oxen-core/src/multisig/multisig.cpp

213 lines
8.9 KiB
C++

// Copyright (c) 2017-2019, The Monero Project
// Copyright (c) 2018, The Loki Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "multisig.h"
#include <unordered_set>
#include "crypto/crypto.h"
#include "cryptonote_basic/account.h"
#include "cryptonote_basic/cryptonote_format_utils.h"
#include "cryptonote_config.h"
#include "ringct/rctOps.h"
namespace cryptonote {
//-----------------------------------------------------------------
crypto::secret_key get_multisig_blinded_secret_key(const crypto::secret_key& key) {
rct::key multisig_salt;
static_assert(
sizeof(rct::key) == cryptonote::hashkey::MULTISIG.size(),
"Hash domain separator is an unexpected size");
memcpy(multisig_salt.bytes, cryptonote::hashkey::MULTISIG.data(), sizeof(rct::key));
rct::keyV data;
data.reserve(2);
data.push_back(rct::sk2rct(key));
data.push_back(multisig_salt);
crypto::secret_key result = rct::rct2sk(rct::hash_to_scalar(data));
memwipe(&data[0], sizeof(rct::key));
return result;
}
//-----------------------------------------------------------------
void generate_multisig_N_N(
const account_keys& keys,
const std::vector<crypto::public_key>& spend_keys,
std::vector<crypto::secret_key>& multisig_keys,
rct::key& spend_skey,
rct::key& spend_pkey) {
// the multisig spend public key is the sum of all spend public keys
multisig_keys.clear();
const crypto::secret_key spend_secret_key =
get_multisig_blinded_secret_key(keys.m_spend_secret_key);
CHECK_AND_ASSERT_THROW_MES(
crypto::secret_key_to_public_key(spend_secret_key, (crypto::public_key&)spend_pkey),
"Failed to derive public key");
for (const auto& k : spend_keys)
rct::addKeys(spend_pkey, spend_pkey, rct::pk2rct(k));
multisig_keys.push_back(spend_secret_key);
spend_skey = rct::sk2rct(spend_secret_key);
}
//-----------------------------------------------------------------
void generate_multisig_N1_N(
const account_keys& keys,
const std::vector<crypto::public_key>& spend_keys,
std::vector<crypto::secret_key>& multisig_keys,
rct::key& spend_skey,
rct::key& spend_pkey) {
multisig_keys.clear();
spend_pkey = rct::identity();
spend_skey = rct::zero();
// create all our composite private keys
crypto::secret_key blinded_skey = get_multisig_blinded_secret_key(keys.m_spend_secret_key);
for (const auto& k : spend_keys) {
rct::key sk = rct::scalarmultKey(rct::pk2rct(k), rct::sk2rct(blinded_skey));
crypto::secret_key msk = get_multisig_blinded_secret_key(rct::rct2sk(sk));
memwipe(&sk, sizeof(sk));
multisig_keys.push_back(msk);
sc_add(spend_skey.bytes, spend_skey.bytes, msk.data());
}
}
//-----------------------------------------------------------------
std::vector<crypto::public_key> generate_multisig_derivations(
const account_keys& keys, const std::vector<crypto::public_key>& derivations) {
std::vector<crypto::public_key> multisig_keys;
crypto::secret_key blinded_skey = get_multisig_blinded_secret_key(keys.m_spend_secret_key);
for (const auto& k : derivations) {
rct::key d = rct::scalarmultKey(rct::pk2rct(k), rct::sk2rct(blinded_skey));
multisig_keys.push_back(rct::rct2pk(d));
}
return multisig_keys;
}
//-----------------------------------------------------------------
crypto::secret_key calculate_multisig_signer_key(
const std::vector<crypto::secret_key>& multisig_keys) {
rct::key secret_key = rct::zero();
for (const auto& k : multisig_keys) {
sc_add(secret_key.bytes, secret_key.bytes, k.data());
}
return rct::rct2sk(secret_key);
}
//-----------------------------------------------------------------
std::vector<crypto::secret_key> calculate_multisig_keys(
const std::vector<crypto::public_key>& derivations) {
std::vector<crypto::secret_key> multisig_keys;
multisig_keys.reserve(derivations.size());
for (const auto& k : derivations) {
multisig_keys.emplace_back(get_multisig_blinded_secret_key(rct::rct2sk(rct::pk2rct(k))));
}
return multisig_keys;
}
//-----------------------------------------------------------------
crypto::secret_key generate_multisig_view_secret_key(
const crypto::secret_key& skey, const std::vector<crypto::secret_key>& skeys) {
crypto::secret_key view_skey = get_multisig_blinded_secret_key(skey);
for (const auto& k : skeys)
sc_add(view_skey.data(), rct::sk2rct(view_skey).bytes, rct::sk2rct(k).bytes);
return view_skey;
}
//-----------------------------------------------------------------
crypto::public_key generate_multisig_M_N_spend_public_key(
const std::vector<crypto::public_key>& pkeys) {
rct::key spend_public_key = rct::identity();
for (const auto& pk : pkeys) {
rct::addKeys(spend_public_key, spend_public_key, rct::pk2rct(pk));
}
return rct::rct2pk(spend_public_key);
}
//-----------------------------------------------------------------
bool generate_multisig_key_image(
const account_keys& keys,
size_t multisig_key_index,
const crypto::public_key& out_key,
crypto::key_image& ki) {
if (multisig_key_index >= keys.m_multisig_keys.size())
return false;
crypto::generate_key_image(out_key, keys.m_multisig_keys[multisig_key_index], ki);
return true;
}
//-----------------------------------------------------------------
void generate_multisig_LR(
const crypto::public_key pkey,
const crypto::secret_key& k,
crypto::public_key& L,
crypto::public_key& R) {
rct::scalarmultBase((rct::key&)L, rct::sk2rct(k));
crypto::generate_key_image(pkey, k, (crypto::key_image&)R);
}
//-----------------------------------------------------------------
bool generate_multisig_composite_key_image(
const account_keys& keys,
const std::unordered_map<crypto::public_key, subaddress_index>& subaddresses,
const crypto::public_key& out_key,
const crypto::public_key& tx_public_key,
const std::vector<crypto::public_key>& additional_tx_public_keys,
size_t real_output_index,
const std::vector<crypto::key_image>& pkis,
crypto::key_image& ki) {
cryptonote::keypair in_ephemeral;
if (!cryptonote::generate_key_image_helper(
keys,
subaddresses,
out_key,
tx_public_key,
additional_tx_public_keys,
real_output_index,
in_ephemeral,
ki,
keys.get_device()))
return false;
std::unordered_set<crypto::key_image> used;
for (size_t m = 0; m < keys.m_multisig_keys.size(); ++m) {
crypto::key_image pki;
bool r = cryptonote::generate_multisig_key_image(keys, m, out_key, pki);
if (!r)
return false;
used.insert(pki);
}
for (const auto& pki : pkis) {
if (used.find(pki) == used.end()) {
used.insert(pki);
rct::addKeys((rct::key&)ki, rct::ki2rct(ki), rct::ki2rct(pki));
}
}
return true;
}
//-----------------------------------------------------------------
uint32_t multisig_rounds_required(uint32_t participants, uint32_t threshold) {
CHECK_AND_ASSERT_THROW_MES(
participants >= threshold, "participants must be greater or equal than threshold");
return participants - threshold + 1;
}
} // namespace cryptonote