oxen-core/src/cryptonote_basic/cryptonote_format_utils.cpp
Jason Rhinelander 6d6541670e Relax deregistration rules
The replaces the deregistration mechanism with a new state change
mechanism (beginning at the v12 fork) which can change a service node's
network status via three potential values (and is extensible in the
future to handle more):

- deregistered -- this is the same as the existing deregistration; the
SN is instantly removed from the SN list.
- decommissioned -- this is a sort of temporary deregistration: your SN
remains in the service node list, but is removed from the rewards list
and from any network duties.
- recommissioned -- this tx is sent by a quorum if they observe a
decommissioned SN sending uptime proofs again.  Upon reception, the SN
is reactivated and put on the end of the reward list.

Since this is broadening the quorum use, this also renames the relevant
quorum to a "obligations" quorum (since it validates SN obligations),
while the transactions are "state_change" transactions (since they
change the state of a registered SN).

The new parameters added to service_node_rules.h control how this works:

    // Service node decommissioning: as service nodes stay up they earn "credits" (measured in blocks)
    // towards a future outage.  A new service node starts out with INITIAL_CREDIT, and then builds up
    // CREDIT_PER_DAY for each day the service node remains active up to a maximum of
    // DECOMMISSION_MAX_CREDIT.
    //
    // If a service node stops sending uptime proofs, a quorum will consider whether the service node
    // has built up enough credits (at least MINIMUM): if so, instead of submitting a deregistration,
    // it instead submits a decommission.  This removes the service node from the list of active
    // service nodes both for rewards and for any active network duties.  If the service node comes
    // back online (i.e. starts sending the required performance proofs again) before the credits run
    // out then a quorum will reinstate the service node using a recommission transaction, which adds
    // the service node back to the bottom of the service node reward list, and resets its accumulated
    // credits to 0.  If it does not come back online within the required number of blocks (i.e. the
    // accumulated credit at the point of decommissioning) then a quorum will send a permanent
    // deregistration transaction to the network, starting a 30-day deregistration count down.

This commit currently includes values (which are not necessarily
finalized):
- 8 hours (240 blocks) of credit required for activation of a
decommission (rather than a deregister)
- 0 initial credits at registration
- a maximum of 24 hours (720 blocks) of credits
- credits accumulate at a rate that you hit 24 hours of credits after 30
days of operation.

Miscellaneous other details of this PR:

- a new TX extra tag is used for the state change (including
deregistrations).  The old extra tag has no version or type tag, so
couldn't be reused.  The data in the new tag is slightly more
efficiently packed than the old deregistration transaction, so it gets
used for deregistrations (starting at the v12 fork) as well.

- Correct validator/worker selection required generalizing the shuffle
function to be able to shuffle just part of a vector.  This lets us
stick any down service nodes at the end of the potential list, then
select validators by only shuffling the part of the index vector that
contains active service indices.  Once the validators are selected, the
remainder of the list (this time including decommissioned SN indices) is
shuffled to select quorum workers to check, thus allowing decommisioned
nodes to be randomly included in the nodes to check without being
selected as a validator.

- Swarm recalculation was not quite right: swarms were recalculated on
SN registrations, even if those registrations were include shared node
registrations, but *not* recalculated on stakes.  Starting with the
upgrade this behaviour is fixed (swarms aren't actually used currently
and aren't consensus-relevant so recalculating early won't hurt
anything).

- Details on decomm/dereg are added to RPC info and print_sn/print_sn_status

- Slightly improves the % of reward output in the print_sn output by
rounding it to two digits, and reserves space in the output string to
avoid excessive reallocations.

- Adds various debugging at higher debug levels to quorum voting (into
all of voting itself, vote transmission, and vote reception).

- Reset service node list internal data structure version to 0.  The SN
list has to be rescanned anyway at upgrade (its size has changed), so we
might as well reset the version and remove the version-dependent
serialization code.  (Note that the affected code here is for SN states
in lmdb storage, not for SN-to-SN communication serialization).
2019-06-23 22:37:53 -03:00

