oxen-core/src/cryptonote_core/tx_pool.cpp

2037 lines
78 KiB
C++

// Copyright (c) 2014-2019, The Monero Project
// Copyright (c) 2018, The Loki Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
#include <algorithm>
#include <unordered_set>
#include <vector>
#include "tx_pool.h"
#include "cryptonote_tx_utils.h"
#include "cryptonote_basic/cryptonote_boost_serialization.h"
#include "cryptonote_core/service_node_list.h"
#include "cryptonote_config.h"
#include "blockchain.h"
#include "blockchain_db/locked_txn.h"
#include "blockchain_db/blockchain_db.h"
#include "common/boost_serialization_helper.h"
#include "common/lock.h"
#include "common/hex.h"
#include "common/median.h"
#include "epee/int-util.h"
#include "epee/warnings.h"
#include "common/perf_timer.h"
#include "crypto/hash.h"
#undef OXEN_DEFAULT_LOG_CATEGORY
#define OXEN_DEFAULT_LOG_CATEGORY "txpool"
DISABLE_VS_WARNINGS(4244 4345 4503) //'boost::foreach_detail_::or_' : decorated name length exceeded, name was truncated
using namespace crypto;
namespace cryptonote
{
namespace
{
//TODO: constants such as these should at least be in the header,
// but probably somewhere more accessible to the rest of the
// codebase. As it stands, it is at best nontrivial to test
// whether or not changing these parameters (or adding new)
// will work correctly.
time_t const MIN_RELAY_TIME = (60 * 5); // only start re-relaying transactions after that many seconds
time_t const MAX_RELAY_TIME = (60 * 60 * 4); // at most that many seconds between resends
float const ACCEPT_THRESHOLD = 1.0f;
// a kind of increasing backoff within min/max bounds
uint64_t get_relay_delay(time_t now, time_t received)
{
time_t d = (now - received + MIN_RELAY_TIME) / MIN_RELAY_TIME * MIN_RELAY_TIME;
if (d > MAX_RELAY_TIME)
d = MAX_RELAY_TIME;
return d;
}
uint64_t get_transaction_weight_limit(uint8_t version)
{
// from v10, bulletproofs, limit a tx to 50% of the minimum block weight
if (version >= network_version_10_bulletproofs)
return get_min_block_weight(version) / 2 - CRYPTONOTE_COINBASE_BLOB_RESERVED_SIZE;
else
return get_min_block_weight(version) - CRYPTONOTE_COINBASE_BLOB_RESERVED_SIZE;
}
}
//---------------------------------------------------------------------------------
// warning: bchs is passed here uninitialized, so don't do anything but store it
tx_memory_pool::tx_memory_pool(Blockchain& bchs): m_blockchain(bchs), m_txpool_max_weight(DEFAULT_TXPOOL_MAX_WEIGHT), m_txpool_weight(0), m_cookie(0)
{
}
//---------------------------------------------------------------------------------
bool tx_memory_pool::have_duplicated_non_standard_tx(transaction const &tx, uint8_t hard_fork_version) const
{
auto &service_node_list = m_blockchain.get_service_node_list();
if (tx.type == txtype::state_change)
{
tx_extra_service_node_state_change state_change;
if (!get_service_node_state_change_from_tx_extra(tx.extra, state_change, hard_fork_version))
{
MERROR("Could not get service node state change from tx: " << get_transaction_hash(tx) << ", possibly corrupt tx in your blockchain, rejecting malformed state change");
return false;
}
crypto::public_key service_node_to_change;
auto const quorum_type = service_nodes::quorum_type::obligations;
auto const quorum_group = service_nodes::quorum_group::worker;
// NOTE: We can fail to resolve a public key if we are popping blocks greater than the number of quorums we store.
bool const can_resolve_quorum_pubkey = service_node_list.get_quorum_pubkey(quorum_type,
quorum_group,
state_change.block_height,
state_change.service_node_index,
service_node_to_change);
std::vector<transaction> pool_txs;
get_transactions(pool_txs);
for (const transaction& pool_tx : pool_txs)
{
if (pool_tx.type != txtype::state_change)
continue;
tx_extra_service_node_state_change pool_tx_state_change;
if (!get_service_node_state_change_from_tx_extra(pool_tx.extra, pool_tx_state_change, hard_fork_version))
{
LOG_PRINT_L1("Could not get service node state change from tx: " << get_transaction_hash(pool_tx) << ", possibly corrupt tx in the pool");
continue;
}
if (hard_fork_version >= cryptonote::network_version_12_checkpointing)
{
crypto::public_key service_node_to_change_in_the_pool;
bool same_service_node = false;
if (can_resolve_quorum_pubkey && service_node_list.get_quorum_pubkey(quorum_type, quorum_group, pool_tx_state_change.block_height, pool_tx_state_change.service_node_index, service_node_to_change_in_the_pool))
{
same_service_node = (service_node_to_change == service_node_to_change_in_the_pool);
}
else
{
same_service_node = (state_change == pool_tx_state_change);
}
if (same_service_node && pool_tx_state_change.state == state_change.state)
return true;
}
else
{
if (state_change == pool_tx_state_change)
return true;
}
}
}
else if (tx.type == txtype::key_image_unlock)
{
tx_extra_tx_key_image_unlock unlock;
if (!cryptonote::get_field_from_tx_extra(tx.extra, unlock))
{
MERROR("Could not get key image unlock from tx: " << get_transaction_hash(tx) << ", tx to add is possibly invalid, rejecting");
return true;
}
std::vector<transaction> pool_txs;
get_transactions(pool_txs);
for (const transaction& pool_tx : pool_txs)
{
if (pool_tx.type != tx.type)
continue;
tx_extra_tx_key_image_unlock pool_unlock;
if (!cryptonote::get_field_from_tx_extra(pool_tx.extra, pool_unlock))
{
LOG_PRINT_L1("Could not get key image unlock from tx: " << get_transaction_hash(tx) << ", possibly corrupt tx in the pool");
return true;
}
if (unlock == pool_unlock)
{
LOG_PRINT_L1("New TX: " << get_transaction_hash(tx) << ", has TX: " << get_transaction_hash(pool_tx) << " from the pool that is requesting to unlock the same key image already.");
return true;
}
}
}
else if (tx.type == txtype::oxen_name_system)
{
tx_extra_oxen_name_system data;
if (!cryptonote::get_field_from_tx_extra(tx.extra, data))
{
MERROR("Could not get acquire name service from tx: " << get_transaction_hash(tx) << ", tx to add is possibly invalid, rejecting");
return true;
}
std::vector<transaction> pool_txs;
get_transactions(pool_txs);
for (const transaction& pool_tx : pool_txs)
{
if (pool_tx.type != tx.type)
continue;
tx_extra_oxen_name_system pool_data;
if (!cryptonote::get_field_from_tx_extra(pool_tx.extra, pool_data))
{
LOG_PRINT_L1("Could not get acquire name service from tx: " << get_transaction_hash(tx) << ", possibly corrupt tx in the pool");
return true;
}
if (data.type == pool_data.type && data.name_hash == pool_data.name_hash)
{
LOG_PRINT_L1("New TX: " << get_transaction_hash(tx) << ", has TX: " << get_transaction_hash(pool_tx) << " from the pool that is requesting the same ONS entry already.");
return true;
}
}
}
else
{
if (tx.type != txtype::standard && tx.type != txtype::stake)
{
// NOTE(oxen): This is a developer error. If we come across this in production, be conservative and just reject
MERROR("Unrecognised transaction type: " << tx.type << " for tx: " << get_transaction_hash(tx));
return true;
}
}
return false;
}
// Blink notes: a blink quorum member adds an incoming blink tx into the mempool to make sure it
// can be accepted, but sets it as do_not_relay initially. If it gets added, the quorum member
// sends a signature to other quorum members. Once enough signatures are received it updates it
// to set `do_not_relay` to false and starts relaying it (other quorum members do the same).
