oxen-core/src/cryptonote_core/cryptonote_tx_utils.cpp

1138 lines
48 KiB
C++

// Copyright (c) 2014-2019, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
#include <unordered_set>
#include <random>
#include "epee/string_tools.h"
#include "common/apply_permutation.h"
#include "common/hex.h"
#include "cryptonote_tx_utils.h"
#include "cryptonote_config.h"
#include "blockchain.h"
#include "cryptonote_basic/miner.h"
#include "cryptonote_basic/tx_extra.h"
#include "crypto/crypto.h"
#include "crypto/hash.h"
#include "ringct/rctSigs.h"
#include "multisig/multisig.h"
#include "epee/int-util.h"
using namespace crypto;
namespace cryptonote
{
//---------------------------------------------------------------
static void classify_addresses(const std::vector<tx_destination_entry> &destinations, const std::optional<cryptonote::tx_destination_entry>& change_addr, size_t &num_stdaddresses, size_t &num_subaddresses, account_public_address &single_dest_subaddress)
{
num_stdaddresses = 0;
num_subaddresses = 0;
std::unordered_set<cryptonote::account_public_address> unique_dst_addresses;
bool change_found = false;
for(const tx_destination_entry& dst_entr: destinations)
{
if (change_addr && *change_addr == dst_entr && !change_found)
{
change_found = true;
continue;
}
if (unique_dst_addresses.count(dst_entr.addr) == 0)
{
unique_dst_addresses.insert(dst_entr.addr);
if (dst_entr.is_subaddress)
{
++num_subaddresses;
single_dest_subaddress = dst_entr.addr;
}
else
{
++num_stdaddresses;
}
}
}
LOG_PRINT_L2("destinations include " << num_stdaddresses << " standard addresses and " << num_subaddresses << " subaddresses");
}
keypair get_deterministic_keypair_from_height(uint64_t height)
{
keypair k;
ec_scalar& sec = k.sec;
for (int i=0; i < 8; i++)
{
uint64_t height_byte = height & ((uint64_t)0xFF << (i*8));
uint8_t byte = height_byte >> i*8;
sec.data[i] = byte;
}
for (int i=8; i < 32; i++)
{
sec.data[i] = 0x00;
}
generate_keys(k.pub, k.sec, k.sec, true);
return k;
}
bool get_deterministic_output_key(const account_public_address& address, const keypair& tx_key, size_t output_index, crypto::public_key& output_key)
{
crypto::key_derivation derivation{};
bool r = crypto::generate_key_derivation(address.m_view_public_key, tx_key.sec, derivation);
CHECK_AND_ASSERT_MES(r, false, "failed to generate_key_derivation(" << address.m_view_public_key << ", " << tx_key.sec << ")");
r = crypto::derive_public_key(derivation, output_index, address.m_spend_public_key, output_key);
CHECK_AND_ASSERT_MES(r, false, "failed to derive_public_key(" << derivation << ", " << output_index << ", "<< address.m_spend_public_key << ")");
return true;
}
bool validate_governance_reward_key(uint64_t height, std::string_view governance_wallet_address_str, size_t output_index, const crypto::public_key& output_key, const cryptonote::network_type nettype)
{
keypair gov_key = get_deterministic_keypair_from_height(height);
cryptonote::address_parse_info governance_wallet_address;
cryptonote::get_account_address_from_str(governance_wallet_address, nettype, governance_wallet_address_str);
crypto::public_key correct_key;
if (!get_deterministic_output_key(governance_wallet_address.address, gov_key, output_index, correct_key))
{
MERROR("Failed to generate deterministic output key for governance wallet output validation");
return false;
}
return correct_key == output_key;
}
uint64_t governance_reward_formula(uint64_t base_reward, uint8_t hf_version)
{
return hf_version >= network_version_17 ? FOUNDATION_REWARD_HF17 :
hf_version >= network_version_16_pulse ? FOUNDATION_REWARD_HF15 + CHAINFLIP_LIQUIDITY_HF16 :
hf_version >= network_version_15_ons ? FOUNDATION_REWARD_HF15 :
base_reward / 20;
}
bool block_has_governance_output(network_type nettype, cryptonote::block const &block)
{
bool result = height_has_governance_output(nettype, block.major_version, get_block_height(block));
return result;
}
bool height_has_governance_output(network_type nettype, uint8_t hard_fork_version, uint64_t height)
{
if (height == 0)
return false;
if (hard_fork_version <= network_version_9_service_nodes)
return true;
if (height % cryptonote::get_config(nettype).GOVERNANCE_REWARD_INTERVAL_IN_BLOCKS != 0)
{
return false;
}
return true;
}
uint64_t derive_governance_from_block_reward(network_type nettype, const cryptonote::block &block, uint8_t hf_version)
{
if (hf_version >= 15)
return governance_reward_formula(0, hf_version);
uint64_t result = 0;
uint64_t snode_reward = 0;
size_t vout_end = block.miner_tx.vout.size();
if (block_has_governance_output(nettype, block))
--vout_end; // skip the governance output, the governance may be the batched amount. we want the original base reward
for (size_t vout_index = 1; vout_index < vout_end; ++vout_index)
{
tx_out const &output = block.miner_tx.vout[vout_index];
snode_reward += output.amount;
}
uint64_t base_reward = snode_reward * 2; // pre-HF15, SN reward = half of base reward
uint64_t governance = governance_reward_formula(base_reward, hf_version);
uint64_t block_reward = base_reward - governance;
uint64_t actual_reward = 0; // sanity check