1683 lines
73 KiB
C++

// Copyright (c) 2014-2019, The Monero Project
// Copyright (c) 2018, The Loki Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
#include <atomic>
#include <boost/algorithm/string.hpp>
#include "wipeable_string.h"
#include "string_tools.h"
#include "common/i18n.h"
#include "serialization/string.h"
#include "cryptonote_format_utils.h"
#include "cryptonote_config.h"
#include "crypto/crypto.h"
#include "crypto/hash.h"
#include "ringct/rctSigs.h"
#include "cryptonote_basic/verification_context.h"
#include "cryptonote_core/service_node_voting.h"
using namespace epee;
#undef LOKI_DEFAULT_LOG_CATEGORY
#define LOKI_DEFAULT_LOG_CATEGORY "cn"
#define ENCRYPTED_PAYMENT_ID_TAIL 0x8d
// #define ENABLE_HASH_CASH_INTEGRITY_CHECK
using namespace crypto;
static const uint64_t valid_decomposed_outputs[] = {
(uint64_t)1, (uint64_t)2, (uint64_t)3, (uint64_t)4, (uint64_t)5, (uint64_t)6, (uint64_t)7, (uint64_t)8, (uint64_t)9, // 1 rok
(uint64_t)10, (uint64_t)20, (uint64_t)30, (uint64_t)40, (uint64_t)50, (uint64_t)60, (uint64_t)70, (uint64_t)80, (uint64_t)90,
(uint64_t)100, (uint64_t)200, (uint64_t)300, (uint64_t)400, (uint64_t)500, (uint64_t)600, (uint64_t)700, (uint64_t)800, (uint64_t)900,
(uint64_t)1000, (uint64_t)2000, (uint64_t)3000, (uint64_t)4000, (uint64_t)5000, (uint64_t)6000, (uint64_t)7000, (uint64_t)8000, (uint64_t)9000,
(uint64_t)10000, (uint64_t)20000, (uint64_t)30000, (uint64_t)40000, (uint64_t)50000, (uint64_t)60000, (uint64_t)70000, (uint64_t)80000, (uint64_t)90000,
(uint64_t)100000, (uint64_t)200000, (uint64_t)300000, (uint64_t)400000, (uint64_t)500000, (uint64_t)600000, (uint64_t)700000, (uint64_t)800000, (uint64_t)900000,
(uint64_t)1000000, (uint64_t)2000000, (uint64_t)3000000, (uint64_t)4000000, (uint64_t)5000000, (uint64_t)6000000, (uint64_t)7000000, (uint64_t)8000000, (uint64_t)9000000, // 1 micronero
(uint64_t)10000000, (uint64_t)20000000, (uint64_t)30000000, (uint64_t)40000000, (uint64_t)50000000, (uint64_t)60000000, (uint64_t)70000000, (uint64_t)80000000, (uint64_t)90000000,
(uint64_t)100000000, (uint64_t)200000000, (uint64_t)300000000, (uint64_t)400000000, (uint64_t)500000000, (uint64_t)600000000, (uint64_t)700000000, (uint64_t)800000000, (uint64_t)900000000,
(uint64_t)1000000000, (uint64_t)2000000000, (uint64_t)3000000000, (uint64_t)4000000000, (uint64_t)5000000000, (uint64_t)6000000000, (uint64_t)7000000000, (uint64_t)8000000000, (uint64_t)9000000000,
(uint64_t)10000000000, (uint64_t)20000000000, (uint64_t)30000000000, (uint64_t)40000000000, (uint64_t)50000000000, (uint64_t)60000000000, (uint64_t)70000000000, (uint64_t)80000000000, (uint64_t)90000000000,
(uint64_t)100000000000, (uint64_t)200000000000, (uint64_t)300000000000, (uint64_t)400000000000, (uint64_t)500000000000, (uint64_t)600000000000, (uint64_t)700000000000, (uint64_t)800000000000, (uint64_t)900000000000,
(uint64_t)1000000000000, (uint64_t)2000000000000, (uint64_t)3000000000000, (uint64_t)4000000000000, (uint64_t)5000000000000, (uint64_t)6000000000000, (uint64_t)7000000000000, (uint64_t)8000000000000, (uint64_t)9000000000000, // 1 monero
(uint64_t)10000000000000, (uint64_t)20000000000000, (uint64_t)30000000000000, (uint64_t)40000000000000, (uint64_t)50000000000000, (uint64_t)60000000000000, (uint64_t)70000000000000, (uint64_t)80000000000000, (uint64_t)90000000000000,
(uint64_t)100000000000000, (uint64_t)200000000000000, (uint64_t)300000000000000, (uint64_t)400000000000000, (uint64_t)500000000000000, (uint64_t)600000000000000, (uint64_t)700000000000000, (uint64_t)800000000000000, (uint64_t)900000000000000,
(uint64_t)1000000000000000, (uint64_t)2000000000000000, (uint64_t)3000000000000000, (uint64_t)4000000000000000, (uint64_t)5000000000000000, (uint64_t)6000000000000000, (uint64_t)7000000000000000, (uint64_t)8000000000000000, (uint64_t)9000000000000000,
(uint64_t)10000000000000000, (uint64_t)20000000000000000, (uint64_t)30000000000000000, (uint64_t)40000000000000000, (uint64_t)50000000000000000, (uint64_t)60000000000000000, (uint64_t)70000000000000000, (uint64_t)80000000000000000, (uint64_t)90000000000000000,
(uint64_t)100000000000000000, (uint64_t)200000000000000000, (uint64_t)300000000000000000, (uint64_t)400000000000000000, (uint64_t)500000000000000000, (uint64_t)600000000000000000, (uint64_t)700000000000000000, (uint64_t)800000000000000000, (uint64_t)900000000000000000,
(uint64_t)1000000000000000000, (uint64_t)2000000000000000000, (uint64_t)3000000000000000000, (uint64_t)4000000000000000000, (uint64_t)5000000000000000000, (uint64_t)6000000000000000000, (uint64_t)7000000000000000000, (uint64_t)8000000000000000000, (uint64_t)9000000000000000000, // 1 meganero
(uint64_t)10000000000000000000ull
};
static std::atomic<unsigned int> default_decimal_point(CRYPTONOTE_DISPLAY_DECIMAL_POINT);
static std::atomic<uint64_t> tx_hashes_calculated_count(0);
static std::atomic<uint64_t> tx_hashes_cached_count(0);
static std::atomic<uint64_t> block_hashes_calculated_count(0);
static std::atomic<uint64_t> block_hashes_cached_count(0);
#define CHECK_AND_ASSERT_THROW_MES_L1(expr, message) {if(!(expr)) {MWARNING(message); throw std::runtime_error(message);}}
namespace cryptonote
{
static inline unsigned char *operator &(ec_point &point) {
return &reinterpret_cast<unsigned char &>(point);
}
static inline const unsigned char *operator &(const ec_point &point) {
return &reinterpret_cast<const unsigned char &>(point);
}
// a copy of rct::addKeys, since we can't link to libringct to avoid circular dependencies
static void add_public_key(crypto::public_key &AB, const crypto::public_key &A, const crypto::public_key &B) {
ge_p3 B2, A2;
CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&B2, &B) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&A2, &A) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
ge_cached tmp2;
ge_p3_to_cached(&tmp2, &B2);
ge_p1p1 tmp3;
ge_add(&tmp3, &A2, &tmp2);
ge_p1p1_to_p3(&A2, &tmp3);
ge_p3_tobytes(&AB, &A2);
}
}
namespace cryptonote
{
//---------------------------------------------------------------
void get_transaction_prefix_hash(const transaction_prefix& tx, crypto::hash& h)
{
std::ostringstream s;
binary_archive<true> a(s);
::serialization::serialize(a, const_cast<transaction_prefix&>(tx));
crypto::cn_fast_hash(s.str().data(), s.str().size(), h);
}
//---------------------------------------------------------------
crypto::hash get_transaction_prefix_hash(const transaction_prefix& tx)
{
crypto::hash h = null_hash;
get_transaction_prefix_hash(tx, h);
return h;
}
//---------------------------------------------------------------
bool expand_transaction_1(transaction &tx, bool base_only)
{
if (tx.version >= txversion::v2_ringct && !is_coinbase(tx))
{
rct::rctSig &rv = tx.rct_signatures;
if (rv.outPk.size() != tx.vout.size())
{
LOG_PRINT_L1("Failed to parse transaction from blob, bad outPk size in tx " << get_transaction_hash(tx));
return false;
}
for (size_t n = 0; n < tx.rct_signatures.outPk.size(); ++n)
{
if (tx.vout[n].target.type() != typeid(txout_to_key))
{
LOG_PRINT_L1("Unsupported output type in tx " << get_transaction_hash(tx));
return false;
}
rv.outPk[n].dest = rct::pk2rct(boost::get<txout_to_key>(tx.vout[n].target).key);
}
if (!base_only)
{
const bool bulletproof = rct::is_rct_bulletproof(rv.type);
if (bulletproof)
{
if (rv.p.bulletproofs.size() != 1)
{
LOG_PRINT_L1("Failed to parse transaction from blob, bad bulletproofs size in tx " << get_transaction_hash(tx));
return false;
}
if (rv.p.bulletproofs[0].L.size() < 6)
{
LOG_PRINT_L1("Failed to parse transaction from blob, bad bulletproofs L size in tx " << get_transaction_hash(tx));
return false;
}
const size_t max_outputs = 1 << (rv.p.bulletproofs[0].L.size() - 6);
if (max_outputs < tx.vout.size())
{
LOG_PRINT_L1("Failed to parse transaction from blob, bad bulletproofs max outputs in tx " << get_transaction_hash(tx));
return false;
}
const size_t n_amounts = tx.vout.size();
CHECK_AND_ASSERT_MES(n_amounts == rv.outPk.size(), false, "Internal error filling out V");
rv.p.bulletproofs[0].V.resize(n_amounts);
for (size_t i = 0; i < n_amounts; ++i)
rv.p.bulletproofs[0].V[i] = rct::scalarmultKey(rv.outPk[i].mask, rct::INV_EIGHT);
}
}
}
return true;
}
//---------------------------------------------------------------
bool parse_and_validate_tx_from_blob(const blobdata& tx_blob, transaction& tx)
{
std::stringstream ss;
ss << tx_blob;
binary_archive<false> ba(ss);
bool r = ::serialization::serialize(ba, tx);
CHECK_AND_ASSERT_MES(r, false, "Failed to parse transaction from blob");
CHECK_AND_ASSERT_MES(expand_transaction_1(tx, false), false, "Failed to expand transaction data");
tx.invalidate_hashes();
tx.set_blob_size(tx_blob.size());
return true;
}
//---------------------------------------------------------------
bool parse_and_validate_tx_base_from_blob(const blobdata& tx_blob, transaction& tx)
{
std::stringstream ss;
ss << tx_blob;
binary_archive<false> ba(ss);
bool r = tx.serialize_base(ba);
CHECK_AND_ASSERT_MES(r, false, "Failed to parse transaction from blob");
CHECK_AND_ASSERT_MES(expand_transaction_1(tx, true), false, "Failed to expand transaction data");
tx.invalidate_hashes();
return true;
}
//---------------------------------------------------------------
bool parse_and_validate_tx_prefix_from_blob(const blobdata& tx_blob, transaction_prefix& tx)
{
std::stringstream ss;
ss << tx_blob;
binary_archive<false> ba(ss);
bool r = ::serialization::serialize_noeof(ba, tx);
CHECK_AND_ASSERT_MES(r, false, "Failed to parse transaction prefix from blob");
