money(remainder));
return false;
}
}
return true;
}
crypto::public_key get_destination_view_key_pub(
const std::vector<tx_destination_entry>& destinations,
const std::optional<cryptonote::tx_destination_entry>& change_addr) {
account_public_address addr{};
size_t count = 0;
bool found_change = false;
for (const auto& i : destinations) {
if (i.amount == 0)
continue;
if (change_addr && *change_addr == i && !found_change) {
found_change = true;
continue;
}
if (i.addr == addr)
continue;
if (count > 0)
return null<public_key>;
addr = i.addr;
++count;
}
if (count == 0 && change_addr)
return change_addr->addr.m_view_public_key;
return addr.m_view_public_key;
}
//---------------------------------------------------------------
bool construct_tx_with_tx_key(
const account_keys& sender_account_keys,
const std::unordered_map<crypto::public_key, subaddress_index>& subaddresses,
std::vector<tx_source_entry>& sources,
std::vector<tx_destination_entry>& destinations,
const std::optional<tx_destination_entry>& change_addr,
const std::vector<uint8_t>& extra,
transaction& tx,
uint64_t unlock_time,
const crypto::secret_key& tx_key,
const std::vector<crypto::secret_key>& additional_tx_keys,
const rct::RCTConfig& rct_config,
rct::multisig_out* msout,
bool shuffle_outs,
oxen_construct_tx_params const& tx_params) {
hw::device& hwdev = sender_account_keys.get_device();
if (sources.empty()) {
log::error(globallogcat, "Empty sources");
return false;
}
std::vector<rct::key> amount_keys;
tx.set_null();
amount_keys.clear();
if (msout) {
msout->c.clear();
}
tx.version = transaction::get_max_version_for_hf(tx_params.hf_version);
CHECK_AND_ASSERT_MES(
tx.version >= txversion::v4_tx_types, false, "Cannot construct pre-v4 transactions");
CHECK_AND_ASSERT_MES(
rct_config.range_proof_type == rct::RangeProofType::PaddedBulletproof &&
(rct_config.bp_version == 0 || rct_config.bp_version >= 3),
false,
"Cannot construct pre-CLSAG transactions");
tx.type = tx_params.tx_type;
if (tx_params.burn_percent) {
log::error(
globallogcat,
"cannot construct tx: internal error: burn percent must be converted to fixed burn "
"amount in the wallet");
return false;
}
tx.extra = extra;
crypto::public_key txkey_pub;
if (tx.type == txtype::stake) {
crypto::secret_key tx_sk{tx_key};
if (!hwdev.update_staking_tx_secret_key(tx_sk)) {
log::warning(globallogcat, "Failed to add tx secret key to stake transaction");
return false;
}
cryptonote::add_tx_secret_key_to_tx_extra(tx.extra, tx_sk);
}
// if we have a stealth payment id, find it and encrypt it with the tx key now
std::vector<tx_extra_field> tx_extra_fields;
if (parse_tx_extra(tx.extra, tx_extra_fields)) {
bool add_dummy_payment_id = true;
tx_extra_nonce extra_nonce;
if (find_tx_extra_field_by_type(tx_extra_fields, extra_nonce)) {
crypto::hash payment_id{};
crypto::hash8 payment_id8{};
if (get_encrypted_payment_id_from_tx_extra_nonce(extra_nonce.nonce, payment_id8)) {
log::debug(globallogcat, "Encrypting payment id {}", payment_id8);
crypto::public_key view_key_pub =
get_destination_view_key_pub(destinations, change_addr);
if (!view_key_pub) {
log::error(
globallogcat,
"Destinations have to have exactly one output to support encrypted "
"payment ids");
return false;
}
if (!hwdev.encrypt_payment_id(payment_id8, view_key_pub, tx_key)) {
log::error(globallogcat, "Failed to encrypt payment id");
return false;
}
std::string extra_nonce;
set_encrypted_payment_id_to_tx_extra_nonce(extra_nonce, payment_id8);
remove_field_from_tx_extra<tx_extra_nonce>(tx.extra);