//---------------------------------------------------------------------------------
bool tx_memory_pool::add_tx(transaction &tx, const crypto::hash &id, const cryptonote::blobdata &blob, size_t tx_weight, tx_verification_context& tvc, const tx_pool_options &opts, uint8_t hf_version,
uint64_t *blink_rollback_height)
{
// this should already be called with that lock, but let's make it explicit for clarity
std::unique_lock lock{m_transactions_lock};
PERF_TIMER(add_tx);
if (tx.version == txversion::v0)
{
// v0 never accepted
LOG_PRINT_L1("transaction version 0 is invalid");
tvc.m_verifivation_failed = true;
return false;
}
// we do not accept transactions that timed out before, unless they're
// kept_by_block
if (!opts.kept_by_block && m_timed_out_transactions.find(id) != m_timed_out_transactions.end())
{
// not clear if we should set that, since verifivation (sic) did not fail before, since
// the tx was accepted before timing out.
tvc.m_verifivation_failed = true;
return false;
}
if (!check_inputs_types_supported(tx))
{
tvc.m_verifivation_failed = true;
tvc.m_invalid_input = true;
return false;
}
uint64_t fee, burned;
if (!get_tx_miner_fee(tx, fee, hf_version >= HF_VERSION_FEE_BURNING, &burned))
{
// This code is a bit convoluted: the above sets `fee`, and returns false for a pre-ringct tx
// with a too-low fee, but for ringct (v2+) txes it just sets `fee` but doesn't check it and
// always returns true: the actual v2 tx fee amount gets tested in the check_fee call below
tvc.m_verifivation_failed = true;
tvc.m_fee_too_low = true;
return false;
}
if (hf_version < cryptonote::network_version_19)
{
if (!opts.kept_by_block && tx.is_transfer() && !m_blockchain.check_fee(tx_weight, tx.vout.size(), fee, burned, opts))
{
tvc.m_verifivation_failed = true;
tvc.m_fee_too_low = true;
return false;
}
}
size_t tx_weight_limit = get_transaction_weight_limit(hf_version);
if ((!opts.kept_by_block || hf_version >= HF_VERSION_PER_BYTE_FEE) && tx_weight > tx_weight_limit)
{
LOG_PRINT_L1("transaction is too heavy: " << tx_weight << " bytes, maximum weight: " << tx_weight_limit);
tvc.m_verifivation_failed = true;
tvc.m_too_big = true;
return false;
}
{
std::vector<crypto::hash> conflict_txs;
bool double_spend = have_tx_keyimges_as_spent(tx, &conflict_txs);
if (double_spend)
{
if (opts.kept_by_block)
{
// The tx came from a block popped from the chain; we keep it around even if the key
// images are spent so that we notice the double spend *unless* the tx is conflicting with
// one or more blink txs, in which case we drop it because it can never be accepted.
auto blink_lock = blink_shared_lock();
double_spend = false;
for (const auto &tx_hash : conflict_txs)
{
if (tx_hash != id && m_blinks.count(tx_hash))
{
// Warn on this because it almost certainly indicates something malicious
MWARNING("Not re-adding popped/incoming tx " << id << " to the mempool: it conflicts with blink tx " << tx_hash);
double_spend = true;
break;
}
}
}
else if (opts.approved_blink)
{
MDEBUG("Incoming blink tx is approved, but has " << conflict_txs.size() << " conflicting local tx(es); dropping conflicts");
if (remove_blink_conflicts(id, conflict_txs, blink_rollback_height))
double_spend = false;
else
MERROR("Blink error: incoming blink tx cannot be accepted as it conflicts with checkpointed txs");
}
if (double_spend)
{
mark_double_spend(tx);
LOG_PRINT_L1("Transaction with id= "<< id << " used already spent key images");
tvc.m_verifivation_failed = true;
tvc.m_double_spend = true;
return false;
}
}
}
if (!opts.kept_by_block && have_duplicated_non_standard_tx(tx, hf_version))
{
mark_double_spend(tx);
LOG_PRINT_L1("Transaction with id= "<< id << " already has a duplicate tx for height");
tvc.m_verifivation_failed = true;
tvc.m_double_spend = true;
return false;
}
if (!m_blockchain.check_tx_outputs(tx, tvc))
{
LOG_PRINT_L1("Transaction with id= "<< id << " has at least one invalid output");
tvc.m_verifivation_failed = true;
tvc.m_invalid_output = true;
return false;
}
// assume failure during verification steps until success is certain
tvc.m_verifivation_failed = true;
time_t receive_time = time(nullptr);
crypto::hash max_used_block_id = null_hash;
uint64_t max_used_block_height = 0;
cryptonote::txpool_tx_meta_t meta;
bool inputs_okay = check_tx_inputs([&tx]()->cryptonote::transaction&{ return tx; }, id, max_used_block_height, max_used_block_id, tvc, opts.kept_by_block,
opts.approved_blink ? blink_rollback_height : nullptr);
const bool non_standard_tx = !tx.is_transfer();
if (!inputs_okay)
{
// if the transaction was valid before (kept_by_block), then it
// may become valid again, so ignore the failed inputs check.
if(opts.kept_by_block)
{
meta.weight = tx_weight;
meta.fee = fee;
meta.max_used_block_id = null_hash;
meta.max_used_block_height = 0;
meta.last_failed_height = 0;
meta.last_failed_id = null_hash;
meta.kept_by_block = opts.kept_by_block;
meta.receive_time = receive_time;
meta.last_relayed_time = time(NULL);
meta.relayed = opts.relayed;
meta.do_not_relay = opts.do_not_relay;
meta.double_spend_seen = (have_tx_keyimges_as_spent(tx) || have_duplicated_non_standard_tx(tx, hf_version));
meta.bf_padding = 0;
memset(meta.padding, 0, sizeof(meta.padding));
try
{
m_parsed_tx_cache.insert(std::make_pair(id, tx));
std::unique_lock b_lock{m_blockchain};
LockedTXN lock(m_blockchain);
m_blockchain.add_txpool_tx(id, blob, meta);
if (!insert_key_images(tx, id, opts.kept_by_block))
return false;
m_txs_by_fee_and_receive_time.emplace(std::tuple<bool, double, std::time_t>(non_standard_tx, fee / (double)(tx_weight ? tx_weight : 1), receive_time), id);
lock.commit();
}
catch (const std::exception &e)
{
MERROR("Error adding transaction to txpool: " << e.what());
return false;
}
tvc.m_verifivation_impossible = true;
tvc.m_added_to_pool = true;
}else
{
LOG_PRINT_L1("tx used wrong inputs, rejected");
tvc.m_verifivation_failed = true;
tvc.m_invalid_input = true;
return false;
}
}
else
{
//update transactions container
meta.weight = tx_weight;
meta.kept_by_block = opts.kept_by_block;
meta.fee = fee;
meta.max_used_block_id = max_used_block_id;
meta.max_used_block_height = max_used_block_height;
meta.last_failed_height = 0;
meta.last_failed_id = null_hash;
meta.receive_time = receive_time;
meta.last_relayed_time = time(NULL);
meta.relayed = opts.relayed;
meta.do_not_relay = opts.do_not_relay;
meta.double_spend_seen = false;
meta.bf_padding = 0;
memset(meta.padding, 0, sizeof(meta.padding));
try
{
if (opts.kept_by_block)
m_parsed_tx_cache.insert(std::make_pair(id, tx));
std::unique_lock b_lock{m_blockchain};
LockedTXN lock(m_blockchain);
m_blockchain.remove_txpool_tx(id);
m_blockchain.add_txpool_tx(id, blob, meta);
if (!insert_key_images(tx, id, opts.kept_by_block))
return false;
m_txs_by_fee_and_receive_time.emplace(std::tuple<bool, double, std::time_t>(non_standard_tx, fee / (double)(tx_weight ? tx_weight : 1), receive_time), id);
lock.commit();
}
catch (const std::exception &e)
{
MERROR("internal error: error adding transaction to txpool: " << e.what());
return false;
}
tvc.m_added_to_pool = true;
if((meta.fee > 0 || non_standard_tx) && !opts.do_not_relay)
tvc.m_should_be_relayed = true;
}
tvc.m_verifivation_failed = false;
m_txpool_weight += tx_weight;
++m_cookie;
MINFO("Transaction added to pool: txid " << id << " weight: " << tx_weight << " fee/byte: " << (fee / (double)(tx_weight ? tx_weight : 1)));
if (!opts.kept_by_block && !opts.do_not_relay)
for (auto& notify : m_tx_notify)
notify(id, tx, blob, opts);
prune(id);
return true;
}
//---------------------------------------------------------------------------------
bool tx_memory_pool::add_tx(transaction &tx, tx_verification_context& tvc, const tx_pool_options &opts, uint8_t version)
{
crypto::hash h = null_hash;
size_t blob_size = 0;
cryptonote::blobdata bl;
t_serializable_object_to_blob(tx, bl);
if (bl.size() == 0 || !get_transaction_hash(tx, h))
return false;
return add_tx(tx, h, bl, get_transaction_weight(tx, bl.size()), tvc, opts, version);
}
//---------------------------------------------------------------------------------
bool tx_memory_pool::add_new_blink(const std::shared_ptr<blink_tx> &blink_ptr, tx_verification_context &tvc, bool &blink_exists)
{
assert((bool) blink_ptr);
std::unique_lock lock{m_transactions_lock};
auto &blink = *blink_ptr;
auto &tx = var::get<transaction>(blink.tx); // will throw if just a hash w/o a transaction
auto txhash = get_transaction_hash(tx);
{
auto lock = blink_shared_lock();
blink_exists = m_blinks.count(txhash);
if (blink_exists)
return false;
}
bool approved = blink.approved();
auto hf_version = m_blockchain.get_network_version(blink.height);
bool result = add_tx(tx, tvc, tx_pool_options::new_blink(approved, hf_version), hf_version);
if (result && approved)
{
auto lock = blink_unique_lock();
m_blinks[txhash] = blink_ptr;
}
else if (!result)
{
// Adding failed, but might have failed because another thread inserted it, so check again for
// existence of the blink
auto lock = blink_shared_lock();
blink_exists = m_blinks.count(txhash);
}
return result;
}
//---------------------------------------------------------------------------------
bool tx_memory_pool::add_existing_blink(std::shared_ptr<blink_tx> blink_ptr)
{
assert(blink_ptr && blink_ptr->approved());
auto &ptr = m_blinks[blink_ptr->get_txhash()];
if (ptr)
return false;
ptr = blink_ptr;
return true;
}
//---------------------------------------------------------------------------------
std::shared_ptr<blink_tx> tx_memory_pool::get_blink(const crypto::hash &tx_hash) const
{
auto it = m_blinks.find(tx_hash);
if (it != m_blinks.end())
return it->second;
return {};
}
//---------------------------------------------------------------------------------
bool tx_memory_pool::has_blink(const crypto::hash &tx_hash) const
{
return m_blinks.find(tx_hash) != m_blinks.end();
}
void tx_memory_pool::keep_missing_blinks(std::vector<crypto::hash> &tx_hashes) const
{
auto lock = blink_shared_lock();
tx_hashes.erase(
std::remove_if(tx_hashes.begin(), tx_hashes.end(),
[this](const crypto::hash &tx_hash) { return m_blinks.count(tx_hash) > 0; }),
tx_hashes.end());
}
std::pair<std::vector<crypto::hash>, std::vector<uint64_t>> tx_memory_pool::get_blink_hashes_and_mined_heights() const
{
std::pair<std::vector<crypto::hash>, std::vector<uint64_t>> hnh;
auto &hashes = hnh.first;
auto &heights = hnh.second;
{
auto lock = blink_shared_lock();
if (!m_blinks.empty())
{
hashes.reserve(m_blinks.size());
for (auto &b : m_blinks)
hashes.push_back(b.first);
}
}
heights = m_blockchain.get_transactions_heights(hashes);
// Filter out (and delete from the blink pool) any blinks that are in immutable blocks
const uint64_t immutable_height = m_blockchain.get_immutable_height();
size_t next_good = 0;
for (size_t i = 0; i < hashes.size(); i++)
{
if (heights[i] > immutable_height || heights[i] == 0 /* unmined mempool blink */)
{
// Swap elements into the "good" part of the list so that when we're we'll have divided the
// vector into [0, ..., next_good-1] elements containing the parts we want to return, and
// [next_good, ...] containing the elements to remove from blink storage.