return true;
}
//---------------------------------------------------------------
bool parse_and_validate_tx_from_blob(const blobdata& tx_blob, transaction& tx, crypto::hash& tx_hash)
{
std::stringstream ss;
ss << tx_blob;
binary_archive<false> ba(ss);
bool r = ::serialization::serialize(ba, tx);
CHECK_AND_ASSERT_MES(r, false, "Failed to parse transaction from blob");
CHECK_AND_ASSERT_MES(expand_transaction_1(tx, false), false, "Failed to expand transaction data");
tx.invalidate_hashes();
//TODO: validate tx
get_transaction_hash(tx, tx_hash);
return true;
}
//---------------------------------------------------------------
bool parse_and_validate_tx_from_blob(const blobdata& tx_blob, transaction& tx, crypto::hash& tx_hash, crypto::hash& tx_prefix_hash)
{
if (!parse_and_validate_tx_from_blob(tx_blob, tx, tx_hash))
return false;
get_transaction_prefix_hash(tx, tx_prefix_hash);
return true;
}
//---------------------------------------------------------------
bool is_v1_tx(const blobdata_ref& tx_blob)
{
uint64_t version;
const char* begin = static_cast<const char*>(tx_blob.data());
const char* end = begin + tx_blob.size();
int read = tools::read_varint(begin, end, version);
if (read <= 0)
throw std::runtime_error("Internal error getting transaction version");
return version <= 1;
}
//---------------------------------------------------------------
bool is_v1_tx(const blobdata& tx_blob)
{
return is_v1_tx(blobdata_ref{tx_blob.data(), tx_blob.size()});
}
//---------------------------------------------------------------
bool generate_key_image_helper(const account_keys& ack, const std::unordered_map<crypto::public_key, subaddress_index>& subaddresses, const crypto::public_key& out_key, const crypto::public_key& tx_public_key, const std::vector<crypto::public_key>& additional_tx_public_keys, size_t real_output_index, keypair& in_ephemeral, crypto::key_image& ki, hw::device &hwdev)
{
crypto::key_derivation recv_derivation = AUTO_VAL_INIT(recv_derivation);
bool r = hwdev.generate_key_derivation(tx_public_key, ack.m_view_secret_key, recv_derivation);
if (!r)
{
MWARNING("key image helper: failed to generate_key_derivation(" << tx_public_key << ", " << ack.m_view_secret_key << ")");
memcpy(&recv_derivation, rct::identity().bytes, sizeof(recv_derivation));
}
std::vector<crypto::key_derivation> additional_recv_derivations;
for (size_t i = 0; i < additional_tx_public_keys.size(); ++i)
{
crypto::key_derivation additional_recv_derivation = AUTO_VAL_INIT(additional_recv_derivation);
r = hwdev.generate_key_derivation(additional_tx_public_keys[i], ack.m_view_secret_key, additional_recv_derivation);
if (!r)
{
MWARNING("key image helper: failed to generate_key_derivation(" << additional_tx_public_keys[i] << ", " << ack.m_view_secret_key << ")");
}
else
{
additional_recv_derivations.push_back(additional_recv_derivation);
}
}
boost::optional<subaddress_receive_info> subaddr_recv_info = is_out_to_acc_precomp(subaddresses, out_key, recv_derivation, additional_recv_derivations, real_output_index,hwdev);
CHECK_AND_ASSERT_MES(subaddr_recv_info, false, "key image helper: given output pubkey doesn't seem to belong to this address");
return generate_key_image_helper_precomp(ack, out_key, subaddr_recv_info->derivation, real_output_index, subaddr_recv_info->index, in_ephemeral, ki, hwdev);
}
//---------------------------------------------------------------
bool generate_key_image_helper_precomp(const account_keys& ack, const crypto::public_key& out_key, const crypto::key_derivation& recv_derivation, size_t real_output_index, const subaddress_index& received_index, keypair& in_ephemeral, crypto::key_image& ki, hw::device &hwdev)
{
if (hwdev.compute_key_image(ack, out_key, recv_derivation, real_output_index, received_index, in_ephemeral, ki))
{
return true;
}
if (ack.m_spend_secret_key == crypto::null_skey)
{
// for watch-only wallet, simply copy the known output pubkey
in_ephemeral.pub = out_key;
in_ephemeral.sec = crypto::null_skey;
}
else
{
// derive secret key with subaddress - step 1: original CN derivation
crypto::secret_key scalar_step1;
hwdev.derive_secret_key(recv_derivation, real_output_index, ack.m_spend_secret_key, scalar_step1); // computes Hs(a*R || idx) + b
// step 2: add Hs(a || index_major || index_minor)
crypto::secret_key subaddr_sk;
crypto::secret_key scalar_step2;
if (received_index.is_zero())
{
scalar_step2 = scalar_step1; // treat index=(0,0) as a special case representing the main address
}
else
{
subaddr_sk = hwdev.get_subaddress_secret_key(ack.m_view_secret_key, received_index);
hwdev.sc_secret_add(scalar_step2, scalar_step1,subaddr_sk);
}
in_ephemeral.sec = scalar_step2;
if (ack.m_multisig_keys.empty())
{
// when not in multisig, we know the full spend secret key, so the output pubkey can be obtained by scalarmultBase
CHECK_AND_ASSERT_MES(hwdev.secret_key_to_public_key(in_ephemeral.sec, in_ephemeral.pub), false, "Failed to derive public key");
}
else
{
// when in multisig, we only know the partial spend secret key. but we do know the full spend public key, so the output pubkey can be obtained by using the standard CN key derivation
CHECK_AND_ASSERT_MES(hwdev.derive_public_key(recv_derivation, real_output_index, ack.m_account_address.m_spend_public_key, in_ephemeral.pub), false, "Failed to derive public key");
// and don't forget to add the contribution from the subaddress part
if (!received_index.is_zero())
{
crypto::public_key subaddr_pk;
CHECK_AND_ASSERT_MES(hwdev.secret_key_to_public_key(subaddr_sk, subaddr_pk), false, "Failed to derive public key");
add_public_key(in_ephemeral.pub, in_ephemeral.pub, subaddr_pk);
}
}
CHECK_AND_ASSERT_MES(in_ephemeral.pub == out_key,
false, "key image helper precomp: given output pubkey doesn't match the derived one");
}
hwdev.generate_key_image(in_ephemeral.pub, in_ephemeral.sec, ki);
return true;
}
//---------------------------------------------------------------
uint64_t power_integral(uint64_t a, uint64_t b)
{
if(b == 0)
return 1;
uint64_t total = a;
for(uint64_t i = 1; i != b; i++)
total *= a;
return total;
}
//---------------------------------------------------------------
bool parse_amount(uint64_t& amount, const std::string& str_amount_)
{
std::string str_amount = str_amount_;
boost::algorithm::trim(str_amount);
size_t point_index = str_amount.find_first_of('.');
size_t fraction_size;
if (std::string::npos != point_index)
{
fraction_size = str_amount.size() - point_index - 1;
while (default_decimal_point < fraction_size && '0' == str_amount.back())
{
str_amount.erase(str_amount.size() - 1, 1);
--fraction_size;
}
if (default_decimal_point < fraction_size)
return false;
str_amount.erase(point_index, 1);
}
else
{
fraction_size = 0;
}
if (str_amount.empty())
return false;
if (fraction_size < default_decimal_point)
{
str_amount.append(default_decimal_point - fraction_size, '0');
}
return string_tools::get_xtype_from_string(amount, str_amount);
}
//---------------------------------------------------------------
uint64_t get_transaction_weight(const transaction &tx, size_t blob_size)
{
if (tx.version < txversion::v2_ringct)
return blob_size;
const rct::rctSig &rv = tx.rct_signatures;
if (!rct::is_rct_bulletproof(rv.type))
return blob_size;
const size_t n_outputs = tx.vout.size();
if (n_outputs <= 2)
return blob_size;
const uint64_t bp_base = 368;
const size_t n_padded_outputs = rct::n_bulletproof_max_amounts(rv.p.bulletproofs);
size_t nlr = 0;
for (const auto &bp: rv.p.bulletproofs)
nlr += bp.L.size() * 2;
const size_t bp_size = 32 * (9 + nlr);
CHECK_AND_ASSERT_THROW_MES_L1(n_outputs <= BULLETPROOF_MAX_OUTPUTS, "maximum number of outputs is " + std::to_string(BULLETPROOF_MAX_OUTPUTS) + " per transaction");
CHECK_AND_ASSERT_THROW_MES_L1(bp_base * n_padded_outputs >= bp_size, "Invalid bulletproof clawback");
const uint64_t bp_clawback = (bp_base * n_padded_outputs - bp_size) * 4 / 5;
CHECK_AND_ASSERT_THROW_MES_L1(bp_clawback <= std::numeric_limits<uint64_t>::max() - blob_size, "Weight overflow");
return blob_size + bp_clawback;
}
//---------------------------------------------------------------
uint64_t get_transaction_weight(const transaction &tx)
{
size_t blob_size;
if (tx.is_blob_size_valid())
{
blob_size = tx.blob_size;
}
else
{
std::ostringstream s;
binary_archive<true> a(s);
::serialization::serialize(a, const_cast<transaction&>(tx));
blob_size = s.str().size();
}
return get_transaction_weight(tx, blob_size);
}
//---------------------------------------------------------------
bool get_tx_fee(const transaction& tx, uint64_t & fee)
{
if (tx.version >= txversion::v2_ringct)
{
fee = tx.rct_signatures.txnFee;
return true;
}
uint64_t amount_in = 0;
uint64_t amount_out = 0;
for(auto& in: tx.vin)
{
CHECK_AND_ASSERT_MES(in.type() == typeid(txin_to_key), 0, "unexpected type id in transaction");
amount_in += boost::get<txin_to_key>(in).amount;
}
for(auto& o: tx.vout)
amount_out += o.amount;
CHECK_AND_ASSERT_MES(amount_in >= amount_out, false, "transaction spend (" <<amount_in << ") more than it has (" << amount_out << ")");
fee = amount_in - amount_out;
return true;
}
//---------------------------------------------------------------
uint64_t get_tx_fee(const transaction& tx)
{
uint64_t r = 0;
if(!get_tx_fee(tx, r))
return 0;
return r;
}
//---------------------------------------------------------------
bool parse_tx_extra(const std::vector<uint8_t>& tx_extra, std::vector<tx_extra_field>& tx_extra_fields)
{
tx_extra_fields.clear();
