oxen-core/tests/core_tests/bulletproofs.cpp
2020-06-02 12:09:22 +10:00

471 lines
23 KiB
C++

// Copyright (c) 2014-2018, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
#include "ringct/rctSigs.h"
#include "ringct/bulletproofs.h"
#include "chaingen.h"
#include "bulletproofs.h"
#include "device/device.hpp"
using namespace epee;
using namespace crypto;
using namespace cryptonote;
//----------------------------------------------------------------------------------------------------------------------
// Tests
bool gen_bp_tx_validation_base::generate_with(std::vector<test_event_entry>& events,
size_t n_txes, const uint64_t *amounts_paid, bool valid, const rct::RCTConfig *rct_config,
const std::function<bool(std::vector<tx_source_entry> &sources, std::vector<tx_destination_entry> &destinations, size_t tx_idx)> &pre_tx,
const std::function<bool(transaction &tx, size_t tx_idx)> &post_tx) const
{
uint64_t ts_start = 1338224400;
GENERATE_ACCOUNT(miner_account);
MAKE_GENESIS_BLOCK(events, blk_0, miner_account, ts_start);
int target_hf = cryptonote::network_version_count - 1;
// NOTE: Monero tests use multiple null terminated entries in their arrays
{
int amounts_paid_len = 0;
for (int i = 0; amounts_paid[i] != (uint64_t)-1; ++i)
++amounts_paid_len;
if (amounts_paid_len == 1) // NOTE: Number of destinations/outputs to generate
{
// NOTE: If we want 1 output then, in HF_VERSION_MIN_2_OUTPUTS, we enforce
// 2 outputs causing the test to fail. For that case, we set the target
// hardfork to 1 before.
target_hf = HF_VERSION_MIN_2_OUTPUTS - 1;
}
}
std::vector<std::pair<uint8_t, uint64_t>> hard_forks = {
std::make_pair(7, 0),
std::make_pair(8, 1),
std::make_pair(target_hf, NUM_UNLOCKED_BLOCKS + CRYPTONOTE_MINED_MONEY_UNLOCK_WINDOW + 1),
};
event_replay_settings settings = {};
settings.hard_forks = hard_forks;
events.push_back(settings);
// create 12 miner accounts, and have them mine the next 48 blocks
int const NUM_MINERS = 12;
cryptonote::account_base miner_accounts[NUM_MINERS];
const cryptonote::block *prev_block = &blk_0;
cryptonote::block blocks[NUM_UNLOCKED_BLOCKS + CRYPTONOTE_MINED_MONEY_UNLOCK_WINDOW];
for (size_t i = 0; i < NUM_MINERS; ++i)
miner_accounts[i].generate();
uint8_t const first_hf = hard_forks[1].first;
uint8_t const last_hf = hard_forks.back().first;
generator.m_hf_version = first_hf;
for (size_t n = 0; n < NUM_UNLOCKED_BLOCKS; ++n) {
CHECK_AND_ASSERT_MES(
generator.construct_block_manually(blocks[n],
*prev_block,
miner_accounts[n % NUM_MINERS],
test_generator::bf_major_ver | test_generator::bf_minor_ver | test_generator::bf_timestamp | test_generator::bf_hf_version,
first_hf,
first_hf,
prev_block->timestamp + DIFFICULTY_BLOCKS_ESTIMATE_TIMESPAN * 2, // v2 has blocks twice as long
crypto::hash(),
0,
transaction(),
std::vector<crypto::hash>(),
0),
false,
"Failed to generate block");
events.push_back(blocks[n]);
prev_block = blocks + n;
}
// rewind
cryptonote::block blk_r, blk_last;
{
blk_last = blocks[NUM_UNLOCKED_BLOCKS - 1];
for (size_t i = 0; i < CRYPTONOTE_MINED_MONEY_UNLOCK_WINDOW; ++i)
{
CHECK_AND_ASSERT_MES(
generator.construct_block_manually(blocks[NUM_UNLOCKED_BLOCKS + i],
blk_last,
miner_account,
test_generator::bf_major_ver | test_generator::bf_minor_ver | test_generator::bf_timestamp | test_generator::bf_hf_version,
first_hf,
first_hf,
blk_last.timestamp + DIFFICULTY_BLOCKS_ESTIMATE_TIMESPAN * 2, // v2 has blocks twice as long
crypto::hash(),
0,
transaction(),
std::vector<crypto::hash>(),
0),
false,
"Failed to generate block");
events.push_back(blocks[NUM_UNLOCKED_BLOCKS+i]);
blk_last = blocks[NUM_UNLOCKED_BLOCKS+i];
}
blk_r = blk_last;
}
// NOTE(loki): Submit one more block. On the fork height, we allow exactly the
// forking block to contain borromean TX's, due to some clients constructing
// old style TX's on the fork height. So make sure we create one block so that
// the block containing bulletproofs txes, which is 1 block after the fork
// height, is tested with BP logic
generator.m_hf_version = last_hf;
{
block blk;
CHECK_AND_ASSERT_MES(
generator.construct_block_manually(blk,
blk_last,
miner_account,