if (i != next_good)
{
using std::swap;
swap(heights[i], heights[next_good]);
swap(hashes[i], hashes[next_good]);
}
next_good++;
}
}
if (next_good < hashes.size())
{
auto lock = blink_unique_lock();
for (size_t i = next_good; i < hashes.size(); i++)
m_blinks.erase(hashes[i]);
}
hashes.resize(next_good);
heights.resize(next_good);
return hnh;
}
std::map<uint64_t, crypto::hash> tx_memory_pool::get_blink_checksums() const
{
std::map<uint64_t, crypto::hash> result;
auto hnh = get_blink_hashes_and_mined_heights();
auto &hashes = hnh.first;
auto &heights = hnh.second;
for (size_t i = 0; i < hashes.size(); i++)
{
auto it = result.lower_bound(heights[i]);
if (it == result.end() || it->first != heights[i])
result.emplace_hint(it, heights[i], hashes[i]);
else
it->second ^= hashes[i];
}
return result;
}
//---------------------------------------------------------------------------------
std::vector<crypto::hash> tx_memory_pool::get_mined_blinks(const std::set<uint64_t> &want_heights) const
{
std::vector<crypto::hash> result;
auto hnh = get_blink_hashes_and_mined_heights();
auto &hashes = hnh.first;
auto &heights = hnh.second;
for (size_t i = 0; i < heights.size(); i++)
{
if (want_heights.count(heights[i]))
result.push_back(hashes[i]);
}
return result;
}
//---------------------------------------------------------------------------------
bool tx_memory_pool::remove_blink_conflicts(const crypto::hash &id, const std::vector<crypto::hash> &conflict_txs, uint64_t *blink_rollback_height)
{
auto bl_lock = blink_shared_lock(std::defer_lock);
std::unique_lock bc_lock{m_blockchain, std::defer_lock};
std::lock(bl_lock, bc_lock);
// Since this is a signed blink tx, we want to see if we can eject any existing mempool
// txes to make room.
// First check to see if any of the conflicting txes is itself an approved blink as a
// safety check (it shouldn't be possible if the network is functioning properly).
for (const auto &tx_hash : conflict_txs)
{
if (m_blinks.count(tx_hash))
{
MERROR("Blink error: incoming blink tx " << id << " conflicts with another blink tx " << tx_hash);
return false;
}
}
uint64_t rollback_height_needed = blink_rollback_height ? *blink_rollback_height : 0;
std::vector<crypto::hash> mempool_txs;
// Next make sure none of the conflicting txes are mined in immutable blocks
auto immutable_height = m_blockchain.get_immutable_height();
auto heights = m_blockchain.get_transactions_heights(conflict_txs);
for (size_t i = 0; i < heights.size(); ++i)
{
MDEBUG("Conflicting tx " << conflict_txs[i] << (heights[i] ? "mined at height " + std::to_string(heights[i]) : "in mempool"));
if (!heights[i])
{
mempool_txs.push_back(conflict_txs[i]);
}
else if (heights[i] > immutable_height && blink_rollback_height)
{
if (rollback_height_needed == 0 || rollback_height_needed > heights[i])
rollback_height_needed = heights[i];
// else already set to something at least as early as this tx
}
else
return false;
}
if (!mempool_txs.empty())
{
LockedTXN txnlock(m_blockchain);
for (auto &tx : mempool_txs)
{
MWARNING("Removing conflicting tx " << tx << " from mempool for incoming blink tx " << id);
if (!remove_tx(tx))
{
MERROR("Internal error: Unable to clear conflicting tx " << tx << " from mempool for incoming blink tx " << id);
return false;
}
}
txnlock.commit();
}
if (blink_rollback_height && rollback_height_needed < *blink_rollback_height)
{
MINFO("Incoming blink tx requires a rollback to the " << rollback_height_needed << " to un-mine conflicting transactions");
*blink_rollback_height = rollback_height_needed;
}
return true;
}
//---------------------------------------------------------------------------------
size_t tx_memory_pool::get_txpool_weight() const
{
std::unique_lock lock{m_transactions_lock};
return m_txpool_weight;
}
//---------------------------------------------------------------------------------
void tx_memory_pool::set_txpool_max_weight(size_t bytes)
{
std::unique_lock lock{m_transactions_lock};
m_txpool_max_weight = bytes;
}
//---------------------------------------------------------------------------------
bool tx_memory_pool::remove_tx(const crypto::hash &txid, const txpool_tx_meta_t *meta, const sorted_tx_container::iterator *stc_it)
{
const auto it = stc_it ? *stc_it : find_tx_in_sorted_container(txid);
if (it == m_txs_by_fee_and_receive_time.end())
{
MERROR("Failed to find tx in txpool sorted list");
return false;
}
cryptonote::blobdata tx_blob = m_blockchain.get_txpool_tx_blob(txid);
cryptonote::transaction_prefix tx;
if (!parse_and_validate_tx_prefix_from_blob(tx_blob, tx))
{
MERROR("Failed to parse tx from txpool");
return false;
}
txpool_tx_meta_t lookup_meta;
if (!meta)
{
if (m_blockchain.get_txpool_tx_meta(txid, lookup_meta))
meta = &lookup_meta;
else
{
MERROR("Failed to find tx in txpool");
return false;
}
}
// remove first, in case this throws, so key images aren't removed
const uint64_t tx_fee = std::get<1>(it->first);
MINFO("Removing tx " << txid << " from txpool: weight: " << meta->weight << ", fee/byte: " << tx_fee);
m_blockchain.remove_txpool_tx(txid);
m_txpool_weight -= meta->weight;
remove_transaction_keyimages(tx, txid);
m_txs_by_fee_and_receive_time.erase(it);
return true;
}
//---------------------------------------------------------------------------------
void tx_memory_pool::prune(const crypto::hash &skip)
{
auto blink_lock = blink_shared_lock(std::defer_lock);
std::unique_lock tx_lock{*this, std::defer_lock};
std::unique_lock bc_lock{m_blockchain, std::defer_lock};
std::lock(blink_lock, tx_lock, bc_lock);
LockedTXN lock(m_blockchain);
bool changed = false;
// Tries checking conditions for pruning and, if appropriate, removing the tx.