if(tx_extra.empty())
return true;
std::string extra_str(reinterpret_cast<const char*>(tx_extra.data()), tx_extra.size());
std::istringstream iss(extra_str);
binary_archive<false> ar(iss);
bool eof = false;
while (!eof)
{
tx_extra_field field;
bool r = ::do_serialize(ar, field);
CHECK_AND_NO_ASSERT_MES_L1(r, false, "failed to deserialize extra field. extra = " << string_tools::buff_to_hex_nodelimer(std::string(reinterpret_cast<const char*>(tx_extra.data()), tx_extra.size())));
tx_extra_fields.push_back(field);
std::ios_base::iostate state = iss.rdstate();
eof = (EOF == iss.peek());
iss.clear(state);
}
CHECK_AND_NO_ASSERT_MES_L1(::serialization::check_stream_state(ar), false, "failed to deserialize extra field. extra = " << string_tools::buff_to_hex_nodelimer(std::string(reinterpret_cast<const char*>(tx_extra.data()), tx_extra.size())));
return true;
}
//---------------------------------------------------------------
template<typename T>
static bool pick(binary_archive<true> &ar, std::vector<tx_extra_field> &fields, uint8_t tag)
{
std::vector<tx_extra_field>::iterator it;
while ((it = std::find_if(fields.begin(), fields.end(), [](const tx_extra_field &f) { return f.type() == typeid(T); })) != fields.end())
{
bool r = ::do_serialize(ar, tag);
CHECK_AND_NO_ASSERT_MES_L1(r, false, "failed to serialize tx extra field");
r = ::do_serialize(ar, boost::get<T>(*it));
CHECK_AND_NO_ASSERT_MES_L1(r, false, "failed to serialize tx extra field");
fields.erase(it);
}
return true;
}
//---------------------------------------------------------------
bool sort_tx_extra(const std::vector<uint8_t>& tx_extra, std::vector<uint8_t> &sorted_tx_extra, bool allow_partial)
{
std::vector<tx_extra_field> tx_extra_fields;
if(tx_extra.empty())
{
sorted_tx_extra.clear();
return true;
}
std::string extra_str(reinterpret_cast<const char*>(tx_extra.data()), tx_extra.size());
std::istringstream iss(extra_str);
binary_archive<false> ar(iss);
bool eof = false;
size_t processed = 0;
while (!eof)
{
tx_extra_field field;
bool r = ::do_serialize(ar, field);
if (!r)
{
MWARNING("failed to deserialize extra field. extra = " << string_tools::buff_to_hex_nodelimer(std::string(reinterpret_cast<const char*>(tx_extra.data()), tx_extra.size())));
if (!allow_partial)
return false;
break;
}
tx_extra_fields.push_back(field);
processed = iss.tellg();
std::ios_base::iostate state = iss.rdstate();
eof = (EOF == iss.peek());
iss.clear(state);
}
if (!::serialization::check_stream_state(ar))
{
MWARNING("failed to deserialize extra field. extra = " << string_tools::buff_to_hex_nodelimer(std::string(reinterpret_cast<const char*>(tx_extra.data()), tx_extra.size())));
if (!allow_partial)
return false;
}
MTRACE("Sorted " << processed << "/" << tx_extra.size());
std::ostringstream oss;
binary_archive<true> nar(oss);
// sort by:
if (!pick<tx_extra_pub_key>(nar, tx_extra_fields, TX_EXTRA_TAG_PUBKEY)) return false;
if (!pick<tx_extra_additional_pub_keys>(nar, tx_extra_fields, TX_EXTRA_TAG_ADDITIONAL_PUBKEYS)) return false;
if (!pick<tx_extra_nonce>(nar, tx_extra_fields, TX_EXTRA_NONCE)) return false;
if (!pick<tx_extra_service_node_register> (nar, tx_extra_fields, TX_EXTRA_TAG_SERVICE_NODE_REGISTER)) return false;
if (!pick<tx_extra_service_node_deregister_old> (nar, tx_extra_fields, TX_EXTRA_TAG_SERVICE_NODE_DEREG_OLD)) return false;
if (!pick<tx_extra_service_node_state_change> (nar, tx_extra_fields, TX_EXTRA_TAG_SERVICE_NODE_STATE_CHANGE)) return false;
if (!pick<tx_extra_service_node_winner> (nar, tx_extra_fields, TX_EXTRA_TAG_SERVICE_NODE_WINNER)) return false;
if (!pick<tx_extra_service_node_contributor> (nar, tx_extra_fields, TX_EXTRA_TAG_SERVICE_NODE_CONTRIBUTOR)) return false;
if (!pick<tx_extra_service_node_pubkey> (nar, tx_extra_fields, TX_EXTRA_TAG_SERVICE_NODE_PUBKEY)) return false;
if (!pick<tx_extra_tx_secret_key> (nar, tx_extra_fields, TX_EXTRA_TAG_TX_SECRET_KEY)) return false;
if (!pick<tx_extra_tx_key_image_proofs> (nar, tx_extra_fields, TX_EXTRA_TAG_TX_KEY_IMAGE_PROOFS)) return false;
if (!pick<tx_extra_tx_key_image_unlock> (nar, tx_extra_fields, TX_EXTRA_TAG_TX_KEY_IMAGE_UNLOCK)) return false;
if (!pick<tx_extra_merge_mining_tag> (nar, tx_extra_fields, TX_EXTRA_MERGE_MINING_TAG)) return false;
if (!pick<tx_extra_mysterious_minergate> (nar, tx_extra_fields, TX_EXTRA_MYSTERIOUS_MINERGATE_TAG)) return false;
if (!pick<tx_extra_padding> (nar, tx_extra_fields, TX_EXTRA_TAG_PADDING)) return false;
// if not empty, someone added a new type and did not add a case above
if (!tx_extra_fields.empty())
{
MERROR("tx_extra_fields not empty after sorting, someone forgot to add a case above");
return false;
}
std::string oss_str = oss.str();
if (allow_partial && processed < tx_extra.size())
{
MDEBUG("Appending unparsed data");
oss_str += std::string((const char*)tx_extra.data() + processed, tx_extra.size() - processed);
}
sorted_tx_extra = std::vector<uint8_t>(oss_str.begin(), oss_str.end());
return true;
}
//---------------------------------------------------------------
crypto::public_key get_tx_pub_key_from_extra(const std::vector<uint8_t>& tx_extra, size_t pk_index)
{
std::vector<tx_extra_field> tx_extra_fields;
parse_tx_extra(tx_extra, tx_extra_fields);
tx_extra_pub_key pub_key_field;
if(!find_tx_extra_field_by_type(tx_extra_fields, pub_key_field, pk_index))
return null_pkey;
return pub_key_field.pub_key;
}
//---------------------------------------------------------------
crypto::public_key get_tx_pub_key_from_extra(const transaction_prefix& tx_prefix, size_t pk_index)
{
return get_tx_pub_key_from_extra(tx_prefix.extra, pk_index);
}
//---------------------------------------------------------------
crypto::public_key get_tx_pub_key_from_extra(const transaction& tx, size_t pk_index)
{
return get_tx_pub_key_from_extra(tx.extra, pk_index);
}
//---------------------------------------------------------------
static void add_data_to_tx_extra(std::vector<uint8_t>& tx_extra, char const *data, size_t data_size, uint8_t tag)
{
size_t pos = tx_extra.size();
tx_extra.resize(tx_extra.size() + sizeof(tag) + data_size);
tx_extra[pos++] = tag;
std::memcpy(&tx_extra[pos], data, data_size);
}
//---------------------------------------------------------------
void add_tx_pub_key_to_extra(transaction& tx, const crypto::public_key& tx_pub_key)
{
add_tx_pub_key_to_extra(tx.extra, tx_pub_key);
}
//---------------------------------------------------------------
void add_tx_pub_key_to_extra(transaction_prefix& tx, const crypto::public_key& tx_pub_key)
{
add_tx_pub_key_to_extra(tx.extra, tx_pub_key);
}
//---------------------------------------------------------------
void add_tx_pub_key_to_extra(std::vector<uint8_t>& tx_extra, const crypto::public_key& tx_pub_key)
{
add_data_to_tx_extra(tx_extra, reinterpret_cast<const char *>(&tx_pub_key), sizeof(tx_pub_key), TX_EXTRA_TAG_PUBKEY);
}
//---------------------------------------------------------------
std::vector<crypto::public_key> get_additional_tx_pub_keys_from_extra(const std::vector<uint8_t>& tx_extra)
{
// parse
std::vector<tx_extra_field> tx_extra_fields;
parse_tx_extra(tx_extra, tx_extra_fields);
// find corresponding field
tx_extra_additional_pub_keys additional_pub_keys;
if(!find_tx_extra_field_by_type(tx_extra_fields, additional_pub_keys))
return {};
return additional_pub_keys.data;
}
//---------------------------------------------------------------
std::vector<crypto::public_key> get_additional_tx_pub_keys_from_extra(const transaction_prefix& tx)
{
return get_additional_tx_pub_keys_from_extra(tx.extra);
}
//---------------------------------------------------------------
static bool add_tx_extra_field_to_tx_extra(std::vector<uint8_t>& tx_extra, tx_extra_field &field)
{
std::ostringstream oss;
binary_archive<true> ar(oss);
if (!::do_serialize(ar, field))
return false;
std::string tx_extra_str = oss.str();
size_t pos = tx_extra.size();
tx_extra.resize(tx_extra.size() + tx_extra_str.size());
memcpy(&tx_extra[pos], tx_extra_str.data(), tx_extra_str.size());
return true;
}
//---------------------------------------------------------------
bool add_additional_tx_pub_keys_to_extra(std::vector<uint8_t>& tx_extra, const std::vector<crypto::public_key>& additional_pub_keys)
{
tx_extra_field field = tx_extra_additional_pub_keys{ additional_pub_keys };
bool r = add_tx_extra_field_to_tx_extra(tx_extra, field);
CHECK_AND_NO_ASSERT_MES_L1(r, false, "failed to serialize tx extra additional tx pub keys");
return true;
}
//---------------------------------------------------------------
bool add_extra_nonce_to_tx_extra(std::vector<uint8_t>& tx_extra, const blobdata& extra_nonce)
{
CHECK_AND_ASSERT_MES(extra_nonce.size() <= TX_EXTRA_NONCE_MAX_COUNT, false, "extra nonce could be 255 bytes max");
size_t start_pos = tx_extra.size();
tx_extra.resize(tx_extra.size() + 2 + extra_nonce.size());
//write tag
tx_extra[start_pos] = TX_EXTRA_NONCE;
//write len
++start_pos;
tx_extra[start_pos] = static_cast<uint8_t>(extra_nonce.size());
//write data
++start_pos;
memcpy(&tx_extra[start_pos], extra_nonce.data(), extra_nonce.size());
return true;
}
bool add_service_node_state_change_to_tx_extra(std::vector<uint8_t>& tx_extra, const tx_extra_service_node_state_change& state_change, const uint8_t hf_version)
{
tx_extra_field field;
if (hf_version < network_version_12_checkpointing)
{
CHECK_AND_ASSERT_MES(state_change.state == service_nodes::new_state::deregister, false, "internal error: cannot construct an old deregistration for a non-deregistration state change (before hardfork v12)");