if (!add_extra_nonce_to_tx_extra(tx.extra, extra_nonce)) {
log::error(globallogcat, "Failed to add encrypted payment id to tx extra");
return false;
}
log::info(globallogcat, "Encrypted payment ID: {}", payment_id8);
add_dummy_payment_id = false;
} else if (get_payment_id_from_tx_extra_nonce(extra_nonce.nonce, payment_id)) {
add_dummy_payment_id = false;
}
}
// we don't add one if we've got more than the usual 1 destination plus change
if (destinations.size() > 2)
add_dummy_payment_id = false;
if (add_dummy_payment_id) {
// if we have neither long nor short payment id, add a dummy short one,
// this should end up being the vast majority of txes as time goes on
std::string extra_nonce;
crypto::hash8 payment_id8{};
crypto::public_key view_key_pub =
get_destination_view_key_pub(destinations, change_addr);
if (!view_key_pub) {
log::error(globallogcat, "Failed to get key to encrypt dummy payment id with");
} else {
hwdev.encrypt_payment_id(payment_id8, view_key_pub, tx_key);
set_encrypted_payment_id_to_tx_extra_nonce(extra_nonce, payment_id8);
if (!add_extra_nonce_to_tx_extra(tx.extra, extra_nonce)) {
log::error(
globallogcat, "Failed to add dummy encrypted payment id to tx extra");
// continue anyway
}
}
}
} else {
log::warning(globallogcat, "Failed to parse tx extra");
tx_extra_fields.clear();
}
struct input_generation_context_data {
keypair in_ephemeral;
};
std::vector<input_generation_context_data> in_contexts;
uint64_t summary_inputs_money = 0;
// fill inputs
int idx = -1;
for (const tx_source_entry& src_entr : sources) {
++idx;
if (src_entr.real_output >= src_entr.outputs.size()) {
log::error(
globallogcat,
"real_output index ({})bigger than output_keys.size()={}",
src_entr.real_output,
src_entr.outputs.size());
return false;
}
summary_inputs_money += src_entr.amount;
// key_derivation recv_derivation;
in_contexts.push_back(input_generation_context_data());
keypair& in_ephemeral = in_contexts.back().in_ephemeral;
crypto::key_image img;
const auto& out_key = reinterpret_cast<const crypto::public_key&>(
src_entr.outputs[src_entr.real_output].second.dest);
if (!generate_key_image_helper(
sender_account_keys,
subaddresses,
out_key,
src_entr.real_out_tx_key,
src_entr.real_out_additional_tx_keys,
src_entr.real_output_in_tx_index,
in_ephemeral,
img,
hwdev)) {
log::error(globallogcat, "Key image generation failed!");
return false;
}
// check that derivated key is equal with real output key (if non multisig)
if (!msout && !(in_ephemeral.pub == src_entr.outputs[src_entr.real_output].second.dest)) {
log::error(
globallogcat,
"derived public key mismatch with output public key at index {}, real out "
"{}!\nderived_key: {}\nreal output_public_key: {}",
idx,
src_entr.real_output,
tools::type_to_hex(in_ephemeral.pub),
tools::type_to_hex(src_entr.outputs[src_entr.real_output].second.dest));
log::error(globallogcat, "amount {}, rct {}", src_entr.amount, src_entr.rct);
log::error(
globallogcat,
"tx pubkey {}, real_output_in_tx_index {}",
src_entr.real_out_tx_key,
src_entr.real_output_in_tx_index);
return false;
}
// put key image into tx input
txin_to_key input_to_key;
input_to_key.amount = src_entr.amount;
input_to_key.k_image = msout ? rct::rct2ki(src_entr.multisig_kLRki.ki) : img;
// fill outputs array and use relative offsets
for (const tx_source_entry::output_entry& out_entry : src_entr.outputs)
input_to_key.key_offsets.push_back(out_entry.first);
input_to_key.key_offsets = absolute_output_offsets_to_relative(input_to_key.key_offsets);
tx.vin.push_back(input_to_key);
}
if (shuffle_outs) {