// Returns false on failure, true for no prune wanted or a successful prune.
auto try_pruning = [this, &skip, &changed](auto &it, bool forward) -> bool {
try
{
const crypto::hash &txid = it->second;
txpool_tx_meta_t meta;
if (!m_blockchain.get_txpool_tx_meta(txid, meta))
{
MERROR("Failed to find tx in txpool");
return false;
}
auto del_it = forward ? it++ : it--;
// don't prune the kept_by_block ones, they're likely added because we're adding a block with those
// don't prune blink txes
// don't prune the one we just added
if (meta.kept_by_block || this->has_blink(txid) || txid == skip)
return true;
if (this->remove_tx(txid, &meta, &del_it))
{
changed = true;
return true;
}
return false;
}
catch (const std::exception &e)
{
MERROR("Error while pruning txpool: " << e.what());
return false;
}
};
const auto unexpired = std::time(nullptr) - MEMPOOL_PRUNE_NON_STANDARD_TX_LIFETIME;
for (auto it = m_txs_by_fee_and_receive_time.begin(); it != m_txs_by_fee_and_receive_time.end(); )
{
const bool is_standard_tx = !std::get<0>(it->first);
const time_t receive_time = std::get<2>(it->first);
if (is_standard_tx || receive_time >= unexpired)
break;
if (!try_pruning(it, true /*forward*/))
return;
}
// this will never remove the first one, but we don't care
auto it = m_txs_by_fee_and_receive_time.end();
if (it != m_txs_by_fee_and_receive_time.begin())
it = std::prev(it);
while (m_txpool_weight > m_txpool_max_weight && it != m_txs_by_fee_and_receive_time.begin())
{
if (!try_pruning(it, false /*forward*/))
return;
}
lock.commit();
if (changed)
++m_cookie;
if (m_txpool_weight > m_txpool_max_weight)
MINFO("Pool weight after pruning is still larger than limit: " << m_txpool_weight << "/" << m_txpool_max_weight);
}
//---------------------------------------------------------------------------------
bool tx_memory_pool::insert_key_images(const transaction_prefix &tx, const crypto::hash &id, bool kept_by_block)
{
for(const auto& in: tx.vin)
{
CHECKED_GET_SPECIFIC_VARIANT(in, txin_to_key, txin, false);
std::unordered_set<crypto::hash>& kei_image_set = m_spent_key_images[txin.k_image];
CHECK_AND_ASSERT_MES(kept_by_block || kei_image_set.size() == 0, false, "internal error: kept_by_block=" << kept_by_block
<< ", kei_image_set.size()=" << kei_image_set.size() << "\ntxin.k_image=" << txin.k_image
<< "\ntx_id=" << id );
auto ins_res = kei_image_set.insert(id);
CHECK_AND_ASSERT_MES(ins_res.second, false, "internal error: try to insert duplicate iterator in key_image set");
}
++m_cookie;
return true;
}
//---------------------------------------------------------------------------------
//FIXME: Can return early before removal of all of the key images.
// At the least, need to make sure that a false return here
// is treated properly. Should probably not return early, however.
bool tx_memory_pool::remove_transaction_keyimages(const transaction_prefix& tx, const crypto::hash &actual_hash)
{
auto locks = tools::unique_locks(m_transactions_lock, m_blockchain);
// ND: Speedup
for(const txin_v& vi: tx.vin)
{
CHECKED_GET_SPECIFIC_VARIANT(vi, txin_to_key, txin, false);
auto it = m_spent_key_images.find(txin.k_image);
CHECK_AND_ASSERT_MES(it != m_spent_key_images.end(), false, "failed to find transaction input in key images. img=" << txin.k_image
<< "\ntransaction id = " << actual_hash);
std::unordered_set<crypto::hash>& key_image_set = it->second;
CHECK_AND_ASSERT_MES(key_image_set.size(), false, "empty key_image set, img=" << txin.k_image
<< "\ntransaction id = " << actual_hash);
auto it_in_set = key_image_set.find(actual_hash);
CHECK_AND_ASSERT_MES(it_in_set != key_image_set.end(), false, "transaction id not found in key_image set, img=" << txin.k_image
<< "\ntransaction id = " << actual_hash);
key_image_set.erase(it_in_set);
if(!key_image_set.size())
{
//it is now empty hash container for this key_image
m_spent_key_images.erase(it);
}
}
++m_cookie;
return true;
}
//---------------------------------------------------------------------------------
bool tx_memory_pool::take_tx(const crypto::hash &id, transaction &tx, cryptonote::blobdata &txblob, size_t& tx_weight, uint64_t& fee, bool &relayed, bool &do_not_relay, bool &double_spend_seen)
{
auto locks = tools::unique_locks(m_transactions_lock, m_blockchain);
auto sorted_it = find_tx_in_sorted_container(id);
try
{
LockedTXN lock(m_blockchain);
txpool_tx_meta_t meta;
if (!m_blockchain.get_txpool_tx_meta(id, meta))
{
MERROR("Failed to find tx in txpool");
return false;
}
txblob = m_blockchain.get_txpool_tx_blob(id);
auto ci = m_parsed_tx_cache.find(id);
if (ci != m_parsed_tx_cache.end())
{
tx = ci->second;
}
else if (!parse_and_validate_tx_from_blob(txblob, tx))
{
MERROR("Failed to parse tx from txpool");
return false;
}
else
{
tx.set_hash(id);
}
tx_weight = meta.weight;
fee = meta.fee;
relayed = meta.relayed;
do_not_relay = meta.do_not_relay;
double_spend_seen = meta.double_spend_seen;
// remove first, in case this throws, so key images aren't removed
m_blockchain.remove_txpool_tx(id);
m_txpool_weight -= tx_weight;
remove_transaction_keyimages(tx, id);
lock.commit();
}
catch (const std::exception &e)
{
MERROR("Failed to remove tx from txpool: " << e.what());
return false;
}
if (sorted_it != m_txs_by_fee_and_receive_time.end())
m_txs_by_fee_and_receive_time.erase(sorted_it);
++m_cookie;
return true;
}
//---------------------------------------------------------------------------------
void tx_memory_pool::on_idle()
{
m_remove_stuck_tx_interval.do_call([this](){return remove_stuck_transactions();});
}
void tx_memory_pool::add_notify(std::function<void(const crypto::hash&, const transaction&, const std::string&, const tx_pool_options&)> notify)
{
std::unique_lock lock{m_transactions_lock};
m_tx_notify.push_back(std::move(notify));
}
//---------------------------------------------------------------------------------
sorted_tx_container::iterator tx_memory_pool::find_tx_in_sorted_container(const crypto::hash& id) const
{
return std::find_if( m_txs_by_fee_and_receive_time.begin(), m_txs_by_fee_and_receive_time.end()
, [&](const sorted_tx_container::value_type& a){
return a.second == id;
}
);
}
//---------------------------------------------------------------------------------
//TODO: investigate whether boolean return is appropriate
bool tx_memory_pool::remove_stuck_transactions()
{
auto locks = tools::unique_locks(m_transactions_lock, m_blockchain);
std::list<std::pair<crypto::hash, uint64_t>> remove;
m_blockchain.for_all_txpool_txes([this, &remove](const crypto::hash &txid, const txpool_tx_meta_t &meta, const cryptonote::blobdata*) {
uint64_t tx_age = time(nullptr) - meta.receive_time;
if((tx_age > CRYPTONOTE_MEMPOOL_TX_LIVETIME && !meta.kept_by_block) ||
(tx_age > CRYPTONOTE_MEMPOOL_TX_FROM_ALT_BLOCK_LIVETIME && meta.kept_by_block) )
{
LOG_PRINT_L1("Tx " << txid << " removed from tx pool due to outdated, age: " << tx_age );
auto sorted_it = find_tx_in_sorted_container(txid);
if (sorted_it == m_txs_by_fee_and_receive_time.end())
{
LOG_PRINT_L1("Removing tx " << txid << " from tx pool, but it was not found in the sorted txs container!");
}
else
{
m_txs_by_fee_and_receive_time.erase(sorted_it);
}
m_timed_out_transactions.insert(txid);
remove.push_back(std::make_pair(txid, meta.weight));
}
return true;
}, false);
if (!remove.empty())
{
LockedTXN lock(m_blockchain);
for (const std::pair<crypto::hash, uint64_t> &entry: remove)
{
const crypto::hash &txid = entry.first;
try
{
cryptonote::blobdata bd = m_blockchain.get_txpool_tx_blob(txid);
cryptonote::transaction_prefix tx;
if (!parse_and_validate_tx_prefix_from_blob(bd, tx))
{
MERROR("Failed to parse tx from txpool");
// continue
}
else
{
// remove first, so we only remove key images if the tx removal succeeds
m_blockchain.remove_txpool_tx(txid);
m_txpool_weight -= entry.second;
remove_transaction_keyimages(tx, txid);
}
}
catch (const std::exception &e)
{