for (tx_out const &output : block.miner_tx.vout) actual_reward += output.amount;
CHECK_AND_ASSERT_MES(block_reward <= actual_reward, false,
"Rederiving the base block reward from the service node reward "
"exceeded the actual amount paid in the block, derived block reward: "
<< block_reward << ", actual reward: " << actual_reward);
result = governance;
return result;
}
uint64_t service_node_reward_formula(uint64_t base_reward, uint8_t hard_fork_version)
{
return
hard_fork_version >= network_version_15_ons ? SN_REWARD_HF15 :
hard_fork_version >= network_version_9_service_nodes ? base_reward / 2 : // 50% of base reward up until HF15's fixed payout
0;
}
uint64_t get_portion_of_reward(uint64_t portions, uint64_t total_service_node_reward)
{
uint64_t hi, lo, rewardhi, rewardlo;
lo = mul128(total_service_node_reward, portions, &hi);
div128_64(hi, lo, STAKING_PORTIONS, &rewardhi, &rewardlo);
return rewardlo;
}
std::vector<uint64_t> distribute_reward_by_portions(const std::vector<service_nodes::payout_entry>& payout, uint64_t total_reward, bool distribute_remainder)
{
uint64_t paid_reward = 0;
std::vector<uint64_t> result;
result.reserve(payout.size());
for (auto const &entry : payout)
{
uint64_t reward = get_portion_of_reward(entry.portions, total_reward);
paid_reward += reward;
result.push_back(reward);
}
if (distribute_remainder && payout.size())
{
uint64_t remainder = total_reward - paid_reward;
result.front() += remainder;
}
return result;
}
static uint64_t calculate_sum_of_portions(const std::vector<service_nodes::payout_entry>& payout, uint64_t total_service_node_reward)
{
uint64_t reward = 0;
for (auto const &entry : payout)
reward += get_portion_of_reward(entry.portions, total_service_node_reward);
return reward;
}
enum struct reward_type
{
miner,
snode,
governance
};
struct reward_payout
{
reward_type type;
account_public_address address;
uint64_t amount;
bool operator==(service_nodes::payout_entry const &other) const { return address == other.address; }
};
bool construct_miner_tx(
size_t height,
size_t median_weight,
uint64_t already_generated_coins,
size_t current_block_weight,
uint64_t fee,
transaction& tx,
const oxen_miner_tx_context &miner_tx_context,
const blobdata& extra_nonce,
uint8_t hard_fork_version)
{
tx.vin.clear();
tx.vout.clear();
tx.extra.clear();
tx.output_unlock_times.clear();
tx.type = txtype::standard;
tx.version = transaction::get_max_version_for_hf(hard_fork_version);
keypair const txkey{hw::get_device("default")};
keypair const gov_key = get_deterministic_keypair_from_height(height); // NOTE: Always need since we use same key for service node
// NOTE: TX Extra
add_tx_extra<tx_extra_pub_key>(tx, txkey.pub);
if(!extra_nonce.empty())
{
if(!add_extra_nonce_to_tx_extra(tx.extra, extra_nonce))
return false;
}
// TODO(doyle): We don't need to do this. It's a deterministic key.
if (already_generated_coins != 0)
add_tx_extra<tx_extra_pub_key>(tx, gov_key.pub);
add_service_node_winner_to_tx_extra(tx.extra, miner_tx_context.block_leader.key);
oxen_block_reward_context block_reward_context = {};
block_reward_context.fee = fee;
block_reward_context.height = height;
block_reward_context.block_leader_payouts = miner_tx_context.block_leader.payouts;
block_reward_context.batched_governance = miner_tx_context.batched_governance;
block_reward_parts reward_parts{};
if(!get_oxen_block_reward(median_weight, current_block_weight, already_generated_coins, hard_fork_version, reward_parts, block_reward_context))
{
LOG_PRINT_L0("Failed to calculate block reward");
return false;
}
// TODO(doyle): Batching awards
//
// NOTE: Summarise rewards to payout (up to 9 payout entries/outputs)
//
// Miner Block
// - 1 | Miner
// - Up To 4 | Block Leader (Queued node at the top of the Service Node List)
// - Up To 1 | Governance
//
// Pulse Block
// - Up to 4 | Block Producer (0-3 for Pooled Service Node)
// - Up To 4 | Block Leader (Queued node at the top of the Service Node List)
// - Up To 1 | Governance (When a block is at the Governance payout interval)
//
// NOTE: Pulse Block Payment Details
//
// By default, when Pulse round is 0, the Block Producer is the Block
// Leader. Coinbase and transaction fees are given to the Block Leader.
// This is the common case, and in that instance we avoid generating
// duplicate outputs and payment occurs in 1 output.
//
// On alternative rounds, transaction fees are given to the alternative
// block producer (which is now different from the Block Leader). The
// original block producer still receives the coinbase reward. A Pulse
// round's failure is determined by the non-participation of the members of
// the quorum, so failing a round's onus is not always on the original block
// producer (it could be the validators colluding) hence why they still
// receive the coinbase.
//
// Allocating the transaction fee to alternative block producers on
// alternative rounds dis-incentivizes members in the quorum from
// intentionally not participating in the quorum to try and attain a spot as
// the subsequent alternative leader and snag a reward. The reward they
// receive instead is just the transaction fee.