std::shuffle(destinations.begin(), destinations.end(), crypto::random_device{});
}
// sort ins by their key image
std::vector<size_t> ins_order(sources.size());
for (size_t n = 0; n < sources.size(); ++n)
ins_order[n] = n;
std::sort(ins_order.begin(), ins_order.end(), [&](const size_t i0, const size_t i1) {
const txin_to_key& tk0 = var::get<txin_to_key>(tx.vin[i0]);
const txin_to_key& tk1 = var::get<txin_to_key>(tx.vin[i1]);
return memcmp(&tk0.k_image, &tk1.k_image, sizeof(tk0.k_image)) > 0;
});
tools::apply_permutation(ins_order, [&](size_t i0, size_t i1) {
std::swap(tx.vin[i0], tx.vin[i1]);
std::swap(in_contexts[i0], in_contexts[i1]);
std::swap(sources[i0], sources[i1]);
});
// figure out if we need to make additional tx pubkeys
size_t num_stdaddresses = 0;
size_t num_subaddresses = 0;
account_public_address single_dest_subaddress;
classify_addresses(
destinations, change_addr, num_stdaddresses, num_subaddresses, single_dest_subaddress);
// if this is a single-destination transfer to a subaddress, we set the tx pubkey to R=s*D
if (num_stdaddresses == 0 && num_subaddresses == 1) {
txkey_pub = rct::rct2pk(hwdev.scalarmultKey(
rct::pk2rct(single_dest_subaddress.m_spend_public_key), rct::sk2rct(tx_key)));
} else {
txkey_pub = rct::rct2pk(hwdev.scalarmultBase(rct::sk2rct(tx_key)));
}
remove_field_from_tx_extra<tx_extra_pub_key>(tx.extra);
add_tx_extra<tx_extra_pub_key>(tx, txkey_pub);
std::vector<crypto::public_key> additional_tx_public_keys;
// we don't need to include additional tx keys if:
// - all the destinations are standard addresses
// - there's only one destination which is a subaddress
bool need_additional_txkeys =
num_subaddresses > 0 && (num_stdaddresses > 0 || num_subaddresses > 1);
if (need_additional_txkeys)
CHECK_AND_ASSERT_MES(
destinations.size() == additional_tx_keys.size(),
false,
"Wrong amount of additional tx keys");
uint64_t summary_outs_money = 0;
// fill outputs
size_t output_index = 0;
tx_extra_tx_key_image_proofs key_image_proofs;
bool found_change_already = false;
for (const tx_destination_entry& dst_entr : destinations) {
crypto::public_key out_eph_public_key;
bool this_dst_is_change_addr = false;
hwdev.generate_output_ephemeral_keys(
static_cast<uint16_t>(tx.version),
this_dst_is_change_addr,
sender_account_keys,
txkey_pub,
tx_key,
dst_entr,
change_addr,
output_index,
need_additional_txkeys,
additional_tx_keys,
additional_tx_public_keys,
amount_keys,
out_eph_public_key);
// Per-output unlock times:
{
if (change_addr && *change_addr == dst_entr && this_dst_is_change_addr &&
!found_change_already) {
found_change_already = true;
tx.output_unlock_times.push_back(0); // 0 unlock time for change
} else {
tx.output_unlock_times.push_back(
unlock_time); // for now, all non-change have same unlock time
}
}
if (tx.type == txtype::stake) {
CHECK_AND_ASSERT_MES(
dst_entr.addr == sender_account_keys.m_account_address,
false,
"A staking contribution must return back to the original sendee otherwise the "
"pre-calculated key image is incorrect");
CHECK_AND_ASSERT_MES(
dst_entr.is_subaddress == false,
false,
"Staking back to a subaddress is not allowed"); // TODO(oxen): Maybe one day,
// revisit this
CHECK_AND_ASSERT_MES(
need_additional_txkeys == false,
false,
"Staking TX's can not required additional TX Keys"); // TODO(oxen): Maybe one
// day, revisit this
if (!(change_addr && *change_addr == dst_entr)) {
auto& proof = key_image_proofs.proofs.emplace_back();
keypair ephemeral_keys{};
if (!generate_key_image_helper(
sender_account_keys,
subaddresses,
out_eph_public_key,