MWARNING("Failed to remove stuck transaction: " << txid);
// ignore error
}
}
lock.commit();
++m_cookie;
}
return true;
}
//---------------------------------------------------------------------------------
//TODO: investigate whether boolean return is appropriate
bool tx_memory_pool::get_relayable_transactions(std::vector<std::pair<crypto::hash, cryptonote::blobdata>> &txs) const
{
auto locks = tools::unique_locks(m_transactions_lock, m_blockchain);
const uint64_t now = time(NULL);
txs.reserve(m_blockchain.get_txpool_tx_count());
m_blockchain.for_all_txpool_txes([this, now, &txs](const crypto::hash &txid, const txpool_tx_meta_t &meta, const cryptonote::blobdata *){
if(!meta.do_not_relay && (!meta.relayed || now - meta.last_relayed_time > get_relay_delay(now, meta.receive_time)))
{
// if the tx is older than half the max lifetime, we don't re-relay it, to avoid a problem
// mentioned by smooth where nodes would flush txes at slightly different times, causing
// flushed txes to be re-added when received from a node which was just about to flush it
uint64_t max_age = meta.kept_by_block ? CRYPTONOTE_MEMPOOL_TX_FROM_ALT_BLOCK_LIVETIME : CRYPTONOTE_MEMPOOL_TX_LIVETIME;
if (now - meta.receive_time <= max_age / 2)
{
try
{
cryptonote::blobdata bd = m_blockchain.get_txpool_tx_blob(txid);
if (meta.fee == 0)
{
cryptonote::transaction tx;
if (!cryptonote::parse_and_validate_tx_from_blob(bd, tx))
{
LOG_PRINT_L1("TX in pool could not be parsed from blob, txid: " << txid);
return true;
}
if (tx.type != txtype::state_change)
return true;
tx_verification_context tvc;
uint64_t max_used_block_height = 0;
crypto::hash max_used_block_id = null_hash;
if (!m_blockchain.check_tx_inputs(tx, max_used_block_height, max_used_block_id, tvc, /*kept_by_block*/ false))
{
LOG_PRINT_L1("TX type: " << tx.type << " considered for relaying failed tx inputs check, txid: " << txid << ", reason: " << print_tx_verification_context(tvc, &tx));
return true;
}
}
txs.push_back(std::make_pair(txid, bd));
}
catch (const std::exception &e)
{
MERROR("Failed to get transaction blob from db");
// ignore error
}
}
}
return true;
}, false);
return true;
}
//---------------------------------------------------------------------------------
int tx_memory_pool::set_relayable(const std::vector<crypto::hash> &tx_hashes) {
int updated = 0;
auto locks = tools::unique_locks(m_transactions_lock, m_blockchain);
LockedTXN lock(m_blockchain);
for (auto &tx : tx_hashes)
{
try {
txpool_tx_meta_t meta;
if (m_blockchain.get_txpool_tx_meta(tx, meta) && meta.do_not_relay)
{
meta.do_not_relay = false;
m_blockchain.update_txpool_tx(tx, meta);
++updated;
}
} catch (const std::exception &e) {
MERROR("Failed to upate txpool transaction metadata: " << e.what());
}
}
lock.commit();
return updated;
}
//---------------------------------------------------------------------------------
void tx_memory_pool::set_relayed(const std::vector<std::pair<crypto::hash, cryptonote::blobdata>> &txs)
{
auto locks = tools::unique_locks(m_transactions_lock, m_blockchain);
const time_t now = time(NULL);
LockedTXN lock(m_blockchain);
for (auto &tx : txs)
{
try
{
txpool_tx_meta_t meta;
if (m_blockchain.get_txpool_tx_meta(tx.first, meta))
{
meta.relayed = true;
meta.last_relayed_time = now;
m_blockchain.update_txpool_tx(tx.first, meta);
}
}
catch (const std::exception &e)
{
MERROR("Failed to update txpool transaction metadata: " << e.what());
// continue
}
}
lock.commit();
}
//---------------------------------------------------------------------------------
size_t tx_memory_pool::get_transactions_count(bool include_unrelayed_txes) const
{
auto locks = tools::unique_locks(m_transactions_lock, m_blockchain);
return m_blockchain.get_txpool_tx_count(include_unrelayed_txes);
}
//---------------------------------------------------------------------------------
void tx_memory_pool::get_transactions(std::vector<transaction>& txs, bool include_unrelayed_txes) const
{
auto locks = tools::unique_locks(m_transactions_lock, m_blockchain);
txs.reserve(m_blockchain.get_txpool_tx_count(include_unrelayed_txes));
m_blockchain.for_all_txpool_txes([&txs](const crypto::hash &txid, const txpool_tx_meta_t &meta, const cryptonote::blobdata *bd){
transaction tx;
if (!parse_and_validate_tx_from_blob(*bd, tx))
{
MERROR("Failed to parse tx from txpool");
// continue
return true;
}
tx.set_hash(txid);
txs.push_back(std::move(tx));
return true;
}, true, include_unrelayed_txes);
}
//------------------------------------------------------------------
void tx_memory_pool::get_transaction_hashes(std::vector<crypto::hash>& txs, bool include_unrelayed_txes, bool include_only_blinked) const
{
auto locks = tools::unique_locks(m_transactions_lock, m_blockchain);
txs.reserve(m_blockchain.get_txpool_tx_count(include_unrelayed_txes));
m_blockchain.for_all_txpool_txes([&txs, include_only_blinked, this](const crypto::hash &txid, const txpool_tx_meta_t &meta, const cryptonote::blobdata *bd){
bool include_tx = true;
if (include_only_blinked) include_tx = has_blink(txid);
if (include_tx) txs.push_back(txid);
return true;
}, false, include_unrelayed_txes);
}
//------------------------------------------------------------------
void tx_memory_pool::get_transaction_backlog(std::vector<rpc::tx_backlog_entry>& backlog, bool include_unrelayed_txes) const
{
auto locks = tools::unique_locks(m_transactions_lock, m_blockchain);
const uint64_t now = time(NULL);
backlog.reserve(m_blockchain.get_txpool_tx_count(include_unrelayed_txes));
m_blockchain.for_all_txpool_txes([&backlog, now](const crypto::hash &txid, const txpool_tx_meta_t &meta, const cryptonote::blobdata *bd){
backlog.push_back({meta.weight, meta.fee, meta.receive_time - now});
return true;
}, false, include_unrelayed_txes);
}
//------------------------------------------------------------------
void tx_memory_pool::get_transaction_stats(struct rpc::txpool_stats& stats, bool include_unrelayed_txes) const
{
auto locks = tools::unique_locks(m_transactions_lock, m_blockchain);
const uint64_t now = time(NULL);
std::map<uint64_t, rpc::txpool_histo> agebytes;
stats.txs_total = m_blockchain.get_txpool_tx_count(include_unrelayed_txes);
std::vector<uint32_t> weights;
weights.reserve(stats.txs_total);
m_blockchain.for_all_txpool_txes([&stats, &weights, now, &agebytes](const crypto::hash &txid, const txpool_tx_meta_t &meta, const cryptonote::blobdata *bd){
weights.push_back(meta.weight);
stats.bytes_total += meta.weight;
if (!stats.bytes_min || meta.weight < stats.bytes_min)
stats.bytes_min = meta.weight;
if (meta.weight > stats.bytes_max)
stats.bytes_max = meta.weight;
if (!meta.relayed)
stats.num_not_relayed++;
stats.fee_total += meta.fee;
if (!stats.oldest || meta.receive_time < stats.oldest)
stats.oldest = meta.receive_time;
if (meta.receive_time < now - 600)
stats.num_10m++;
if (meta.last_failed_height)
stats.num_failing++;
uint64_t age = now - meta.receive_time + (now == meta.receive_time);
agebytes[age].txs++;
agebytes[age].bytes += meta.weight;
if (meta.double_spend_seen)
++stats.num_double_spends;
return true;
}, false, include_unrelayed_txes);
stats.bytes_med = tools::median(std::move(weights));
if (stats.txs_total > 1)
{
/* looking for 98th percentile */
size_t end = stats.txs_total * 0.02;
uint64_t delta, factor;
std::map<uint64_t, rpc::txpool_histo>::iterator it, i2;
if (end)
{
/* If enough txs, spread the first 98% of results across
* the first 9 bins, drop final 2% in last bin.
*/
it = agebytes.end();
size_t cumulative_num = 0;
/* Since agebytes is not empty and end is nonzero, the
* below loop can always run at least once.
*/
do {
--it;
cumulative_num += it->second.txs;
} while (it != agebytes.begin() && cumulative_num < end);
stats.histo_98pc = it->first;
factor = 9;
delta = it->first;
stats.histo.resize(10);
} else
{
/* If not enough txs, don't reserve the last slot;
* spread evenly across all 10 bins.