//
// Purposely not participating to exploit alternative round transaction fees
// is further dis-incentivized as it is recorded on their behaviour metrics
// (multiple non-participation marks over the monitoring period will induce
// a decommission) by members of the quorum.
size_t rewards_length = 0;
std::array<reward_payout, 9> rewards = {};
if (hard_fork_version >= cryptonote::network_version_9_service_nodes)
CHECK_AND_ASSERT_MES(miner_tx_context.block_leader.payouts.size(), false, "Constructing a block leader reward for block but no payout entries specified");
// NOTE: Add Block Producer Reward
service_nodes::payout const &leader = miner_tx_context.block_leader;
if (miner_tx_context.pulse)
{
CHECK_AND_ASSERT_MES(miner_tx_context.pulse_block_producer.payouts.size(), false, "Constructing a reward for block produced by pulse but no payout entries specified");
CHECK_AND_ASSERT_MES(miner_tx_context.pulse_block_producer.key, false, "Null Key given for Pulse Block Producer");
CHECK_AND_ASSERT_MES(hard_fork_version >= cryptonote::network_version_16_pulse, false, "Pulse Block Producer is not valid until HF16, current HF" << hard_fork_version);
uint64_t leader_reward = reward_parts.service_node_total;
if (miner_tx_context.block_leader.key == miner_tx_context.pulse_block_producer.key)
{
leader_reward += reward_parts.miner_fee;
}
else if (reward_parts.miner_fee)
{
// Alternative Block Producer (receives just miner fee, if there is one)
service_nodes::payout const &producer = miner_tx_context.pulse_block_producer;
std::vector<uint64_t> split_rewards = distribute_reward_by_portions(producer.payouts, reward_parts.miner_fee, true /*distribute_remainder*/);
for (size_t i = 0; i < producer.payouts.size(); i++)
rewards[rewards_length++] = {reward_type::snode, producer.payouts[i].address, split_rewards[i]};
}
std::vector<uint64_t> split_rewards = distribute_reward_by_portions(leader.payouts, leader_reward, true /*distribute_remainder*/);
for (size_t i = 0; i < leader.payouts.size(); i++)
rewards[rewards_length++] = {reward_type::snode, leader.payouts[i].address, split_rewards[i]};
}
else
{
CHECK_AND_ASSERT_MES(miner_tx_context.pulse_block_producer.payouts.empty(), false, "Constructing a reward for block produced by miner but payout entries specified");
if (uint64_t miner_amount = reward_parts.base_miner + reward_parts.miner_fee; miner_amount)
rewards[rewards_length++] = {reward_type::miner, miner_tx_context.miner_block_producer, miner_amount};
if (hard_fork_version >= cryptonote::network_version_9_service_nodes)
{
std::vector<uint64_t> split_rewards =
distribute_reward_by_portions(leader.payouts,
reward_parts.service_node_total,
hard_fork_version >= cryptonote::network_version_16_pulse /*distribute_remainder*/);
for (size_t i = 0; i < leader.payouts.size(); i++)
rewards[rewards_length++] = {reward_type::snode, leader.payouts[i].address, split_rewards[i]};
}
}
// NOTE: Add Governance Payout
if (already_generated_coins != 0)
{
if (reward_parts.governance_paid == 0)
{
CHECK_AND_ASSERT_MES(hard_fork_version >= network_version_10_bulletproofs, false, "Governance reward can NOT be 0 before hardfork 10, hard_fork_version: " << hard_fork_version);
}
else
{
const network_type nettype = miner_tx_context.nettype;
cryptonote::address_parse_info governance_wallet_address;
cryptonote::get_account_address_from_str(governance_wallet_address, nettype, cryptonote::get_config(nettype).governance_wallet_address(hard_fork_version));
rewards[rewards_length++] = {reward_type::governance, governance_wallet_address.address, reward_parts.governance_paid};
}
}
CHECK_AND_ASSERT_MES(rewards_length <= rewards.size(), false, "More rewards specified than supported, number of rewards: " << rewards_length << ", capacity: " << rewards.size());
CHECK_AND_ASSERT_MES(rewards_length > 0, false, "Zero rewards are to be payed out, there should be at least 1");
// NOTE: Make TX Outputs
uint64_t summary_amounts = 0;
for (size_t reward_index = 0; reward_index < rewards_length; reward_index++)
{
auto const &[type, address, amount] = rewards[reward_index];
assert(amount > 0);
crypto::public_key out_eph_public_key{};
// TODO(doyle): I don't think txkey is necessary, just use the governance key?
keypair const &derivation_pair = (type == reward_type::miner) ? txkey : gov_key;
crypto::key_derivation derivation{};
if (!get_deterministic_output_key(address, derivation_pair, reward_index, out_eph_public_key))
{
MERROR("Failed to generate output one-time public key");
return false;
}
txout_to_key tk = {};
tk.key = out_eph_public_key;
tx_out out = {};
out.target = tk;
out.amount = amount;
tx.vout.push_back(out);
tx.output_unlock_times.push_back(height + CRYPTONOTE_MINED_MONEY_UNLOCK_WINDOW);
summary_amounts += amount;
}
uint64_t expected_amount = 0;
if (hard_fork_version <= cryptonote::network_version_15_ons)
{
// NOTE: Use the amount actually paid out when we split the service node
// reward (across up to 4 recipients) which may actually pay out less than
// the total reward allocated for Service Nodes (due to remainder from
// division). This occurred prior to HF15, after that we redistribute dust
// properly.