field = tx_extra_service_node_deregister_old{state_change};
}
else
{
field = state_change;
}
bool r = add_tx_extra_field_to_tx_extra(tx_extra, field);
CHECK_AND_ASSERT_MES(r, false, "failed to serialize tx extra service node state change");
return true;
}
//---------------------------------------------------------------
void add_service_node_pubkey_to_tx_extra(std::vector<uint8_t>& tx_extra, const crypto::public_key& pubkey)
{
add_data_to_tx_extra(tx_extra, reinterpret_cast<const char *>(&pubkey), sizeof(pubkey), TX_EXTRA_TAG_SERVICE_NODE_PUBKEY);
}
//---------------------------------------------------------------
bool get_service_node_pubkey_from_tx_extra(const std::vector<uint8_t>& tx_extra, crypto::public_key& pubkey)
{
std::vector<tx_extra_field> tx_extra_fields;
parse_tx_extra(tx_extra, tx_extra_fields);
tx_extra_service_node_pubkey service_node_pubkey;
bool result = find_tx_extra_field_by_type(tx_extra_fields, service_node_pubkey);
if (!result)
return false;
pubkey = service_node_pubkey.m_service_node_key;
return true;
}
//---------------------------------------------------------------
void add_service_node_contributor_to_tx_extra(std::vector<uint8_t>& tx_extra, const cryptonote::account_public_address& address)
{
add_data_to_tx_extra(tx_extra, reinterpret_cast<const char *>(&address), sizeof(address), TX_EXTRA_TAG_SERVICE_NODE_CONTRIBUTOR);
}
//---------------------------------------------------------------
bool get_tx_secret_key_from_tx_extra(const std::vector<uint8_t>& tx_extra, crypto::secret_key& key)
{
std::vector<tx_extra_field> tx_extra_fields;
parse_tx_extra(tx_extra, tx_extra_fields);
tx_extra_tx_secret_key seckey;
bool result = find_tx_extra_field_by_type(tx_extra_fields, seckey);
if (!result)
return false;
key = seckey.key;
return true;
}
//---------------------------------------------------------------
void add_tx_secret_key_to_tx_extra(std::vector<uint8_t>& tx_extra, const crypto::secret_key& key)
{
add_data_to_tx_extra(tx_extra, reinterpret_cast<const char *>(&key), sizeof(key), TX_EXTRA_TAG_TX_SECRET_KEY);
}
//---------------------------------------------------------------
bool get_tx_key_image_proofs_from_tx_extra(const std::vector<uint8_t>& tx_extra, tx_extra_tx_key_image_proofs &proofs)
{
std::vector<tx_extra_field> tx_extra_fields;
parse_tx_extra(tx_extra, tx_extra_fields);
bool result = find_tx_extra_field_by_type(tx_extra_fields, proofs);
return result;
}
//---------------------------------------------------------------
bool add_tx_key_image_proofs_to_tx_extra(std::vector<uint8_t>& tx_extra, const tx_extra_tx_key_image_proofs& proofs)
{
tx_extra_field field = proofs;
bool result = add_tx_extra_field_to_tx_extra(tx_extra, field);
CHECK_AND_NO_ASSERT_MES_L1(result, false, "failed to serialize tx extra tx key image proof");
return result;
}
//---------------------------------------------------------------
bool get_tx_key_image_unlock_from_tx_extra(const std::vector<uint8_t>& tx_extra, tx_extra_tx_key_image_unlock &unlock)
{
std::vector<tx_extra_field> tx_extra_fields;
parse_tx_extra(tx_extra, tx_extra_fields);
bool result = find_tx_extra_field_by_type(tx_extra_fields, unlock);
return result;
}
//---------------------------------------------------------------
bool add_tx_key_image_unlock_to_tx_extra(std::vector<uint8_t>& tx_extra, const tx_extra_tx_key_image_unlock& unlock)
{
tx_extra_field field = unlock;
bool result = add_tx_extra_field_to_tx_extra(tx_extra, field);
CHECK_AND_NO_ASSERT_MES_L1(result, false, "failed to serialize tx extra tx key image unlock");
return result;
}
//---------------------------------------------------------------
bool get_service_node_contributor_from_tx_extra(const std::vector<uint8_t>& tx_extra, cryptonote::account_public_address& address)
{
std::vector<tx_extra_field> tx_extra_fields;
parse_tx_extra(tx_extra, tx_extra_fields);
tx_extra_service_node_contributor contributor;
bool result = find_tx_extra_field_by_type(tx_extra_fields, contributor);
if (!result)
return false;
address.m_spend_public_key = contributor.m_spend_public_key;
address.m_view_public_key = contributor.m_view_public_key;
return true;
}
//---------------------------------------------------------------
bool get_service_node_register_from_tx_extra(const std::vector<uint8_t>& tx_extra, tx_extra_service_node_register &registration)
{
std::vector<tx_extra_field> tx_extra_fields;
parse_tx_extra(tx_extra, tx_extra_fields);
bool result = find_tx_extra_field_by_type(tx_extra_fields, registration);
return result && registration.m_public_spend_keys.size() == registration.m_public_view_keys.size();
}
//---------------------------------------------------------------
bool add_service_node_register_to_tx_extra(
std::vector<uint8_t>& tx_extra,
const std::vector<cryptonote::account_public_address>& addresses,
uint64_t portions_for_operator,
const std::vector<uint64_t>& portions,
uint64_t expiration_timestamp,
const crypto::signature& service_node_signature)
{
if (addresses.size() != portions.size())
{
LOG_ERROR("Tried to serialize registration with more addresses than portions, this should never happen");
return false;
}
std::vector<crypto::public_key> public_view_keys(addresses.size());
std::vector<crypto::public_key> public_spend_keys(addresses.size());
for (size_t i = 0; i < addresses.size(); i++)
{
public_view_keys[i] = addresses[i].m_view_public_key;
public_spend_keys[i] = addresses[i].m_spend_public_key;
}
// convert to variant
tx_extra_field field =
tx_extra_service_node_register{
public_spend_keys,
public_view_keys,
portions_for_operator,
portions,
expiration_timestamp,
service_node_signature
};
bool r = add_tx_extra_field_to_tx_extra(tx_extra, field);
CHECK_AND_NO_ASSERT_MES_L1(r, false, "failed to serialize tx extra registration tx");
return true;
}
//---------------------------------------------------------------
void add_service_node_winner_to_tx_extra(std::vector<uint8_t>& tx_extra, const crypto::public_key& winner)
{
add_data_to_tx_extra(tx_extra, reinterpret_cast<const char *>(&winner), sizeof(winner), TX_EXTRA_TAG_SERVICE_NODE_WINNER);
}
//---------------------------------------------------------------
bool get_service_node_state_change_from_tx_extra(const std::vector<uint8_t>& tx_extra, tx_extra_service_node_state_change &state_change, const uint8_t hf_version)
{
std::vector<tx_extra_field> tx_extra_fields;
parse_tx_extra(tx_extra, tx_extra_fields);
if (hf_version >= cryptonote::network_version_12_checkpointing) {
// Look for a new-style state change field:
if (find_tx_extra_field_by_type(tx_extra_fields, state_change))
return true;
}
else { // v11 or earlier; parse the old style and copy into a new style
tx_extra_service_node_deregister_old dereg;
if (find_tx_extra_field_by_type(tx_extra_fields, dereg))
{
state_change = tx_extra_service_node_state_change{
service_nodes::new_state::deregister, dereg.block_height, dereg.service_node_index, dereg.votes.begin(), dereg.votes.end()};
return true;
}
}
return false;
}
//---------------------------------------------------------------
crypto::public_key get_service_node_winner_from_tx_extra(const std::vector<uint8_t>& tx_extra)
{
// parse
std::vector<tx_extra_field> tx_extra_fields;
parse_tx_extra(tx_extra, tx_extra_fields);
// find corresponding field
tx_extra_service_node_winner winner;
if (!find_tx_extra_field_by_type(tx_extra_fields, winner))
return crypto::null_pkey;
return winner.m_service_node_key;
}
//---------------------------------------------------------------
bool remove_field_from_tx_extra(std::vector<uint8_t>& tx_extra, const std::type_info &type)
{
if (tx_extra.empty())
return true;
std::string extra_str(reinterpret_cast<const char*>(tx_extra.data()), tx_extra.size());
std::istringstream iss(extra_str);
binary_archive<false> ar(iss);
std::ostringstream oss;
binary_archive<true> newar(oss);
bool eof = false;
while (!eof)
{
tx_extra_field field;
bool r = ::do_serialize(ar, field);
CHECK_AND_NO_ASSERT_MES_L1(r, false, "failed to deserialize extra field. extra = " << string_tools::buff_to_hex_nodelimer(std::string(reinterpret_cast<const char*>(tx_extra.data()), tx_extra.size())));
if (field.type() != type)
::do_serialize(newar, field);
std::ios_base::iostate state = iss.rdstate();
eof = (EOF == iss.peek());
iss.clear(state);
}
CHECK_AND_NO_ASSERT_MES_L1(::serialization::check_stream_state(ar), false, "failed to deserialize extra field. extra = " << string_tools::buff_to_hex_nodelimer(std::string(reinterpret_cast<const char*>(tx_extra.data()), tx_extra.size())));
tx_extra.clear();
std::string s = oss.str();
tx_extra.reserve(s.size());
std::copy(s.begin(), s.end(), std::back_inserter(tx_extra));
return true;
}
//---------------------------------------------------------------
void set_payment_id_to_tx_extra_nonce(blobdata& extra_nonce, const crypto::hash& payment_id)
{
extra_nonce.clear();
extra_nonce.push_back(TX_EXTRA_NONCE_PAYMENT_ID);
const uint8_t* payment_id_ptr = reinterpret_cast<const uint8_t*>(&payment_id);
std::copy(payment_id_ptr, payment_id_ptr + sizeof(payment_id), std::back_inserter(extra_nonce));
}
//---------------------------------------------------------------
void set_encrypted_payment_id_to_tx_extra_nonce(blobdata& extra_nonce, const crypto::hash8& payment_id)
{
extra_nonce.clear();
extra_nonce.push_back(TX_EXTRA_NONCE_ENCRYPTED_PAYMENT_ID);
const uint8_t* payment_id_ptr = reinterpret_cast<const uint8_t*>(&payment_id);