*/
stats.histo_98pc = 0;
it = agebytes.end();
factor = stats.txs_total > 9 ? 10 : stats.txs_total;
delta = now - stats.oldest;
stats.histo.resize(factor);
}
if (!delta)
delta = 1;
for (i2 = agebytes.begin(); i2 != it; i2++)
{
size_t i = (i2->first * factor - 1) / delta;
stats.histo[i].txs += i2->second.txs;
stats.histo[i].bytes += i2->second.bytes;
}
for (; i2 != agebytes.end(); i2++)
{
stats.histo[factor].txs += i2->second.txs;
stats.histo[factor].bytes += i2->second.bytes;
}
}
}
//------------------------------------------------------------------
//TODO: investigate whether boolean return is appropriate
bool tx_memory_pool::get_transactions_and_spent_keys_info(std::vector<rpc::tx_info>& tx_infos, std::vector<rpc::spent_key_image_info>& key_image_infos, std::function<void(const transaction&, rpc::tx_info&)> post_process, bool include_sensitive_data) const
{
std::unique_lock tx_lock{m_transactions_lock, std::defer_lock};
std::unique_lock bc_lock{m_blockchain, std::defer_lock};
auto blink_lock = blink_shared_lock(std::defer_lock);
std::lock(tx_lock, bc_lock, blink_lock);
tx_infos.reserve(m_blockchain.get_txpool_tx_count());
key_image_infos.reserve(m_blockchain.get_txpool_tx_count());
m_blockchain.for_all_txpool_txes([&tx_infos, this, include_sensitive_data, post_process=std::move(post_process)](const crypto::hash &txid, const txpool_tx_meta_t &meta, const cryptonote::blobdata *bd){
transaction tx;
if (!parse_and_validate_tx_from_blob(*bd, tx))
{
MERROR("Failed to parse tx from txpool");
// continue
return true;
}
tx_infos.emplace_back();
auto& txi = tx_infos.back();
txi.id_hash = tools::type_to_hex(txid);
txi.tx_blob = *bd;
tx.set_hash(txid);
txi.tx_json = obj_to_json_str(tx);
txi.blob_size = bd->size();
txi.weight = meta.weight;
txi.fee = meta.fee;
txi.kept_by_block = meta.kept_by_block;
txi.max_used_block_height = meta.max_used_block_height;
txi.max_used_block_id_hash = tools::type_to_hex(meta.max_used_block_id);
txi.last_failed_height = meta.last_failed_height;
txi.last_failed_id_hash = tools::type_to_hex(meta.last_failed_id);
// In restricted mode we do not include this data:
txi.receive_time = include_sensitive_data ? meta.receive_time : 0;
txi.relayed = meta.relayed;
// In restricted mode we do not include this data:
txi.last_relayed_time = include_sensitive_data ? meta.last_relayed_time : 0;
txi.do_not_relay = meta.do_not_relay;
txi.double_spend_seen = meta.double_spend_seen;
txi.blink = has_blink(txid);
if (post_process)
post_process(tx, txi);
return true;
}, true, include_sensitive_data);
txpool_tx_meta_t meta;
for (const key_images_container::value_type& kee : m_spent_key_images) {
const crypto::key_image& k_image = kee.first;
const std::unordered_set<crypto::hash>& kei_image_set = kee.second;
rpc::spent_key_image_info ki{};
ki.id_hash = tools::type_to_hex(k_image);
for (const crypto::hash& tx_id_hash : kei_image_set)
{
if (!include_sensitive_data)
{
try
{
if (!m_blockchain.get_txpool_tx_meta(tx_id_hash, meta))
{
MERROR("Failed to get tx meta from txpool");
return false;
}
if (!meta.relayed)
// Do not include that transaction if in restricted mode and it's not relayed
continue;
}
catch (const std::exception &e)
{
MERROR("Failed to get tx meta from txpool: " << e.what());
return false;
}
}
ki.txs_hashes.push_back(tools::type_to_hex(tx_id_hash));
}
// Only return key images for which we have at least one tx that we can show for them
if (!ki.txs_hashes.empty())
key_image_infos.push_back(ki);
}
return true;
}
//---------------------------------------------------------------------------------
bool tx_memory_pool::check_for_key_images(const std::vector<crypto::key_image>& key_images, std::vector<bool>& spent) const
{
auto locks = tools::unique_locks(m_transactions_lock, m_blockchain);
spent.clear();
for (const auto& image : key_images)
{
spent.push_back(m_spent_key_images.find(image) == m_spent_key_images.end() ? false : true);
}
return true;
}
//---------------------------------------------------------------------------------
int tx_memory_pool::find_transactions(const std::vector<crypto::hash> &tx_hashes, std::vector<cryptonote::blobdata> &txblobs) const
{
if (tx_hashes.empty())
return 0;
txblobs.reserve(txblobs.size() + tx_hashes.size());
auto locks = tools::unique_locks(m_transactions_lock, m_blockchain);
int added = 0;
for (auto &id : tx_hashes)
{
try
{
cryptonote::blobdata txblob;
m_blockchain.get_txpool_tx_blob(id, txblob);
txblobs.push_back(std::move(txblob));
++added;
}
catch (...) { /* ignore */ }
}
return added;
}
//---------------------------------------------------------------------------------
bool tx_memory_pool::get_transaction(const crypto::hash& id, cryptonote::blobdata& txblob) const
{
std::vector<cryptonote::blobdata> found;
find_transactions({{id}}, found);
if (found.empty())
return false;
txblob = std::move(found[0]);
return true;
}
//---------------------------------------------------------------------------------
bool tx_memory_pool::on_blockchain_inc(block const &blk)
{
std::unique_lock lock{m_transactions_lock};
m_input_cache.clear();
m_parsed_tx_cache.clear();
std::vector<transaction> pool_txs;
get_transactions(pool_txs);
if (pool_txs.empty()) return true;
// NOTE: For transactions in the pool, on new block received, if a Service
// Node changed state any older state changes that the node cannot
// transition to now are invalid and cannot be used, so take them out from
// the pool.
// Otherwise multiple state changes can queue up until they are applicable
// and be applied on the node.
uint64_t const block_height = cryptonote::get_block_height(blk);
auto &service_node_list = m_blockchain.get_service_node_list();
for (transaction const &pool_tx : pool_txs)
{
tx_extra_service_node_state_change state_change;
crypto::public_key service_node_pubkey;
if (pool_tx.type == txtype::state_change &&
get_service_node_state_change_from_tx_extra(pool_tx.extra, state_change, blk.major_version))
{
// TODO(oxen): PERF(oxen): On pop_blocks we return all the TXs to the
// pool. The greater the pop_blocks, the more txs that are queued in the
// pool, and for every subsequent block you sync, get_transactions has
// to allocate these transactions and we have to search every
// transaction in the pool every synced block- causing great slowdown.
// It'd be nice to optimise this or rearchitect the way this pruning is
// done to be smarter.
if (state_change.block_height >= block_height) // NOTE: Can occur if we pop_blocks and old popped state changes are returned to the pool.
continue;
if (service_node_list.get_quorum_pubkey(service_nodes::quorum_type::obligations,
service_nodes::quorum_group::worker,
state_change.block_height,
state_change.service_node_index,
service_node_pubkey))
{
crypto::hash tx_hash;
if (!get_transaction_hash(pool_tx, tx_hash))
{
MERROR("Failed to get transaction hash from txpool to check if we can prune a state change");
continue;
}
txpool_tx_meta_t meta;
if (!m_blockchain.get_txpool_tx_meta(tx_hash, meta))
{
MERROR("Failed to get tx meta from txpool to check if we can prune a state change");
continue;
}
if (meta.kept_by_block) // Do not prune transaction if kept by block (belongs to alt block, so we need incase we switch to alt-chain)
continue;
std::vector<service_nodes::service_node_pubkey_info> service_node_array = service_node_list.get_service_node_list_state({service_node_pubkey});
if (service_node_array.empty() ||
!service_node_array[0].info->can_transition_to_state(blk.major_version, state_change.block_height, state_change.state))
{
transaction tx;
cryptonote::blobdata blob;
size_t tx_weight;
uint64_t fee;
bool relayed, do_not_relay, double_spend_seen;
take_tx(tx_hash, tx, blob, tx_weight, fee, relayed, do_not_relay, double_spend_seen);
}
}
}
}
return true;
}
//---------------------------------------------------------------------------------
bool tx_memory_pool::on_blockchain_dec()
{
std::unique_lock lock{m_transactions_lock};
m_input_cache.clear();
m_parsed_tx_cache.clear();
return true;
}
//------------------------------------------------------------------
std::vector<uint8_t> tx_memory_pool::have_txs(const std::vector<crypto::hash> &hashes) const
{
std::vector<uint8_t> result(hashes.size(), false);
auto locks = tools::unique_locks(m_transactions_lock, m_blockchain);
auto &db = m_blockchain.get_db();
for (size_t i = 0; i < hashes.size(); i++)
result[i] = db.txpool_has_tx(hashes[i]);
return result;
}
//---------------------------------------------------------------------------------
bool tx_memory_pool::have_tx(const crypto::hash &id) const
{
return have_txs({{id}})[0];
}
//---------------------------------------------------------------------------------
bool tx_memory_pool::have_tx_keyimges_as_spent(const transaction& tx, std::vector<crypto::hash> *conflicting) const
{
auto locks = tools::unique_locks(m_transactions_lock, m_blockchain);
bool ret = false;
for(const auto& in: tx.vin)
{
CHECKED_GET_SPECIFIC_VARIANT(in, txin_to_key, tokey_in, true);//should never fail
auto it = m_spent_key_images.find(tokey_in.k_image);
if (it != m_spent_key_images.end())
{
if (!conflicting)
return true;
ret = true;
conflicting->insert(conflicting->end(), it->second.begin(), it->second.end());
}
}
return ret;
}
//---------------------------------------------------------------------------------
bool tx_memory_pool::have_tx_keyimg_as_spent(const crypto::key_image& key_im) const
{
std::unique_lock lock{m_transactions_lock};
return m_spent_key_images.end() != m_spent_key_images.find(key_im);
}
//---------------------------------------------------------------------------------
bool tx_memory_pool::check_tx_inputs(const std::function<cryptonote::transaction&()> &get_tx, const crypto::hash &txid, uint64_t &max_used_block_height,
crypto::hash &max_used_block_id, tx_verification_context &tvc, bool kept_by_block, uint64_t* blink_rollback_height) const
{
if (!kept_by_block)
{
const std::unordered_map<crypto::hash, std::tuple<bool, tx_verification_context, uint64_t, crypto::hash>>::const_iterator i = m_input_cache.find(txid);
if (i != m_input_cache.end())
{
max_used_block_height = std::get<2>(i->second);
max_used_block_id = std::get<3>(i->second);
tvc = std::get<1>(i->second);
return std::get<0>(i->second);
}
}
std::unordered_set<crypto::key_image> key_image_conflicts;
bool ret = m_blockchain.check_tx_inputs(get_tx(), max_used_block_height, max_used_block_id, tvc, kept_by_block, blink_rollback_height ? &key_image_conflicts : nullptr);
if (ret && !key_image_conflicts.empty())
{
// There are some key image conflicts, but since we have blink_rollback_height this is an
// approved blink tx that we want to accept via rollback, if possible.