txkey_pub,
additional_tx_public_keys,
output_index,
ephemeral_keys,
proof.key_image,
hwdev)) {
log::error(globallogcat, "Key image generation failed for staking TX!");
return false;
}
hwdev.generate_key_image_signature(
proof.key_image, out_eph_public_key, ephemeral_keys.sec, proof.signature);
}
}
tx_out out;
out.amount = dst_entr.amount;
txout_to_key tk;
tk.key = out_eph_public_key;
out.target = tk;
tx.vout.push_back(out);
output_index++;
summary_outs_money += dst_entr.amount;
}
CHECK_AND_ASSERT_MES(
additional_tx_public_keys.size() == additional_tx_keys.size(),
false,
"Internal error creating additional public keys");
if (tx.type == txtype::stake) {
CHECK_AND_ASSERT_MES(
key_image_proofs.proofs.size() >= 1,
false,
"No key image proofs were generated for staking tx");
add_tx_key_image_proofs_to_tx_extra(tx.extra, key_image_proofs);
if (tx_params.hf_version <= hf::hf13_enforce_checkpoints)
tx.type = txtype::standard;
}
remove_field_from_tx_extra<tx_extra_additional_pub_keys>(tx.extra);
log::debug(globallogcat, "tx pubkey: {}", txkey_pub);
if (need_additional_txkeys) {
log::debug(globallogcat, "additional tx pubkeys: ");
for (size_t i = 0; i < additional_tx_public_keys.size(); ++i)
log::debug(globallogcat, "{}", additional_tx_public_keys[i]);
add_additional_tx_pub_keys_to_extra(tx.extra, additional_tx_public_keys);
}
if (!sort_tx_extra(tx.extra, tx.extra))
return false;
// check money
if (summary_outs_money > summary_inputs_money) {
log::error(
globallogcat,
"Transaction inputs money ({}) less than outputs money ({})",
summary_inputs_money,
summary_outs_money);
return false;
}
// check for watch only wallet
if (!sender_account_keys.m_spend_secret_key) {
log::debug(globallogcat, "Null secret key, skipping signatures");
}
uint64_t amount_in = 0, amount_out = 0;
rct::ctkeyV inSk;
inSk.reserve(sources.size());
// mixRing indexing is done the other way round for simple
rct::ctkeyM mixRing(sources.size());
rct::keyV dest_keys;
std::vector<uint64_t> inamounts, outamounts;
std::vector<unsigned int> index;
std::vector<rct::multisig_kLRki> kLRki;
for (size_t i = 0; i < sources.size(); ++i) {
rct::ctkey ctkey;
amount_in += sources[i].amount;
inamounts.push_back(sources[i].amount);
index.push_back(sources[i].real_output);
// inSk: (secret key, mask)
ctkey.dest = rct::sk2rct(in_contexts[i].in_ephemeral.sec);
ctkey.mask = sources[i].mask;
inSk.push_back(ctkey);
memwipe(&ctkey, sizeof(rct::ctkey));
// inPk: (public key, commitment)
// will be done when filling in mixRing
if (msout) {
kLRki.push_back(sources[i].multisig_kLRki);
}
}
for (size_t i = 0; i < tx.vout.size(); ++i) {
dest_keys.push_back(rct::pk2rct(var::get<txout_to_key>(tx.vout[i].target).key));
outamounts.push_back(tx.vout[i].amount);
amount_out += tx.vout[i].amount;
}
for (size_t i = 0; i < sources.size(); ++i) {
mixRing[i].resize(sources[i].outputs.size());
for (size_t n = 0; n < sources[i].outputs.size(); ++n) {
mixRing[i][n] = sources[i].outputs[n].second;
}
}
if (tx_params.burn_fixed) {
if (amount_in < amount_out + tx_params.burn_fixed) {
log::error(
globallogcat,
"invalid burn amount: tx does not have enough unspent funds available; "
"amount_in: {}; amount_out + tx_params.burn_fixed: {} + {}",
std::to_string(amount_in),
std::to_string(amount_out),
std::to_string(tx_params.burn_fixed));
return false;
}
remove_field_from_tx_extra<tx_extra_burn>(
tx.extra); // doesn't have to be present (but the wallet puts a dummy here as a
// safety to avoid growing the tx)
if (!add_burned_amount_to_tx_extra(tx.extra, tx_params.burn_fixed)) {