std::copy(payment_id_ptr, payment_id_ptr + sizeof(payment_id), std::back_inserter(extra_nonce));
}
//---------------------------------------------------------------
bool get_payment_id_from_tx_extra_nonce(const blobdata& extra_nonce, crypto::hash& payment_id)
{
if(sizeof(crypto::hash) + 1 != extra_nonce.size())
return false;
if(TX_EXTRA_NONCE_PAYMENT_ID != extra_nonce[0])
return false;
payment_id = *reinterpret_cast<const crypto::hash*>(extra_nonce.data() + 1);
return true;
}
//---------------------------------------------------------------
bool get_encrypted_payment_id_from_tx_extra_nonce(const blobdata& extra_nonce, crypto::hash8& payment_id)
{
if(sizeof(crypto::hash8) + 1 != extra_nonce.size())
return false;
if (TX_EXTRA_NONCE_ENCRYPTED_PAYMENT_ID != extra_nonce[0])
return false;
payment_id = *reinterpret_cast<const crypto::hash8*>(extra_nonce.data() + 1);
return true;
}
//---------------------------------------------------------------
bool get_inputs_money_amount(const transaction& tx, uint64_t& money)
{
money = 0;
for(const auto& in: tx.vin)
{
CHECKED_GET_SPECIFIC_VARIANT(in, const txin_to_key, tokey_in, false);
money += tokey_in.amount;
}
return true;
}
//---------------------------------------------------------------
uint64_t get_block_height(const block& b)
{
CHECK_AND_ASSERT_MES(b.miner_tx.vin.size() == 1, 0, "wrong miner tx in block: " << get_block_hash(b) << ", b.miner_tx.vin.size() != 1");
CHECKED_GET_SPECIFIC_VARIANT(b.miner_tx.vin[0], const txin_gen, coinbase_in, 0);
return coinbase_in.height;
}
//---------------------------------------------------------------
bool check_inputs_types_supported(const transaction& tx)
{
for(const auto& in: tx.vin)
{
CHECK_AND_ASSERT_MES(in.type() == typeid(txin_to_key), false, "wrong variant type: "
<< in.type().name() << ", expected " << typeid(txin_to_key).name()
<< ", in transaction id=" << get_transaction_hash(tx));
}
return true;
}
//-----------------------------------------------------------------------------------------------
bool check_outs_valid(const transaction& tx)
{
if (tx.type != txtype::standard)
{
CHECK_AND_NO_ASSERT_MES(tx.vout.size() == 0, false, "tx type: " << tx.type << " must have 0 outputs, received: " << tx.vout.size() << ", id=" << get_transaction_hash(tx));
}
if (tx.version >= txversion::v3_per_output_unlock_times)
{
CHECK_AND_NO_ASSERT_MES(tx.vout.size() == tx.output_unlock_times.size(), false, "tx version 3 must have equal number of output unlock times and outputs");
}
for(const tx_out& out: tx.vout)
{
CHECK_AND_ASSERT_MES(out.target.type() == typeid(txout_to_key), false, "wrong variant type: "
<< out.target.type().name() << ", expected " << typeid(txout_to_key).name()
<< ", in transaction id=" << get_transaction_hash(tx));
if (tx.version == txversion::v1)
{
CHECK_AND_NO_ASSERT_MES(0 < out.amount, false, "zero amount output in transaction id=" << get_transaction_hash(tx));
}
if(!check_key(boost::get<txout_to_key>(out.target).key))
return false;
}
return true;
}
//-----------------------------------------------------------------------------------------------
bool check_money_overflow(const transaction& tx)
{
return check_inputs_overflow(tx) && check_outs_overflow(tx);
}
//---------------------------------------------------------------
bool check_inputs_overflow(const transaction& tx)
{
uint64_t money = 0;
for(const auto& in: tx.vin)
{
CHECKED_GET_SPECIFIC_VARIANT(in, const txin_to_key, tokey_in, false);
if(money > tokey_in.amount + money)
return false;
money += tokey_in.amount;
}
return true;
}
//---------------------------------------------------------------
bool check_outs_overflow(const transaction& tx)
{
uint64_t money = 0;
for(const auto& o: tx.vout)
{
if(money > o.amount + money)
return false;
money += o.amount;
}
return true;
}
//---------------------------------------------------------------
uint64_t get_outs_money_amount(const transaction& tx)
{
uint64_t outputs_amount = 0;
for(const auto& o: tx.vout)
outputs_amount += o.amount;
return outputs_amount;
}
//---------------------------------------------------------------
std::string short_hash_str(const crypto::hash& h)
{
std::string res = string_tools::pod_to_hex(h);
CHECK_AND_ASSERT_MES(res.size() == 64, res, "wrong hash256 with string_tools::pod_to_hex conversion");
auto erased_pos = res.erase(8, 48);
res.insert(8, "....");
return res;
}
//---------------------------------------------------------------
bool is_out_to_acc(const account_keys& acc, const txout_to_key& out_key, const crypto::public_key& tx_pub_key, const std::vector<crypto::public_key>& additional_tx_pub_keys, size_t output_index)
{
crypto::key_derivation derivation;
bool r = acc.get_device().generate_key_derivation(tx_pub_key, acc.m_view_secret_key, derivation);
CHECK_AND_ASSERT_MES(r, false, "Failed to generate key derivation");
crypto::public_key pk;
r = acc.get_device().derive_public_key(derivation, output_index, acc.m_account_address.m_spend_public_key, pk);
CHECK_AND_ASSERT_MES(r, false, "Failed to derive public key");
if (pk == out_key.key)
return true;
// try additional tx pubkeys if available
if (!additional_tx_pub_keys.empty())
{
CHECK_AND_ASSERT_MES(output_index < additional_tx_pub_keys.size(), false, "wrong number of additional tx pubkeys");
r = acc.get_device().generate_key_derivation(additional_tx_pub_keys[output_index], acc.m_view_secret_key, derivation);
CHECK_AND_ASSERT_MES(r, false, "Failed to generate key derivation");
r = acc.get_device().derive_public_key(derivation, output_index, acc.m_account_address.m_spend_public_key, pk);
CHECK_AND_ASSERT_MES(r, false, "Failed to derive public key");
return pk == out_key.key;
}
return false;
}
//---------------------------------------------------------------
boost::optional<subaddress_receive_info> is_out_to_acc_precomp(const std::unordered_map<crypto::public_key, subaddress_index>& subaddresses, const crypto::public_key& out_key, const crypto::key_derivation& derivation, const std::vector<crypto::key_derivation>& additional_derivations, size_t output_index, hw::device &hwdev)
{
// try the shared tx pubkey
crypto::public_key subaddress_spendkey;
hwdev.derive_subaddress_public_key(out_key, derivation, output_index, subaddress_spendkey);
auto found = subaddresses.find(subaddress_spendkey);
if (found != subaddresses.end())
return subaddress_receive_info{ found->second, derivation };
// try additional tx pubkeys if available
if (!additional_derivations.empty())
{
CHECK_AND_ASSERT_MES(output_index < additional_derivations.size(), boost::none, "wrong number of additional derivations");
hwdev.derive_subaddress_public_key(out_key, additional_derivations[output_index], output_index, subaddress_spendkey);
found = subaddresses.find(subaddress_spendkey);
if (found != subaddresses.end())
return subaddress_receive_info{ found->second, additional_derivations[output_index] };
}
return boost::none;
}
//---------------------------------------------------------------
bool lookup_acc_outs(const account_keys& acc, const transaction& tx, std::vector<size_t>& outs, uint64_t& money_transfered)
{
crypto::public_key tx_pub_key = get_tx_pub_key_from_extra(tx);
if(null_pkey == tx_pub_key)
return false;
std::vector<crypto::public_key> additional_tx_pub_keys = get_additional_tx_pub_keys_from_extra(tx);
return lookup_acc_outs(acc, tx, tx_pub_key, additional_tx_pub_keys, outs, money_transfered);
}
//---------------------------------------------------------------
bool lookup_acc_outs(const account_keys& acc, const transaction& tx, const crypto::public_key& tx_pub_key, const std::vector<crypto::public_key>& additional_tx_pub_keys, std::vector<size_t>& outs, uint64_t& money_transfered)
{
CHECK_AND_ASSERT_MES(additional_tx_pub_keys.empty() || additional_tx_pub_keys.size() == tx.vout.size(), false, "wrong number of additional pubkeys" );
money_transfered = 0;
size_t i = 0;
for(const tx_out& o: tx.vout)
{
CHECK_AND_ASSERT_MES(o.target.type() == typeid(txout_to_key), false, "wrong type id in transaction out" );
if(is_out_to_acc(acc, boost::get<txout_to_key>(o.target), tx_pub_key, additional_tx_pub_keys, i))
{
outs.push_back(i);
money_transfered += o.amount;
}
i++;
}
return true;
}
//---------------------------------------------------------------
void get_blob_hash(const epee::span<const char>& blob, crypto::hash& res)
{
cn_fast_hash(blob.data(), blob.size(), res);
}
//---------------------------------------------------------------
void get_blob_hash(const blobdata& blob, crypto::hash& res)
{
cn_fast_hash(blob.data(), blob.size(), res);
}
//---------------------------------------------------------------
void set_default_decimal_point(unsigned int decimal_point)
{
switch (decimal_point)
{
case 9:
case 6:
case 3:
case 0:
default_decimal_point = decimal_point;
break;
default:
ASSERT_MES_AND_THROW("Invalid decimal point specification: " << decimal_point);
}
}
//---------------------------------------------------------------
unsigned int get_default_decimal_point()
{
return default_decimal_point;
}
//---------------------------------------------------------------
std::string get_unit(unsigned int decimal_point)
{
if (decimal_point == (unsigned int)-1)
decimal_point = default_decimal_point;
switch (decimal_point)
{
case 9:
return "loki";
case 6:
return "megarok";
case 3:
return "kilorok";
case 0:
return "rok";
default:
ASSERT_MES_AND_THROW("Invalid decimal point specification: " << decimal_point);
}
}
//---------------------------------------------------------------