expected_amount = reward_parts.base_miner + reward_parts.miner_fee + reward_parts.governance_paid;
for (size_t reward_index = 0; reward_index < rewards_length; reward_index++)
{
[[maybe_unused]] auto const &[type, address, amount] = rewards[reward_index];
if (type == reward_type::snode) expected_amount += amount;
}
}
else
{
expected_amount = reward_parts.base_miner + reward_parts.miner_fee + reward_parts.governance_paid + reward_parts.service_node_total;
}
CHECK_AND_ASSERT_MES(summary_amounts == expected_amount, false, "Failed to construct miner tx, summary_amounts = " << summary_amounts << " not equal total block_reward = " << expected_amount);
CHECK_AND_ASSERT_MES(tx.vout.size() == rewards_length, false, "TX output mis-match with rewards expected: " << rewards_length << ", tx outputs: " << tx.vout.size());
//lock
tx.unlock_time = height + CRYPTONOTE_MINED_MONEY_UNLOCK_WINDOW;
tx.vin.push_back(txin_gen{height});
tx.invalidate_hashes();
//LOG_PRINT("MINER_TX generated ok, block_reward=" << print_money(block_reward) << "(" << print_money(block_reward - fee) << "+" << print_money(fee)
// << "), current_block_size=" << current_block_size << ", already_generated_coins=" << already_generated_coins << ", tx_id=" << get_transaction_hash(tx), LOG_LEVEL_2);
return true;
}
bool get_oxen_block_reward(size_t median_weight, size_t current_block_weight, uint64_t already_generated_coins, int hard_fork_version, block_reward_parts &result, const oxen_block_reward_context &oxen_context)
{
result = {};
uint64_t base_reward, base_reward_unpenalized;
if (!get_base_block_reward(median_weight, current_block_weight, already_generated_coins, base_reward, base_reward_unpenalized, hard_fork_version, oxen_context.height))
{
MERROR("Failed to calculate base block reward");
return false;
}
if (base_reward == 0)
{
MERROR("Unexpected base reward of 0");
return false;
}
if (already_generated_coins == 0)
{
result.original_base_reward = result.base_miner = base_reward;
return true;
}
// We base governance fees and SN rewards based on the block reward formula. (Prior to HF13,
// however, they were accidentally based on the block reward formula *after* subtracting a
// potential penalty if the block producer includes txes beyond the median size limit).
result.original_base_reward = hard_fork_version >= network_version_13_enforce_checkpoints ? base_reward_unpenalized : base_reward;
// There is a goverance fee due every block. Beginning in hardfork 10 this is still subtracted
// from the block reward as if it was paid, but the actual payments get batched into rare, large
// accumulated payments. (Before hardfork 10 they are included in every block, unbatched).
result.governance_due = governance_reward_formula(result.original_base_reward, hard_fork_version);
result.governance_paid = hard_fork_version >= network_version_10_bulletproofs
? oxen_context.batched_governance
: result.governance_due;
uint64_t const service_node_reward = service_node_reward_formula(result.original_base_reward, hard_fork_version);
if (hard_fork_version < cryptonote::network_version_16_pulse)
{
result.service_node_total = calculate_sum_of_portions(oxen_context.block_leader_payouts, service_node_reward);
// The base_miner amount is everything left in the base reward after subtracting off the service
// node and governance fee amounts (the due amount in the latter case). (Any penalty for
// exceeding the block limit is already removed from base_reward).
uint64_t non_miner_amounts = result.governance_due + result.service_node_total;
result.base_miner = base_reward > non_miner_amounts ? base_reward - non_miner_amounts : 0;
result.miner_fee = oxen_context.fee;
}
else
{
result.service_node_total = service_node_reward;
if (oxen_context.testnet_override)
{
result.miner_fee = oxen_context.fee;
}
else
{
uint64_t const penalty = base_reward_unpenalized - base_reward;
result.miner_fee = penalty >= oxen_context.fee ? 0 : oxen_context.fee - penalty;
}
// In HF16, the block producer changes between the Miner and Service Node
// depending on the state of the Service Node network. The producer is no
// longer allocated a block reward (unless they are a Service Node) but
// always receive the transaction fees. Any penalty for exceeding the
// block limit must now be paid from the common reward received by all
// Block Producer's (i.e. their transaction fees for constructing the
// block).
uint64_t allocated = result.governance_due + result.service_node_total;
uint64_t remainder = base_reward_unpenalized - allocated;
if (allocated > base_reward_unpenalized || remainder != 0)
{
if (allocated > base_reward_unpenalized)
MERROR("We allocated more reward " << cryptonote::print_money(allocated) << " than what was available " << cryptonote::print_money(base_reward_unpenalized));
else
MERROR("We allocated reward but there was still " << cryptonote::print_money(remainder) << " oxen left to distribute.");
return false;
}
}
return true;
}
crypto::public_key get_destination_view_key_pub(const std::vector<tx_destination_entry> &destinations, const std::optional<cryptonote::tx_destination_entry>& change_addr)
{
account_public_address addr = {null_pkey, null_pkey};
size_t count = 0;
bool found_change = false;
for (const auto &i : destinations)
{
if (i.amount == 0)
continue;
if (change_addr && *change_addr == i && !found_change)
{
found_change = true;
continue;
}
if (i.addr == addr)
continue;
if (count > 0)
return null_pkey;
addr = i.addr;
++count;
}
if (count == 0 && change_addr)
return change_addr->addr.m_view_public_key;
return addr.m_view_public_key;
}
//---------------------------------------------------------------