log::error(globallogcat, "failed to add burn amount to tx extra");
return false;
}
}
// zero out all amounts to mask rct outputs, real amounts are now encrypted
for (size_t i = 0; i < tx.vin.size(); ++i) {
if (sources[i].rct)
var::get<txin_to_key>(tx.vin[i]).amount = 0;
}
for (size_t i = 0; i < tx.vout.size(); ++i)
tx.vout[i].amount = 0;
crypto::hash tx_prefix_hash;
get_transaction_prefix_hash(tx, tx_prefix_hash, hwdev);
rct::ctkeyV outSk;
tx.rct_signatures = rct::genRctSimple(
rct::hash2rct(tx_prefix_hash),
inSk,
dest_keys,
inamounts,
outamounts,
amount_in - amount_out,
mixRing,
amount_keys,
msout ? &kLRki : NULL,
msout,
index,
outSk,
rct_config,
hwdev);
memwipe(inSk.data(), inSk.size() * sizeof(rct::ctkey));
CHECK_AND_ASSERT_MES(tx.vout.size() == outSk.size(), false, "outSk size does not match vout");
log::info(
log::Cat("construct_tx"),
"transaction_created: {}\n{}\n",
get_transaction_hash(tx),
obj_to_json_str(tx));
tx.invalidate_hashes();
return true;
}
//---------------------------------------------------------------
bool construct_tx_and_get_tx_key(
const account_keys& sender_account_keys,
const std::unordered_map<crypto::public_key, subaddress_index>& subaddresses,
std::vector<tx_source_entry>& sources,
std::vector<tx_destination_entry>& destinations,
const std::optional<cryptonote::tx_destination_entry>& change_addr,
const std::vector<uint8_t>& extra,
transaction& tx,
uint64_t unlock_time,
crypto::secret_key& tx_key,
std::vector<crypto::secret_key>& additional_tx_keys,
const rct::RCTConfig& rct_config,
rct::multisig_out* msout,
oxen_construct_tx_params const& tx_params) {
hw::device& hwdev = sender_account_keys.get_device();
hwdev.open_tx(
tx_key, transaction::get_max_version_for_hf(tx_params.hf_version), tx_params.tx_type);
try {
// figure out if we need to make additional tx pubkeys
size_t num_stdaddresses = 0;
size_t num_subaddresses = 0;
account_public_address single_dest_subaddress;
classify_addresses(
destinations,
change_addr,
num_stdaddresses,
num_subaddresses,
single_dest_subaddress);
bool need_additional_txkeys =
num_subaddresses > 0 && (num_stdaddresses > 0 || num_subaddresses > 1);
if (need_additional_txkeys) {
additional_tx_keys.clear();
for (const auto& d : destinations)
additional_tx_keys.push_back(keypair{sender_account_keys.get_device()}.sec);
}
bool r = construct_tx_with_tx_key(
sender_account_keys,
subaddresses,
sources,
destinations,
change_addr,
extra,
tx,
unlock_time,
tx_key,
additional_tx_keys,
rct_config,
msout,
true /*shuffle_outs*/,
tx_params);
hwdev.close_tx();
return r;
} catch (...) {
hwdev.close_tx();
throw;
}
}
//---------------------------------------------------------------
bool construct_tx(
const account_keys& sender_account_keys,
std::vector<tx_source_entry>& sources,
const std::vector<tx_destination_entry>& destinations,
const std::optional<cryptonote::tx_destination_entry>& change_addr,
const std::vector<uint8_t>& extra,
transaction& tx,
uint64_t unlock_time,
const oxen_construct_tx_params& tx_params) {
std::unordered_map<crypto::public_key, cryptonote::subaddress_index> subaddresses;
subaddresses[sender_account_keys.m_account_address.m_spend_public_key] = {0, 0};
crypto::secret_key tx_key;
std::vector<crypto::secret_key> additional_tx_keys;
std::vector<tx_destination_entry> destinations_copy = destinations;
// Always construct CLSAG transactions. They weren't actually acceptable before HF 16, but
// they are now for our fake networks (which we need to do because we no longer have pre-CLSAG
// tx generation code).