std::string print_money(uint64_t amount, unsigned int decimal_point)
{
if (decimal_point == (unsigned int)-1)
decimal_point = default_decimal_point;
std::string s = std::to_string(amount);
if(s.size() < decimal_point+1)
{
s.insert(0, decimal_point+1 - s.size(), '0');
}
if (decimal_point > 0)
s.insert(s.size() - decimal_point, ".");
return s;
}
//---------------------------------------------------------------
char const *print_tx_verification_context(tx_verification_context const &tvc, transaction const *tx)
{
static char buf[2048];
buf[0] = 0;
char *bufPtr = buf;
char *bufEnd = buf + sizeof(buf);
if (tvc.m_verifivation_failed) bufPtr += snprintf(bufPtr, bufEnd - bufPtr, "Verification failed, connection should be dropped, "); //bad tx, should drop connection
if (tvc.m_verifivation_impossible) bufPtr += snprintf(bufPtr, bufEnd - bufPtr, "Verification impossible, related to alt chain, "); //the transaction is related with an alternative blockchain
if (tvc.m_should_be_relayed) bufPtr += snprintf(bufPtr, bufEnd - bufPtr, "TX should be relayed, ");
if (tvc.m_added_to_pool) bufPtr += snprintf(bufPtr, bufEnd - bufPtr, "TX added to pool, ");
if (tvc.m_low_mixin) bufPtr += snprintf(bufPtr, bufEnd - bufPtr, "Insufficient mixin, ");
if (tvc.m_double_spend) bufPtr += snprintf(bufPtr, bufEnd - bufPtr, "Double spend TX, ");
if (tvc.m_invalid_input) bufPtr += snprintf(bufPtr, bufEnd - bufPtr, "Invalid inputs, ");
if (tvc.m_invalid_output) bufPtr += snprintf(bufPtr, bufEnd - bufPtr, "Invalid outputs, ");
if (tvc.m_too_big) bufPtr += snprintf(bufPtr, bufEnd - bufPtr, "TX too big, ");
if (tvc.m_overspend) bufPtr += snprintf(bufPtr, bufEnd - bufPtr, "Overspend, ");
if (tvc.m_fee_too_low) bufPtr += snprintf(bufPtr, bufEnd - bufPtr, "Fee too low, ");
if (tvc.m_not_rct) bufPtr += snprintf(bufPtr, bufEnd - bufPtr, "TX is not a valid RCT TX., ");
if (tvc.m_invalid_version) bufPtr += snprintf(bufPtr, bufEnd - bufPtr, "TX has invalid version, ");
if (tvc.m_invalid_type) bufPtr += snprintf(bufPtr, bufEnd - bufPtr, "TX has invalid type, ");
if (tvc.m_key_image_locked_by_snode) bufPtr += snprintf(bufPtr, bufEnd - bufPtr, "Key image is locked by service node, ");
if (tvc.m_key_image_blacklisted) bufPtr += snprintf(bufPtr, bufEnd - bufPtr, "Key image is blacklisted on the service node network, ");
if (tx)
{
bufPtr += snprintf(bufPtr, bufEnd - bufPtr, "TX Version: %d", static_cast<uint16_t>(tx->version));
bufPtr += snprintf(bufPtr, bufEnd - bufPtr, " Type: %s", transaction::type_to_string(tx->type));
}
if (bufPtr != buf)
{
char *last_comma = bufPtr - 2;
if (last_comma[0] == ',') last_comma[0] = 0;
}
return buf;
}
//---------------------------------------------------------------
char const *print_vote_verification_context(vote_verification_context const &vvc, service_nodes::quorum_vote_t const *vote)
{
static char buf[2048];
buf[0] = 0;
char *bufPtr = buf;
char *bufEnd = buf + sizeof(buf);
if (vvc.m_invalid_block_height) bufPtr += snprintf(bufPtr, bufEnd - bufPtr, "Invalid block height: %s, ", vote ? std::to_string(vote->block_height).c_str() : "??");
if (vvc.m_duplicate_voters) bufPtr += snprintf(bufPtr, bufEnd - bufPtr, "Index in group was duplicated: %s, ", vote ? std::to_string(vote->index_in_group).c_str() : "??");
if (vvc.m_validator_index_out_of_bounds) bufPtr += snprintf(bufPtr, bufEnd - bufPtr, "Validator index out of bounds");
if (vvc.m_worker_index_out_of_bounds) bufPtr += snprintf(bufPtr, bufEnd - bufPtr, "Worker index out of bounds: %s, ", vote ? std::to_string(vote->state_change.worker_index).c_str() : "??");
if (vvc.m_signature_not_valid) bufPtr += snprintf(bufPtr, bufEnd - bufPtr, "Signature not valid, ");
if (vvc.m_added_to_pool) bufPtr += snprintf(bufPtr, bufEnd - bufPtr, "Added to pool, ");
if (vvc.m_not_enough_votes) bufPtr += snprintf(bufPtr, bufEnd - bufPtr, "Not enough votes, ");
if (vvc.m_incorrect_voting_group)
{
bufPtr += snprintf(bufPtr, bufEnd - bufPtr, "Incorrect voting group specified");
if (vote)
bufPtr += snprintf(bufPtr, bufEnd - bufPtr, ": %s", (vote->group == service_nodes::quorum_group::validator) ? "validator" : "worker");
bufPtr += snprintf(bufPtr, bufEnd - bufPtr, ", ");
}
if (bufPtr != buf)
{
char *last_comma = bufPtr - 2;
if (last_comma[0] == ',') last_comma[0] = 0;
}
return buf;
}
//---------------------------------------------------------------
crypto::hash get_blob_hash(const blobdata& blob)
{
crypto::hash h = null_hash;
get_blob_hash(blob, h);
return h;
}
//---------------------------------------------------------------
crypto::hash get_blob_hash(const epee::span<const char>& blob)
{
crypto::hash h = null_hash;
get_blob_hash(blob, h);
return h;
}
//---------------------------------------------------------------
crypto::hash get_transaction_hash(const transaction& t)
{
crypto::hash h = null_hash;
get_transaction_hash(t, h, NULL);
return h;
}
//---------------------------------------------------------------
bool get_transaction_hash(const transaction& t, crypto::hash& res)
{
return get_transaction_hash(t, res, NULL);
}
//---------------------------------------------------------------
bool calculate_transaction_prunable_hash(const transaction& t, const cryptonote::blobdata *blob, crypto::hash& res)
{
if (t.version == txversion::v1)
return false;
const unsigned int unprunable_size = t.unprunable_size;
if (blob && unprunable_size)
{
CHECK_AND_ASSERT_MES(unprunable_size <= blob->size(), false, "Inconsistent transaction unprunable and blob sizes");
cryptonote::get_blob_hash(epee::span<const char>(blob->data() + unprunable_size, blob->size() - unprunable_size), res);
}
else
{
transaction &tt = const_cast<transaction&>(t);
std::stringstream ss;
binary_archive<true> ba(ss);
const size_t inputs = t.vin.size();
const size_t outputs = t.vout.size();
const size_t mixin = t.vin.empty() ? 0 : t.vin[0].type() == typeid(txin_to_key) ? boost::get<txin_to_key>(t.vin[0]).key_offsets.size() - 1 : 0;
bool r = tt.rct_signatures.p.serialize_rctsig_prunable(ba, t.rct_signatures.type, inputs, outputs, mixin);
CHECK_AND_ASSERT_MES(r, false, "Failed to serialize rct signatures prunable");
cryptonote::get_blob_hash(ss.str(), res);
}
return true;
}
//---------------------------------------------------------------
crypto::hash get_transaction_prunable_hash(const transaction& t, const cryptonote::blobdata *blobdata)
{
crypto::hash res;
CHECK_AND_ASSERT_THROW_MES(calculate_transaction_prunable_hash(t, blobdata, res), "Failed to calculate tx prunable hash");
return res;
}
//---------------------------------------------------------------
crypto::hash get_pruned_transaction_hash(const transaction& t, const crypto::hash &pruned_data_hash)
{
// v1 transactions hash the entire blob
CHECK_AND_ASSERT_THROW_MES(t.version >= txversion::v2_ringct, "Hash for pruned v1 tx cannot be calculated");
// v2 transactions hash different parts together, than hash the set of those hashes
crypto::hash hashes[3];
// prefix
get_transaction_prefix_hash(t, hashes[0]);
transaction &tt = const_cast<transaction&>(t);
// base rct
{
std::stringstream ss;
binary_archive<true> ba(ss);
const size_t inputs = t.vin.size();
const size_t outputs = t.vout.size();
bool r = tt.rct_signatures.serialize_rctsig_base(ba, inputs, outputs);
CHECK_AND_ASSERT_THROW_MES(r, "Failed to serialize rct signatures base");
cryptonote::get_blob_hash(ss.str(), hashes[1]);
}
// prunable rct
if (t.rct_signatures.type == rct::RCTTypeNull)
hashes[2] = crypto::null_hash;
else
hashes[2] = pruned_data_hash;
// the tx hash is the hash of the 3 hashes
crypto::hash res = cn_fast_hash(hashes, sizeof(hashes));
return res;
}
//---------------------------------------------------------------
bool calculate_transaction_hash(const transaction& t, crypto::hash& res, size_t* blob_size)
{
// v1 transactions hash the entire blob
if (t.version == txversion::v1)
{
size_t ignored_blob_size, &blob_size_ref = blob_size ? *blob_size : ignored_blob_size;
return get_object_hash(t, res, blob_size_ref);
}
// v2 transactions hash different parts together, than hash the set of those hashes
crypto::hash hashes[3];
// prefix
get_transaction_prefix_hash(t, hashes[0]);
const blobdata blob = tx_to_blob(t);
// TODO(loki): Not sure if this is the right fix, we may just want to set
// unprunable size to the size of the prefix because technically that is
// what it is and then keep this code path.
if (t.type == txtype::standard)
{
const unsigned int unprunable_size = t.unprunable_size;
const unsigned int prefix_size = t.prefix_size;
// base rct
CHECK_AND_ASSERT_MES(prefix_size <= unprunable_size && unprunable_size <= blob.size(), false, "Inconsistent transaction prefix, unprunable and blob sizes");
cryptonote::get_blob_hash(epee::span<const char>(blob.data() + prefix_size, unprunable_size - prefix_size), hashes[1]);
}
else
{
transaction &tt = const_cast<transaction&>(t);
std::stringstream ss;
binary_archive<true> ba(ss);
bool r = tt.rct_signatures.serialize_rctsig_base(ba, t.vin.size(), t.vout.size());
CHECK_AND_ASSERT_MES(r, false, "Failed to serialize rct signatures base");
cryptonote::get_blob_hash(ss.str(), hashes[1]);
}
// prunable rct
if (t.rct_signatures.type == rct::RCTTypeNull)
{
hashes[2] = crypto::null_hash;
}
else
{
CHECK_AND_ASSERT_MES(calculate_transaction_prunable_hash(t, &blob, hashes[2]), false, "Failed to get tx prunable hash");
}
// the tx hash is the hash of the 3 hashes
res = cn_fast_hash(hashes, sizeof(hashes));
// we still need the size
if (blob_size)
{