bool construct_tx_with_tx_key(const account_keys& sender_account_keys, const std::unordered_map<crypto::public_key, subaddress_index>& subaddresses, std::vector<tx_source_entry>& sources, std::vector<tx_destination_entry>& destinations, const std::optional<tx_destination_entry>& change_addr, const std::vector<uint8_t> &extra, transaction& tx, uint64_t unlock_time, const crypto::secret_key &tx_key, const std::vector<crypto::secret_key> &additional_tx_keys, const rct::RCTConfig &rct_config, rct::multisig_out *msout, bool shuffle_outs, oxen_construct_tx_params const &tx_params)
{
hw::device &hwdev = sender_account_keys.get_device();
if (sources.empty())
{
LOG_ERROR("Empty sources");
return false;
}
std::vector<rct::key> amount_keys;
tx.set_null();
amount_keys.clear();
if (msout)
{
msout->c.clear();
}
tx.version = transaction::get_max_version_for_hf(tx_params.hf_version);
CHECK_AND_ASSERT_MES(tx.version >= txversion::v4_tx_types, false, "Cannot construct pre-v4 transactions");
CHECK_AND_ASSERT_MES(rct_config.range_proof_type == rct::RangeProofType::PaddedBulletproof &&
(rct_config.bp_version == 0 || rct_config.bp_version >= 3),
false, "Cannot construct pre-CLSAG transactions");
tx.type = tx_params.tx_type;
if (tx_params.burn_percent)
{
LOG_ERROR("cannot construct tx: internal error: burn percent must be converted to fixed burn amount in the wallet");
return false;
}
tx.extra = extra;
crypto::public_key txkey_pub;
if (tx.type == txtype::stake) {
crypto::secret_key tx_sk{tx_key};
bool added = hwdev.update_staking_tx_secret_key(tx_sk);
CHECK_AND_NO_ASSERT_MES(added, false, "Failed to add tx secret key to stake transaction");
cryptonote::add_tx_secret_key_to_tx_extra(tx.extra, tx_sk);
}
// if we have a stealth payment id, find it and encrypt it with the tx key now
std::vector<tx_extra_field> tx_extra_fields;
if (parse_tx_extra(tx.extra, tx_extra_fields))
{
bool add_dummy_payment_id = true;
tx_extra_nonce extra_nonce;
if (find_tx_extra_field_by_type(tx_extra_fields, extra_nonce))
{
crypto::hash payment_id = null_hash;
crypto::hash8 payment_id8 = null_hash8;
if (get_encrypted_payment_id_from_tx_extra_nonce(extra_nonce.nonce, payment_id8))
{
LOG_PRINT_L2("Encrypting payment id " << payment_id8);
crypto::public_key view_key_pub = get_destination_view_key_pub(destinations, change_addr);
if (view_key_pub == null_pkey)
{
LOG_ERROR("Destinations have to have exactly one output to support encrypted payment ids");
return false;
}
if (!hwdev.encrypt_payment_id(payment_id8, view_key_pub, tx_key))
{
LOG_ERROR("Failed to encrypt payment id");
return false;
}
std::string extra_nonce;
set_encrypted_payment_id_to_tx_extra_nonce(extra_nonce, payment_id8);
remove_field_from_tx_extra<tx_extra_nonce>(tx.extra);
if (!add_extra_nonce_to_tx_extra(tx.extra, extra_nonce))
{
LOG_ERROR("Failed to add encrypted payment id to tx extra");
return false;
}
LOG_PRINT_L1("Encrypted payment ID: " << payment_id8);
add_dummy_payment_id = false;
}
else if (get_payment_id_from_tx_extra_nonce(extra_nonce.nonce, payment_id))
{
add_dummy_payment_id = false;
}
}
// we don't add one if we've got more than the usual 1 destination plus change
if (destinations.size() > 2)
add_dummy_payment_id = false;
if (add_dummy_payment_id)
{
// if we have neither long nor short payment id, add a dummy short one,
// this should end up being the vast majority of txes as time goes on
std::string extra_nonce;
crypto::hash8 payment_id8 = null_hash8;
crypto::public_key view_key_pub = get_destination_view_key_pub(destinations, change_addr);
if (view_key_pub == null_pkey)
{
LOG_ERROR("Failed to get key to encrypt dummy payment id with");
}
else
{
hwdev.encrypt_payment_id(payment_id8, view_key_pub, tx_key);
set_encrypted_payment_id_to_tx_extra_nonce(extra_nonce, payment_id8);
if (!add_extra_nonce_to_tx_extra(tx.extra, extra_nonce))
{
LOG_ERROR("Failed to add dummy encrypted payment id to tx extra");
// continue anyway
}
}
}
}
else
{
MWARNING("Failed to parse tx extra");
tx_extra_fields.clear();
}
struct input_generation_context_data
{
keypair in_ephemeral;
};
std::vector<input_generation_context_data> in_contexts;
uint64_t summary_inputs_money = 0;
//fill inputs
int idx = -1;
for(const tx_source_entry& src_entr: sources)
{
++idx;
if(src_entr.real_output >= src_entr.outputs.size())
{
LOG_ERROR("real_output index (" << src_entr.real_output << ")bigger than output_keys.size()=" << src_entr.outputs.size());
return false;
}
summary_inputs_money += src_entr.amount;
//key_derivation recv_derivation;
in_contexts.push_back(input_generation_context_data());
keypair& in_ephemeral = in_contexts.back().in_ephemeral;
crypto::key_image img;
const auto& out_key = reinterpret_cast<const crypto::public_key&>(src_entr.outputs[src_entr.real_output].second.dest);
if(!generate_key_image_helper(sender_account_keys, subaddresses, out_key, src_entr.real_out_tx_key, src_entr.real_out_additional_tx_keys, src_entr.real_output_in_tx_index, in_ephemeral,img, hwdev))
{
LOG_ERROR("Key image generation failed!");
return false;
}
//check that derivated key is equal with real output key (if non multisig)
if(!msout && !(in_ephemeral.pub == src_entr.outputs[src_entr.real_output].second.dest) )
{
LOG_ERROR("derived public key mismatch with output public key at index " << idx << ", real out " << src_entr.real_output << "!\nderived_key:"
<< tools::type_to_hex(in_ephemeral.pub) << "\nreal output_public_key:"
<< tools::type_to_hex(src_entr.outputs[src_entr.real_output].second.dest) );
LOG_ERROR("amount " << src_entr.amount << ", rct " << src_entr.rct);