auto locks = tools::unique_locks(m_transactions_lock, m_blockchain);
uint64_t immutable = m_blockchain.get_immutable_height();
uint64_t height = m_blockchain.get_current_blockchain_height();
bool can_fix_with_a_rollback = false;
if (height - immutable > 100)
{
// Sanity check; if this happens checkpoints are failing and we can't guarantee blinks
// anyway (because the blink quorums are not immutable).
MERROR("Unable to scan for conflicts: blockchain checkpoints are too far back");
}
else
{
MDEBUG("Found " << key_image_conflicts.size() << " conflicting key images for blink tx " << txid << "; checking to see if we can roll back");
// Check all the key images of all the blockchain transactions in blocks since the immutable
// height, and remove any conflicts from the set of conflicts, updating the rollback height
// as we go. If we remove all then rolling back will work, and we can accept the blink,
// otherwise we have to refuse it (because immutable blocks have to trump a blink tx).
//
// This sounds expensive, but in reality the blocks since the immutable checkpoint is
// usually only around 8-12, we do this in reverse order (conflicts are most likely to be in
// the last block or two), and there is little incentive to actively exploit this since this
// code is here, and even if someone did want to they'd have to also be 51% attacking the
// network to wipe out recently mined blinks -- but that can't work anyway.
//
std::vector<cryptonote::block> blocks;
if (m_blockchain.get_blocks_only(immutable + 1, height, blocks))
{
std::vector<cryptonote::transaction> txs;
std::vector<crypto::hash> missed_txs;
uint64_t earliest = height;
for (auto it = blocks.rbegin(); it != blocks.rend(); it++)
{
const auto& block = *it;
auto block_height = cryptonote::get_block_height(block);
txs.clear();
missed_txs.clear();
if (!m_blockchain.get_transactions(block.tx_hashes, txs, missed_txs))
{
MERROR("Unable to get transactions for block " << block.hash);
can_fix_with_a_rollback = false;
break;
}
for (const auto& tx : txs) {
for (const auto& in : tx.vin) {
if (auto* ttk = std::get_if<txin_to_key>(&in); ttk && key_image_conflicts.erase(ttk->k_image)) {
earliest = std::min(earliest, block_height);
if (key_image_conflicts.empty())
goto end;
}
}
}
}
end:
if (key_image_conflicts.empty() && earliest < height && earliest > immutable)
{
MDEBUG("Blink admission requires rolling back to height " << earliest);
can_fix_with_a_rollback = true;
if (*blink_rollback_height == 0 || *blink_rollback_height > earliest)
*blink_rollback_height = earliest;
}
}
else
MERROR("Failed to retrieve blocks for trying a blink rollback!");
}
if (!can_fix_with_a_rollback)
{
MWARNING("Blink admission of " << txid << " is not possible even with a rollback: found " << key_image_conflicts.size() << " key image conflicts in immutable blocks");
ret = false;
tvc.m_double_spend = true;
}
}
if (!kept_by_block)
m_input_cache.insert(std::make_pair(txid, std::make_tuple(ret, tvc, max_used_block_height, max_used_block_id)));
return ret;
}
//---------------------------------------------------------------------------------
bool tx_memory_pool::is_transaction_ready_to_go(txpool_tx_meta_t& txd, const crypto::hash &txid, const cryptonote::blobdata &txblob, transaction &tx) const
{
struct transction_parser
{
transction_parser(const cryptonote::blobdata &txblob, const crypto::hash &txid, transaction &tx): txblob(txblob), txid(txid), tx(tx), parsed(false) {}
cryptonote::transaction &operator()()
{
if (!parsed)
{
if (!parse_and_validate_tx_from_blob(txblob, tx))
throw std::runtime_error("failed to parse transaction blob");
tx.set_hash(txid);
parsed = true;
}
return tx;
}
const cryptonote::blobdata &txblob;
const crypto::hash &txid;
transaction &tx;
bool parsed;
} lazy_tx(txblob, txid, tx);
//not the best implementation at this time, sorry :(
//check is ring_signature already checked ?
if(txd.max_used_block_id == null_hash)
{//not checked, lets try to check
if(txd.last_failed_id != null_hash && m_blockchain.get_current_blockchain_height() > txd.last_failed_height && txd.last_failed_id == m_blockchain.get_block_id_by_height(txd.last_failed_height))
return false;//we already sure that this tx is broken for this height
tx_verification_context tvc;
if(!check_tx_inputs(lazy_tx, txid, txd.max_used_block_height, txd.max_used_block_id, tvc))
{
txd.last_failed_height = m_blockchain.get_current_blockchain_height()-1;
txd.last_failed_id = m_blockchain.get_block_id_by_height(txd.last_failed_height);
return false;
}
}else
{
if(txd.max_used_block_height >= m_blockchain.get_current_blockchain_height())
return false;
if(true)
{
//if we already failed on this height and id, skip actual ring signature check
if(txd.last_failed_id == m_blockchain.get_block_id_by_height(txd.last_failed_height))
return false;
//check ring signature again, it is possible (with very small chance) that this transaction become again valid
tx_verification_context tvc;
if(!check_tx_inputs(lazy_tx, txid, txd.max_used_block_height, txd.max_used_block_id, tvc))
{
txd.last_failed_height = m_blockchain.get_current_blockchain_height()-1;
txd.last_failed_id = m_blockchain.get_block_id_by_height(txd.last_failed_height);
return false;
}
}
}
//if we here, transaction seems valid, but, anyway, check for key_images collisions with blockchain, just to be sure
if(m_blockchain.have_tx_keyimges_as_spent(lazy_tx()))
{
txd.double_spend_seen = true;
return false;
}
//transaction is ok.