rct::RCTConfig rct_config{rct::RangeProofType::PaddedBulletproof, 3};
return construct_tx_and_get_tx_key(
sender_account_keys,
subaddresses,
sources,
destinations_copy,
change_addr,
extra,
tx,
unlock_time,
tx_key,
additional_tx_keys,
rct_config,
NULL,
tx_params);
}
//---------------------------------------------------------------
bool generate_genesis_block(block& bl, network_type nettype) {
const auto& conf = get_config(nettype);
// genesis block
bl = {};
CHECK_AND_ASSERT_MES(
oxenc::is_hex(conf.GENESIS_TX),
false,
"failed to parse coinbase tx from hard coded blob");
std::string tx_bl = oxenc::from_hex(conf.GENESIS_TX);
bool r = parse_and_validate_tx_from_blob(tx_bl, bl.miner_tx);
CHECK_AND_ASSERT_MES(r, false, "failed to parse coinbase tx from hard coded blob");
bl.major_version = hf::hf7;
bl.minor_version = static_cast<uint8_t>(hf::hf7);
bl.timestamp = 0;
bl.nonce = conf.GENESIS_NONCE;
miner::find_nonce_for_given_block(
[](const cryptonote::block& b,
uint64_t height,
unsigned int threads,
crypto::hash& hash) {
hash = cryptonote::get_block_longhash(
network_type::UNDEFINED,
cryptonote::randomx_longhash_context(NULL, b, height),
b,
height,
threads);
return true;
},
bl,
1,
0);
bl.invalidate_hashes();
return true;
}
//---------------------------------------------------------------
crypto::hash get_altblock_longhash(
cryptonote::network_type nettype,
randomx_longhash_context const& randomx_context,
const block& b,
uint64_t height) {
crypto::hash result = {};
if (nettype == network_type::FAKECHAIN || b.major_version < hf::hf12_checkpointing) {
result = get_block_longhash(nettype, randomx_context, b, height, 0);
} else {
std::string bd = get_block_hashing_blob(b);
rx_slow_hash(
randomx_context.current_blockchain_height,
randomx_context.seed_height,
randomx_context.seed_block_hash.data(),
bd.data(),
bd.size(),
result.data(),
0,
1);
}
return result;
}
randomx_longhash_context::randomx_longhash_context(
const Blockchain* pbc, const block& b /*block to longhash*/, const uint64_t height) {
*this = {};
if (b.major_version >= hf::hf12_checkpointing) {
if (pbc) // null only happens when generating genesis block, 0 init randomx is ok
{
seed_height = rx_seedheight(height);
seed_block_hash = pbc->get_pending_block_id_by_height(seed_height);
current_blockchain_height = pbc->get_current_blockchain_height();
}
}
}
crypto::hash get_block_longhash(
cryptonote::network_type nettype,
randomx_longhash_context const& randomx_context,
const block& b,
uint64_t height,
int miners) {
crypto::hash result{};
const auto bd = get_block_hashing_blob(b);
const auto hf_version = b.major_version;
crypto::cn_slow_hash_type cn_type = cn_slow_hash_type::heavy_v1;
if (nettype == network_type::FAKECHAIN) {
cn_type = cn_slow_hash_type::turtle_lite_v2;
} else {
if (hf_version >= hf::hf12_checkpointing) {
rx_slow_hash(
randomx_context.current_blockchain_height,
randomx_context.seed_height,
randomx_context.seed_block_hash.data(),
bd.data(),
bd.size(),
result.data(),
miners,
0);
return result;
}
if (hf_version >= hf::hf11_infinite_staking)
cn_type = cn_slow_hash_type::turtle_lite_v2;
else if (hf_version >= hf::hf7)
cn_type = crypto::cn_slow_hash_type::heavy_v2;
}
crypto::cn_slow_hash(bd.data(), bd.size(), result, cn_type);
return result;
}
crypto::hash get_block_longhash_w_blockchain(
cryptonote::network_type nettype,
const Blockchain* pbc,
const block& b,
uint64_t height,
int miners) {
crypto::hash result = get_block_longhash(
nettype, randomx_longhash_context(pbc, b, height), b, height, miners);
return result;
}
void get_block_longhash_reorg(const uint64_t split_height) {
rx_reorg(split_height);
}
} // namespace cryptonote