LOG_ERROR("tx pubkey " << src_entr.real_out_tx_key << ", real_output_in_tx_index " << src_entr.real_output_in_tx_index);
return false;
}
//put key image into tx input
txin_to_key input_to_key;
input_to_key.amount = src_entr.amount;
input_to_key.k_image = msout ? rct::rct2ki(src_entr.multisig_kLRki.ki) : img;
//fill outputs array and use relative offsets
for(const tx_source_entry::output_entry& out_entry: src_entr.outputs)
input_to_key.key_offsets.push_back(out_entry.first);
input_to_key.key_offsets = absolute_output_offsets_to_relative(input_to_key.key_offsets);
tx.vin.push_back(input_to_key);
}
if (shuffle_outs)
{
std::shuffle(destinations.begin(), destinations.end(), crypto::random_device{});
}
// sort ins by their key image
std::vector<size_t> ins_order(sources.size());
for (size_t n = 0; n < sources.size(); ++n)
ins_order[n] = n;
std::sort(ins_order.begin(), ins_order.end(), [&](const size_t i0, const size_t i1) {
const txin_to_key &tk0 = var::get<txin_to_key>(tx.vin[i0]);
const txin_to_key &tk1 = var::get<txin_to_key>(tx.vin[i1]);
return memcmp(&tk0.k_image, &tk1.k_image, sizeof(tk0.k_image)) > 0;
});
tools::apply_permutation(ins_order, [&] (size_t i0, size_t i1) {
std::swap(tx.vin[i0], tx.vin[i1]);
std::swap(in_contexts[i0], in_contexts[i1]);
std::swap(sources[i0], sources[i1]);
});
// figure out if we need to make additional tx pubkeys
size_t num_stdaddresses = 0;
size_t num_subaddresses = 0;
account_public_address single_dest_subaddress;
classify_addresses(destinations, change_addr, num_stdaddresses, num_subaddresses, single_dest_subaddress);
// if this is a single-destination transfer to a subaddress, we set the tx pubkey to R=s*D
if (num_stdaddresses == 0 && num_subaddresses == 1)
{
txkey_pub = rct::rct2pk(hwdev.scalarmultKey(rct::pk2rct(single_dest_subaddress.m_spend_public_key), rct::sk2rct(tx_key)));
}
else
{
txkey_pub = rct::rct2pk(hwdev.scalarmultBase(rct::sk2rct(tx_key)));
}
remove_field_from_tx_extra<tx_extra_pub_key>(tx.extra);
add_tx_extra<tx_extra_pub_key>(tx, txkey_pub);
std::vector<crypto::public_key> additional_tx_public_keys;
// we don't need to include additional tx keys if:
// - all the destinations are standard addresses
// - there's only one destination which is a subaddress
bool need_additional_txkeys = num_subaddresses > 0 && (num_stdaddresses > 0 || num_subaddresses > 1);
if (need_additional_txkeys)
CHECK_AND_ASSERT_MES(destinations.size() == additional_tx_keys.size(), false, "Wrong amount of additional tx keys");
uint64_t summary_outs_money = 0;
//fill outputs
size_t output_index = 0;
tx_extra_tx_key_image_proofs key_image_proofs;
bool found_change_already = false;
for(const tx_destination_entry& dst_entr: destinations)
{
crypto::public_key out_eph_public_key;
bool this_dst_is_change_addr = false;
hwdev.generate_output_ephemeral_keys(static_cast<uint16_t>(tx.version), this_dst_is_change_addr, sender_account_keys, txkey_pub, tx_key,
dst_entr, change_addr, output_index,
need_additional_txkeys, additional_tx_keys,
additional_tx_public_keys, amount_keys, out_eph_public_key);
// Per-output unlock times:
{
if (change_addr && *change_addr == dst_entr && this_dst_is_change_addr && !found_change_already)
{
found_change_already = true;
tx.output_unlock_times.push_back(0); // 0 unlock time for change
}
else
{
tx.output_unlock_times.push_back(unlock_time); // for now, all non-change have same unlock time
}
}
if (tx.type == txtype::stake)
{
CHECK_AND_ASSERT_MES(dst_entr.addr == sender_account_keys.m_account_address, false, "A staking contribution must return back to the original sendee otherwise the pre-calculated key image is incorrect");
CHECK_AND_ASSERT_MES(dst_entr.is_subaddress == false, false, "Staking back to a subaddress is not allowed"); // TODO(oxen): Maybe one day, revisit this
CHECK_AND_ASSERT_MES(need_additional_txkeys == false, false, "Staking TX's can not required additional TX Keys"); // TODO(oxen): Maybe one day, revisit this
if (!(change_addr && *change_addr == dst_entr))
{
auto& proof = key_image_proofs.proofs.emplace_back();
keypair ephemeral_keys{};
if(!generate_key_image_helper(sender_account_keys, subaddresses, out_eph_public_key, txkey_pub, additional_tx_public_keys, output_index, ephemeral_keys, proof.key_image, hwdev))
{
LOG_ERROR("Key image generation failed for staking TX!");
return false;
}
hwdev.generate_key_image_signature(proof.key_image, out_eph_public_key, ephemeral_keys.sec, proof.signature);
}
}
tx_out out;
out.amount = dst_entr.amount;
txout_to_key tk;
tk.key = out_eph_public_key;
out.target = tk;
tx.vout.push_back(out);
output_index++;
summary_outs_money += dst_entr.amount;
}
CHECK_AND_ASSERT_MES(additional_tx_public_keys.size() == additional_tx_keys.size(), false, "Internal error creating additional public keys");
if (tx.type == txtype::stake)
{
CHECK_AND_ASSERT_MES(key_image_proofs.proofs.size() >= 1, false, "No key image proofs were generated for staking tx");
add_tx_key_image_proofs_to_tx_extra(tx.extra, key_image_proofs);
if (tx_params.hf_version <= cryptonote::network_version_13_enforce_checkpoints)
tx.type = txtype::standard;
}
remove_field_from_tx_extra<tx_extra_additional_pub_keys>(tx.extra);
LOG_PRINT_L2("tx pubkey: " << txkey_pub);
if (need_additional_txkeys)
{
LOG_PRINT_L2("additional tx pubkeys: ");
for (size_t i = 0; i < additional_tx_public_keys.size(); ++i)
LOG_PRINT_L2(additional_tx_public_keys[i]);
add_additional_tx_pub_keys_to_extra(tx.extra, additional_tx_public_keys);
}
if (!sort_tx_extra(tx.extra, tx.extra))
return false;
//check money
if(summary_outs_money > summary_inputs_money )
{
LOG_ERROR("Transaction inputs money ("<< summary_inputs_money << ") less than outputs money (" << summary_outs_money << ")");