return true;
}
//---------------------------------------------------------------------------------
/**
* @brief check if any of a transaction's spent key images are present in a given set
*
* @param kic the set of key images to check against
* @param tx the transaction to check
*
* @return true if any key images present in the set, otherwise false
*/
static bool have_key_images(const std::unordered_set<crypto::key_image>& k_images, const transaction_prefix& tx)
{
for(size_t i = 0; i!= tx.vin.size(); i++)
{
CHECKED_GET_SPECIFIC_VARIANT(tx.vin[i], txin_to_key, itk, false);
if(k_images.count(itk.k_image))
return true;
}
return false;
}
//---------------------------------------------------------------------------------
/**
* @brief append the key images from a transaction to the given set
*
* @param kic the set of key images to append to
* @param tx the transaction
*
* @return false if any append fails, otherwise true
*/
static bool append_key_images(std::unordered_set<crypto::key_image>& k_images, const transaction_prefix& tx)
{
for(size_t i = 0; i!= tx.vin.size(); i++)
{
CHECKED_GET_SPECIFIC_VARIANT(tx.vin[i], txin_to_key, itk, false);
auto i_res = k_images.insert(itk.k_image);
CHECK_AND_ASSERT_MES(i_res.second, false, "internal error: key images pool cache - inserted duplicate image in set: " << itk.k_image);
}
return true;
}
//---------------------------------------------------------------------------------
void tx_memory_pool::mark_double_spend(const transaction &tx)
{
auto locks = tools::unique_locks(m_transactions_lock, m_blockchain);
bool changed = false;
LockedTXN lock(m_blockchain);
for(size_t i = 0; i!= tx.vin.size(); i++)
{
CHECKED_GET_SPECIFIC_VARIANT(tx.vin[i], txin_to_key, itk, void());
const key_images_container::const_iterator it = m_spent_key_images.find(itk.k_image);
if (it != m_spent_key_images.end())
{
for (const crypto::hash &txid: it->second)
{
txpool_tx_meta_t meta;
if (!m_blockchain.get_txpool_tx_meta(txid, meta))
{
MERROR("Failed to find tx meta in txpool");
// continue, not fatal
continue;
}
if (!meta.double_spend_seen)
{
MDEBUG("Marking " << txid << " as double spending " << itk.k_image);
meta.double_spend_seen = true;
changed = true;
try
{
m_blockchain.update_txpool_tx(txid, meta);
}
catch (const std::exception &e)
{
MERROR("Failed to update tx meta: " << e.what());
// continue, not fatal
}
}
}
}
}
lock.commit();
if (changed)
++m_cookie;
}
//---------------------------------------------------------------------------------
//TODO: investigate whether boolean return is appropriate
bool tx_memory_pool::fill_block_template(block &bl, size_t median_weight, uint64_t already_generated_coins, size_t &total_weight, uint64_t &raw_fee, uint64_t &expected_reward, uint8_t version, uint64_t height)
{
auto locks = tools::unique_locks(m_transactions_lock, m_blockchain);
total_weight = 0;
raw_fee = 0;
uint64_t best_reward = 0;
{
// NOTE: Calculate base line empty block reward
oxen_block_reward_context block_reward_context = {};
block_reward_context.height = height;
block_reward_parts reward_parts = {};
if (!get_oxen_block_reward(median_weight, total_weight, already_generated_coins, version, reward_parts, block_reward_context))
{
MERROR("Failed to get block reward for empty block");
return false;
}
best_reward = version >= cryptonote::network_version_16_pulse ? 0 /*Empty block, starts with 0 fee*/ : reward_parts.base_miner;
}
size_t const max_total_weight = 2 * median_weight - CRYPTONOTE_COINBASE_BLOB_RESERVED_SIZE;
std::unordered_set<crypto::key_image> k_images;
LOG_PRINT_L2("Filling block template, median weight " << median_weight << ", " << m_txs_by_fee_and_receive_time.size() << " txes in the pool");
LockedTXN lock(m_blockchain);
uint64_t next_reward = 0;
uint64_t net_fee = 0;
for (auto sorted_it : m_txs_by_fee_and_receive_time)
{
txpool_tx_meta_t meta;
if (!m_blockchain.get_txpool_tx_meta(sorted_it.second, meta))
{
MERROR(" failed to find tx meta");
continue;
}
LOG_PRINT_L2("Considering " << sorted_it.second << ", weight " << meta.weight << ", current block weight " << total_weight << "/" << max_total_weight << ", current reward " << print_money(best_reward));
// Can not exceed maximum block weight
if (max_total_weight < total_weight + meta.weight)
{
LOG_PRINT_L2(" would exceed maximum block weight");
continue;
}
// NOTE: Calculate the next block reward for the block producer
oxen_block_reward_context next_block_reward_context = {};
next_block_reward_context.height = height;
next_block_reward_context.fee = raw_fee + meta.fee;
block_reward_parts next_reward_parts = {};
if(!get_oxen_block_reward(median_weight, total_weight + meta.weight, already_generated_coins, version, next_reward_parts, next_block_reward_context))
{
LOG_PRINT_L2("Block reward calculation bug");
return false;
}
// NOTE: Use the net fee for comparison (after penalty is applied).
// After HF16, penalty is applied on the miner fee. Before, penalty is
// applied on the base reward.
if (version >= cryptonote::network_version_16_pulse)
{
next_reward = next_reward_parts.miner_fee;
}
else
{
next_reward = next_reward_parts.base_miner + next_reward_parts.miner_fee;
assert(next_reward_parts.miner_fee == raw_fee + meta.fee);
}
// If we're getting lower reward tx, don't include this TX
if (next_reward < best_reward)
{
LOG_PRINT_L2(" would decrease reward to " << print_money(next_reward));
continue;
}
cryptonote::blobdata txblob = m_blockchain.get_txpool_tx_blob(sorted_it.second);
cryptonote::transaction tx;
// Skip transactions that are not ready to be
// included into the blockchain or that are
// missing key images
const cryptonote::txpool_tx_meta_t original_meta = meta;
bool ready = false;
try
{
ready = is_transaction_ready_to_go(meta, sorted_it.second, txblob, tx);
}
catch (const std::exception &e)
{
MERROR("Failed to check transaction readiness: " << e.what());
// continue, not fatal
}
if (memcmp(&original_meta, &meta, sizeof(meta)))
{
try
{
m_blockchain.update_txpool_tx(sorted_it.second, meta);
}
catch (const std::exception &e)
{
MERROR("Failed to update tx meta: " << e.what());
// continue, not fatal
}
}
if (!ready)
{
LOG_PRINT_L2(" not ready to go");
continue;
}
if (have_key_images(k_images, tx))
{
LOG_PRINT_L2(" key images already seen");
continue;
}
bl.tx_hashes.push_back(sorted_it.second);
total_weight += meta.weight;
raw_fee += meta.fee;
net_fee = next_reward_parts.miner_fee;
best_reward = next_reward;
append_key_images(k_images, tx);
LOG_PRINT_L2(" added, new block weight " << total_weight << "/" << max_total_weight << ", reward " << print_money(best_reward));
}
lock.commit();
expected_reward = best_reward;
LOG_PRINT_L2("Block template filled with " << bl.tx_hashes.size() << " txes, weight "
<< total_weight << "/" << max_total_weight << ", reward " << print_money(best_reward)
<< " (including " << print_money(net_fee) << " in fees)");
return true;
}
//---------------------------------------------------------------------------------
size_t tx_memory_pool::validate(uint8_t version)
{
auto locks = tools::unique_locks(m_transactions_lock, m_blockchain);
size_t tx_weight_limit = get_transaction_weight_limit(version);
std::unordered_set<crypto::hash> remove;
m_txpool_weight = 0;
m_blockchain.for_all_txpool_txes([this, &remove, tx_weight_limit](const crypto::hash &txid, const txpool_tx_meta_t &meta, const cryptonote::blobdata*) {
m_txpool_weight += meta.weight;
if (meta.weight > tx_weight_limit) {
LOG_PRINT_L1("Transaction " << txid << " is too big (" << meta.weight << " bytes), removing it from pool");
remove.insert(txid);
}
else if (m_blockchain.have_tx(txid)) {
LOG_PRINT_L1("Transaction " << txid << " is in the blockchain, removing it from pool");
remove.insert(txid);
}
return true;
}, false);
size_t n_removed = 0;
if (!remove.empty())
{
LockedTXN lock(m_blockchain);
for (const crypto::hash &txid: remove)
{
try
{
cryptonote::blobdata txblob = m_blockchain.get_txpool_tx_blob(txid);
cryptonote::transaction tx;
if (!parse_and_validate_tx_from_blob(txblob, tx))
{
MERROR("Failed to parse tx from txpool");
continue;
}
// remove tx from db first
m_blockchain.remove_txpool_tx(txid);
m_txpool_weight -= get_transaction_weight(tx, txblob.size());
remove_transaction_keyimages(tx, txid);
auto sorted_it = find_tx_in_sorted_container(txid);
if (sorted_it == m_txs_by_fee_and_receive_time.end())
{
LOG_PRINT_L1("Removing tx " << txid << " from tx pool, but it was not found in the sorted txs container!");
}
else
{
m_txs_by_fee_and_receive_time.erase(sorted_it);
}
++n_removed;
}
catch (const std::exception &e)
{
MERROR("Failed to remove invalid tx from pool");
// continue
}
}
lock.commit();
}
if (n_removed > 0)
++m_cookie;
return n_removed;
}
//---------------------------------------------------------------------------------
bool tx_memory_pool::init(size_t max_txpool_weight)
{
auto locks = tools::unique_locks(m_transactions_lock, m_blockchain);
m_txpool_max_weight = max_txpool_weight ? max_txpool_weight : DEFAULT_TXPOOL_MAX_WEIGHT;
m_txs_by_fee_and_receive_time.clear();
m_spent_key_images.clear();
m_txpool_weight = 0;
std::vector<crypto::hash> remove;
// first add the not kept by block, then the kept by block,
// to avoid rejection due to key image collision
for (int pass = 0; pass < 2; ++pass)
{
const bool kept = pass == 1;
bool r = m_blockchain.for_all_txpool_txes([this, &remove, kept](const crypto::hash &txid, const txpool_tx_meta_t &meta, const cryptonote::blobdata *bd) {
if (kept != (bool)meta.kept_by_block)
return true;
cryptonote::transaction_prefix tx;
if (!parse_and_validate_tx_prefix_from_blob(*bd, tx))
{
MWARNING("Failed to parse tx from txpool, removing");
remove.push_back(txid);
return true;
}
if (!insert_key_images(tx, txid, meta.kept_by_block))
{
MFATAL("Failed to insert key images from txpool tx");
return false;
}
const bool non_standard_tx = !tx.is_transfer();
m_txs_by_fee_and_receive_time.emplace(std::tuple<bool, double, time_t>(non_standard_tx, meta.fee / (double)meta.weight, meta.receive_time), txid);
m_txpool_weight += meta.weight;
return true;
}, true);
if (!r)
return false;
}
if (!remove.empty())
{
LockedTXN lock(m_blockchain);
for (const auto &txid: remove)
{
try
{
m_blockchain.remove_txpool_tx(txid);
}
catch (const std::exception &e)
{
MWARNING("Failed to remove corrupt transaction: " << txid);
// ignore error
}
}
lock.commit();
}
m_cookie = 0;
// Ignore deserialization error
return true;
}
//---------------------------------------------------------------------------------
bool tx_memory_pool::deinit()
{
return true;
}
}