if (!t.is_blob_size_valid())
{
t.blob_size = blob.size();
t.set_blob_size_valid(true);
}
*blob_size = t.blob_size;
}
return true;
}
//---------------------------------------------------------------
bool get_registration_hash(const std::vector<cryptonote::account_public_address>& addresses, uint64_t operator_portions, const std::vector<uint64_t>& portions, uint64_t expiration_timestamp, crypto::hash& hash)
{
if (addresses.size() != portions.size())
{
LOG_ERROR("get_registration_hash addresses.size() != portions.size()");
return false;
}
uint64_t portions_left = STAKING_PORTIONS;
for (uint64_t portion : portions)
{
if (portion > portions_left)
{
LOG_ERROR(tr("Your registration has more than ") << STAKING_PORTIONS << tr(" portions, this registration is invalid!"));
return false;
}
portions_left -= portion;
}
size_t size = addresses.size() * (sizeof(cryptonote::account_public_address) + sizeof(uint64_t)) + sizeof(uint64_t) + sizeof(uint64_t);
char* buffer = new char[size];
char* buffer_iter = buffer;
memcpy(buffer_iter, &operator_portions, sizeof(operator_portions));
buffer_iter += sizeof(operator_portions);
for (size_t i = 0; i < addresses.size(); i++)
{
memcpy(buffer_iter, &addresses[i], sizeof(cryptonote::account_public_address));
buffer_iter += sizeof(cryptonote::account_public_address);
memcpy(buffer_iter, &portions[i], sizeof(uint64_t));
buffer_iter += sizeof(uint64_t);
}
memcpy(buffer_iter, &expiration_timestamp, sizeof(expiration_timestamp));
buffer_iter += sizeof(expiration_timestamp);
assert(buffer + size == buffer_iter);
crypto::cn_fast_hash(buffer, size, hash);
delete[] buffer;
return true;
}
//---------------------------------------------------------------
bool get_transaction_hash(const transaction& t, crypto::hash& res, size_t* blob_size)
{
if (t.is_hash_valid())
{
#ifdef ENABLE_HASH_CASH_INTEGRITY_CHECK
CHECK_AND_ASSERT_THROW_MES(!calculate_transaction_hash(t, res, blob_size) || t.hash == res, "tx hash cash integrity failure");
#endif
res = t.hash;
if (blob_size)
{
if (!t.is_blob_size_valid())
{
t.blob_size = get_object_blobsize(t);
t.set_blob_size_valid(true);
}
*blob_size = t.blob_size;
}
++tx_hashes_cached_count;
return true;
}
++tx_hashes_calculated_count;
bool ret = calculate_transaction_hash(t, res, blob_size);
if (!ret)
return false;
t.hash = res;
t.set_hash_valid(true);
if (blob_size)
{
t.blob_size = *blob_size;
t.set_blob_size_valid(true);
}
return true;
}
//---------------------------------------------------------------
bool get_transaction_hash(const transaction& t, crypto::hash& res, size_t& blob_size)
{
return get_transaction_hash(t, res, &blob_size);
}
//---------------------------------------------------------------
blobdata get_block_hashing_blob(const block& b)
{
blobdata blob = t_serializable_object_to_blob(static_cast<block_header>(b));
crypto::hash tree_root_hash = get_tx_tree_hash(b);
blob.append(reinterpret_cast<const char*>(&tree_root_hash), sizeof(tree_root_hash));
blob.append(tools::get_varint_data(b.tx_hashes.size()+1));
return blob;
}
//---------------------------------------------------------------
bool calculate_block_hash(const block& b, crypto::hash& res, const blobdata *blob)
{
blobdata bd;
if (!blob)
{
bd = block_to_blob(b);
blob = &bd;
}
bool hash_result = get_object_hash(get_block_hashing_blob(b), res);
return hash_result;
}
//---------------------------------------------------------------
bool get_block_hash(const block& b, crypto::hash& res)
{
if (b.is_hash_valid())
{
#ifdef ENABLE_HASH_CASH_INTEGRITY_CHECK
CHECK_AND_ASSERT_THROW_MES(!calculate_block_hash(b, res) || b.hash == res, "block hash cash integrity failure");
#endif
res = b.hash;
++block_hashes_cached_count;
return true;
}
++block_hashes_calculated_count;
bool ret = calculate_block_hash(b, res);
if (!ret)
return false;
b.hash = res;
b.set_hash_valid(true);
return true;
}
//---------------------------------------------------------------
crypto::hash get_block_hash(const block& b)
{
crypto::hash p = null_hash;
get_block_hash(b, p);
return p;
}
//---------------------------------------------------------------
bool get_block_longhash(const block& b, crypto::hash& res, uint64_t height)
{
const blobdata bd = get_block_hashing_blob(b);
const int hf_version = b.major_version;
crypto::cn_slow_hash_type cn_type = cn_slow_hash_type::heavy_v1;
if (hf_version >= network_version_11_infinite_staking)
cn_type = cn_slow_hash_type::turtle_lite_v2;
else if (hf_version >= network_version_7)
cn_type = crypto::cn_slow_hash_type::heavy_v2;
crypto::cn_slow_hash(bd.data(), bd.size(), res, cn_type);
return true;
}
//---------------------------------------------------------------
std::vector<uint64_t> relative_output_offsets_to_absolute(const std::vector<uint64_t>& off)
{
std::vector<uint64_t> res = off;
for(size_t i = 1; i < res.size(); i++)
res[i] += res[i-1];
return res;
}
//---------------------------------------------------------------
std::vector<uint64_t> absolute_output_offsets_to_relative(const std::vector<uint64_t>& off)
{
std::vector<uint64_t> res = off;
if(!off.size())
return res;
std::sort(res.begin(), res.end());//just to be sure, actually it is already should be sorted
for(size_t i = res.size()-1; i != 0; i--)
res[i] -= res[i-1];
return res;
}
//---------------------------------------------------------------
crypto::hash get_block_longhash(const block& b, uint64_t height)
{
crypto::hash p = null_hash;
get_block_longhash(b, p, height);
return p;
}
//---------------------------------------------------------------
bool parse_and_validate_block_from_blob(const blobdata& b_blob, block& b, crypto::hash *block_hash)
{
std::stringstream ss;
ss << b_blob;
binary_archive<false> ba(ss);
bool r = ::serialization::serialize(ba, b);
CHECK_AND_ASSERT_MES(r, false, "Failed to parse block from blob");
b.invalidate_hashes();
b.miner_tx.invalidate_hashes();
if (block_hash)
{
calculate_block_hash(b, *block_hash, &b_blob);
++block_hashes_calculated_count;
b.hash = *block_hash;
b.set_hash_valid(true);
}
return true;
}
//---------------------------------------------------------------
bool parse_and_validate_block_from_blob(const blobdata& b_blob, block& b)
{
return parse_and_validate_block_from_blob(b_blob, b, NULL);
}
//---------------------------------------------------------------
bool parse_and_validate_block_from_blob(const blobdata& b_blob, block& b, crypto::hash &block_hash)
{
return parse_and_validate_block_from_blob(b_blob, b, &block_hash);
}
//---------------------------------------------------------------
blobdata block_to_blob(const block& b)
{
return t_serializable_object_to_blob(b);
}
//---------------------------------------------------------------
bool block_to_blob(const block& b, blobdata& b_blob)
{
return t_serializable_object_to_blob(b, b_blob);
}
//---------------------------------------------------------------
blobdata tx_to_blob(const transaction& tx)
{
return t_serializable_object_to_blob(tx);
}
//---------------------------------------------------------------
bool tx_to_blob(const transaction& tx, blobdata& b_blob)
{
return t_serializable_object_to_blob(tx, b_blob);
}
//---------------------------------------------------------------
void get_tx_tree_hash(const std::vector<crypto::hash>& tx_hashes, crypto::hash& h)
{
tree_hash(tx_hashes.data(), tx_hashes.size(), h);
}
//---------------------------------------------------------------
crypto::hash get_tx_tree_hash(const std::vector<crypto::hash>& tx_hashes)
{
crypto::hash h = null_hash;
get_tx_tree_hash(tx_hashes, h);
return h;
}
//---------------------------------------------------------------
crypto::hash get_tx_tree_hash(const block& b)
{
std::vector<crypto::hash> txs_ids;
txs_ids.reserve(1 + b.tx_hashes.size());
crypto::hash h = null_hash;
size_t bl_sz = 0;
get_transaction_hash(b.miner_tx, h, bl_sz);
txs_ids.push_back(h);
for(auto& th: b.tx_hashes)
txs_ids.push_back(th);
return get_tx_tree_hash(txs_ids);
}
//---------------------------------------------------------------
bool is_valid_decomposed_amount(uint64_t amount)
{
const uint64_t *begin = valid_decomposed_outputs;
const uint64_t *end = valid_decomposed_outputs + sizeof(valid_decomposed_outputs) / sizeof(valid_decomposed_outputs[0]);
return std::binary_search(begin, end, amount);
}
//---------------------------------------------------------------
void get_hash_stats(uint64_t &tx_hashes_calculated, uint64_t &tx_hashes_cached, uint64_t &block_hashes_calculated, uint64_t & block_hashes_cached)
{
tx_hashes_calculated = tx_hashes_calculated_count;
tx_hashes_cached = tx_hashes_cached_count;
block_hashes_calculated = block_hashes_calculated_count;
block_hashes_cached = block_hashes_cached_count;
}
//---------------------------------------------------------------
crypto::secret_key encrypt_key(crypto::secret_key key, const epee::wipeable_string &passphrase)
{
crypto::hash hash;
crypto::cn_slow_hash(passphrase.data(), passphrase.size(), hash, crypto::cn_slow_hash_type::heavy_v1);
sc_add((unsigned char*)key.data, (const unsigned char*)key.data, (const unsigned char*)hash.data);
return key;
}
//---------------------------------------------------------------
crypto::secret_key decrypt_key(crypto::secret_key key, const epee::wipeable_string &passphrase)
{
crypto::hash hash;
crypto::cn_slow_hash(passphrase.data(), passphrase.size(), hash, crypto::cn_slow_hash_type::heavy_v1);
sc_sub((unsigned char*)key.data, (const unsigned char*)key.data, (const unsigned char*)hash.data);
return key;
}
}