return false;
}
// check for watch only wallet
bool zero_secret_key = true;
for (size_t i = 0; i < sizeof(sender_account_keys.m_spend_secret_key); ++i)
zero_secret_key &= (sender_account_keys.m_spend_secret_key.data[i] == 0);
if (zero_secret_key)
{
MDEBUG("Null secret key, skipping signatures");
}
uint64_t amount_in = 0, amount_out = 0;
rct::ctkeyV inSk;
inSk.reserve(sources.size());
// mixRing indexing is done the other way round for simple
rct::ctkeyM mixRing(sources.size());
rct::keyV dest_keys;
std::vector<uint64_t> inamounts, outamounts;
std::vector<unsigned int> index;
std::vector<rct::multisig_kLRki> kLRki;
for (size_t i = 0; i < sources.size(); ++i)
{
rct::ctkey ctkey;
amount_in += sources[i].amount;
inamounts.push_back(sources[i].amount);
index.push_back(sources[i].real_output);
// inSk: (secret key, mask)
ctkey.dest = rct::sk2rct(in_contexts[i].in_ephemeral.sec);
ctkey.mask = sources[i].mask;
inSk.push_back(ctkey);
memwipe(&ctkey, sizeof(rct::ctkey));
// inPk: (public key, commitment)
// will be done when filling in mixRing
if (msout)
{
kLRki.push_back(sources[i].multisig_kLRki);
}
}
for (size_t i = 0; i < tx.vout.size(); ++i)
{
dest_keys.push_back(rct::pk2rct(var::get<txout_to_key>(tx.vout[i].target).key));
outamounts.push_back(tx.vout[i].amount);
amount_out += tx.vout[i].amount;
}
for (size_t i = 0; i < sources.size(); ++i)
{
mixRing[i].resize(sources[i].outputs.size());
for (size_t n = 0; n < sources[i].outputs.size(); ++n)
{
mixRing[i][n] = sources[i].outputs[n].second;
}
}
if (tx_params.burn_fixed)
{
if (amount_in < amount_out + tx_params.burn_fixed)
{
LOG_ERROR("invalid burn amount: tx does not have enough unspent funds available; amount_in: " << std::to_string(amount_in) << "; amount_out + tx_params.burn_fixed: " << std::to_string(amount_out) << " + " << std::to_string(tx_params.burn_fixed));
return false;
}
remove_field_from_tx_extra<tx_extra_burn>(tx.extra); // doesn't have to be present (but the wallet puts a dummy here as a safety to avoid growing the tx)
if (!add_burned_amount_to_tx_extra(tx.extra, tx_params.burn_fixed))
{
LOG_ERROR("failed to add burn amount to tx extra");
return false;
}
}
// zero out all amounts to mask rct outputs, real amounts are now encrypted
for (size_t i = 0; i < tx.vin.size(); ++i)
{
if (sources[i].rct)
var::get<txin_to_key>(tx.vin[i]).amount = 0;
}
for (size_t i = 0; i < tx.vout.size(); ++i)
tx.vout[i].amount = 0;
crypto::hash tx_prefix_hash;
get_transaction_prefix_hash(tx, tx_prefix_hash, hwdev);
rct::ctkeyV outSk;
tx.rct_signatures = rct::genRctSimple(rct::hash2rct(tx_prefix_hash), inSk, dest_keys, inamounts, outamounts, amount_in - amount_out, mixRing, amount_keys, msout ? &kLRki : NULL, msout, index, outSk, rct_config, hwdev);
memwipe(inSk.data(), inSk.size() * sizeof(rct::ctkey));
CHECK_AND_ASSERT_MES(tx.vout.size() == outSk.size(), false, "outSk size does not match vout");
MCINFO("construct_tx", "transaction_created: " << get_transaction_hash(tx) << "\n" << obj_to_json_str(tx) << "\n");
tx.invalidate_hashes();
return true;
}
//---------------------------------------------------------------
bool construct_tx_and_get_tx_key(const account_keys& sender_account_keys, const std::unordered_map<crypto::public_key, subaddress_index>& subaddresses, std::vector<tx_source_entry>& sources, std::vector<tx_destination_entry>& destinations, const std::optional<cryptonote::tx_destination_entry>& change_addr, const std::vector<uint8_t> &extra, transaction& tx, uint64_t unlock_time, crypto::secret_key &tx_key, std::vector<crypto::secret_key> &additional_tx_keys, const rct::RCTConfig &rct_config, rct::multisig_out *msout, oxen_construct_tx_params const &tx_params)
{
hw::device &hwdev = sender_account_keys.get_device();
hwdev.open_tx(tx_key, transaction::get_max_version_for_hf(tx_params.hf_version), tx_params.tx_type);
try {
// figure out if we need to make additional tx pubkeys
size_t num_stdaddresses = 0;
size_t num_subaddresses = 0;
account_public_address single_dest_subaddress;
classify_addresses(destinations, change_addr, num_stdaddresses, num_subaddresses, single_dest_subaddress);
bool need_additional_txkeys = num_subaddresses > 0 && (num_stdaddresses > 0 || num_subaddresses > 1);
if (need_additional_txkeys)
{
additional_tx_keys.clear();
for (const auto &d: destinations)
additional_tx_keys.push_back(keypair{sender_account_keys.get_device()}.sec);
}
bool r = construct_tx_with_tx_key(sender_account_keys, subaddresses, sources, destinations, change_addr, extra, tx, unlock_time, tx_key, additional_tx_keys, rct_config, msout, true /*shuffle_outs*/, tx_params);
hwdev.close_tx();
return r;
} catch(...) {
hwdev.close_tx();
throw;
}
}
//---------------------------------------------------------------
bool construct_tx(const account_keys& sender_account_keys, std::vector<tx_source_entry> &sources, const std::vector<tx_destination_entry>& destinations, const std::optional<cryptonote::tx_destination_entry>& change_addr, const std::vector<uint8_t> &extra, transaction& tx, uint64_t unlock_time, const oxen_construct_tx_params &tx_params)
{
std::unordered_map<crypto::public_key, cryptonote::subaddress_index> subaddresses;
subaddresses[sender_account_keys.m_account_address.m_spend_public_key] = {0,0};
crypto::secret_key tx_key;
std::vector<crypto::secret_key> additional_tx_keys;
std::vector<tx_destination_entry> destinations_copy = destinations;
// Always construct CLSAG transactions. They weren't actually acceptable before HF 16, but
// they are now for our fake networks (which we need to do because we no longer have pre-CLSAG
// tx generation code).
rct::RCTConfig rct_config{rct::RangeProofType::PaddedBulletproof, 3};
return construct_tx_and_get_tx_key(sender_account_keys, subaddresses, sources, destinations_copy, change_addr, extra, tx, unlock_time, tx_key, additional_tx_keys, rct_config, NULL, tx_params);
}
//---------------------------------------------------------------
bool generate_genesis_block(block& bl, network_type nettype)
{
const auto& conf = get_config(nettype);
//genesis block
bl = {};
CHECK_AND_ASSERT_MES(oxenmq::is_hex(conf.GENESIS_TX), false, "failed to parse coinbase tx from hard coded blob");
std::string tx_bl = oxenmq::from_hex(conf.GENESIS_TX);
bool r = parse_and_validate_tx_from_blob(tx_bl, bl.miner_tx);
CHECK_AND_ASSERT_MES(r, false, "failed to parse coinbase tx from hard coded blob");
bl.major_version = 7;
bl.minor_version = 7;
bl.timestamp = 0;
bl.nonce = conf.GENESIS_NONCE;
miner::find_nonce_for_given_block([](const cryptonote::block &b, uint64_t height, unsigned int threads, crypto::hash &hash){
hash = cryptonote::get_block_longhash(UNDEFINED, cryptonote::randomx_longhash_context(NULL, b, height), b, height, threads);
return true;
}, bl, 1, 0);
bl.invalidate_hashes();
return true;
}
//---------------------------------------------------------------
crypto::hash get_altblock_longhash(cryptonote::network_type nettype, randomx_longhash_context const &randomx_context, const block& b, uint64_t height)
{
crypto::hash result = {};
if (nettype == FAKECHAIN || b.major_version < network_version_12_checkpointing)
{
result = get_block_longhash(nettype, randomx_context, b, height, 0);
}
else
{
blobdata bd = get_block_hashing_blob(b);
rx_slow_hash(randomx_context.current_blockchain_height, randomx_context.seed_height, randomx_context.seed_block_hash.data, bd.data(), bd.size(), result.data, 0, 1);
}
return result;
}
randomx_longhash_context::randomx_longhash_context(const Blockchain *pbc,
const block &b /*block to longhash*/,
const uint64_t height)
{
*this = {};
if (b.major_version >= network_version_12_checkpointing)
{
if (pbc) // null only happens when generating genesis block, 0 init randomx is ok
{
seed_height = rx_seedheight(height);
seed_block_hash = pbc->get_pending_block_id_by_height(seed_height);
current_blockchain_height = pbc->get_current_blockchain_height();
}
}
}
crypto::hash get_block_longhash(cryptonote::network_type nettype, randomx_longhash_context const &randomx_context, const block& b, uint64_t height, int miners)
{
crypto::hash result = {};
const blobdata bd = get_block_hashing_blob(b);
const uint8_t hf_version = b.major_version;
crypto::cn_slow_hash_type cn_type = cn_slow_hash_type::heavy_v1;
if (nettype == FAKECHAIN)
{
cn_type = cn_slow_hash_type::turtle_lite_v2;
}
else
{
if (hf_version >= network_version_12_checkpointing)
{
rx_slow_hash(randomx_context.current_blockchain_height,
randomx_context.seed_height,
randomx_context.seed_block_hash.data,
bd.data(),
bd.size(),
result.data,
miners,
0);
return result;
}
if (hf_version >= network_version_11_infinite_staking)
cn_type = cn_slow_hash_type::turtle_lite_v2;
else if (hf_version >= network_version_7)
cn_type = crypto::cn_slow_hash_type::heavy_v2;
}
crypto::cn_slow_hash(bd.data(), bd.size(), result, cn_type);
return result;
}
crypto::hash get_block_longhash_w_blockchain(cryptonote::network_type nettype, const Blockchain *pbc, const block& b, uint64_t height, int miners)
{
crypto::hash result = get_block_longhash(nettype,randomx_longhash_context(pbc, b, height), b, height, miners);
return result;
}
void get_block_longhash_reorg(const uint64_t split_height)
{
rx_reorg(split_height);
}
}