test_generator::bf_major_ver | test_generator::bf_minor_ver | test_generator::bf_timestamp | test_generator::bf_hf_version,
generator.m_hf_version,
generator.m_hf_version,
blk_last.timestamp + DIFFICULTY_BLOCKS_ESTIMATE_TIMESPAN * 2, // v2 has blocks twice as long
crypto::hash(),
0,
transaction(),
std::vector<crypto::hash>(),
0),
false,
"Failed to generate block");
events.push_back(blk);
blk_last = blk;
}
std::vector<transaction> rct_txes;
cryptonote::block blk_txes;
std::vector<crypto::hash> starting_rct_tx_hashes;
for (size_t n = 0, block_index = 0; n < n_txes; ++n)
{
std::vector<tx_source_entry> sources;
std::vector<tx_destination_entry> destinations;
cryptonote::account_base const &from = miner_accounts[n];
cryptonote::account_base const &to = miner_accounts[n+1];
assert(n + 1 < NUM_MINERS);
// NOTE: Monero tests use multiple null terminated entries in their arrays
int amounts_paid_len = 0;
for (int i = 0; amounts_paid[i] != (uint64_t)-1; ++i)
++amounts_paid_len;
uint64_t change_amount;
fill_tx_sources_and_multi_destinations(events,
blk_last,
from,
to.get_keys().m_account_address,
amounts_paid,
amounts_paid_len,
TESTS_DEFAULT_FEE,
CRYPTONOTE_DEFAULT_TX_MIXIN,
sources,
destinations,
true,
&change_amount);
tx_destination_entry change_addr{0, from.get_keys().m_account_address, false /* is subaddr */ };
// NOTE(loki): Monero tests presume the generated TX doesn't have change so remove it from our output.
for (auto it = destinations.begin(); it != destinations.end(); ++it)
{
if (it->amount != change_amount) continue;
destinations.erase(it);
break;
}
std::unordered_map<crypto::public_key, cryptonote::subaddress_index> subaddresses;
subaddresses[from.get_keys().m_account_address.m_spend_public_key] = {0,0};
std::vector<crypto::secret_key> additional_tx_keys;
cryptonote::transaction tx;
crypto::secret_key private_tx_key;
if (pre_tx && !pre_tx(sources, destinations, n))
{
MDEBUG("pre_tx returned failure");
return false;
}
loki_construct_tx_params tx_params;
tx_params.hf_version = generator.m_hf_version;
if (!cryptonote::construct_tx_and_get_tx_key(
from.get_keys(),
subaddresses,
sources,
destinations,
change_addr,
{} /*tx_extra*/,
tx,
0 /*unlock_time*/,
private_tx_key,
additional_tx_keys,
rct_config[n],
nullptr, /*multisig_out*/
tx_params))
{
MDEBUG("construct_tx_and_get_tx_key failure");
return false;
}
rct_txes.push_back(tx);
if (post_tx && !post_tx(rct_txes.back(), n))
{
MDEBUG("post_tx returned failure");
return false;
}
starting_rct_tx_hashes.push_back(get_transaction_hash(rct_txes.back()));
LOG_PRINT_L0("Test tx: " << obj_to_json_str(rct_txes.back()));
uint64_t total_amount_encoded = 0;
for (int o = 0; amounts_paid[o] != (uint64_t)-1; ++o)
{
crypto::key_derivation derivation;
bool r = crypto::generate_key_derivation(destinations[o].addr.m_view_public_key, private_tx_key, derivation);
CHECK_AND_ASSERT_MES(r, false, "Failed to generate key derivation");
crypto::secret_key amount_key;
crypto::derivation_to_scalar(derivation, o, amount_key);
rct::key rct_tx_mask;
uint64_t amount = 0;
const uint8_t type = rct_txes.back().rct_signatures.type;
if (type == rct::RCTTypeSimple || type == rct::RCTTypeBulletproof || type == rct::RCTTypeBulletproof2)
amount = rct::decodeRctSimple(rct_txes.back().rct_signatures, rct::sk2rct(amount_key), o, rct_tx_mask, hw::get_device("default"));
else
amount = rct::decodeRct(rct_txes.back().rct_signatures, rct::sk2rct(amount_key), o, rct_tx_mask, hw::get_device("default"));
total_amount_encoded += amount;
}
uint64_t expected_amount_encoded = 0;
while (amounts_paid[0] != (size_t)-1)
expected_amount_encoded += *amounts_paid++;
++amounts_paid;
CHECK_AND_ASSERT_MES(expected_amount_encoded == total_amount_encoded, false, "Decoded rct did not match amount to pay");
}
if (!valid)
DO_CALLBACK(events, "mark_invalid_tx");
events.push_back(rct_txes);
CHECK_AND_ASSERT_MES(generator.construct_block_manually(blk_txes, blk_last, miner_account,
test_generator::bf_major_ver | test_generator::bf_minor_ver | test_generator::bf_timestamp | test_generator::bf_tx_hashes | test_generator::bf_hf_version,
generator.m_hf_version, generator.m_hf_version, blk_last.timestamp + DIFFICULTY_BLOCKS_ESTIMATE_TIMESPAN * 2, // v2 has blocks twice as long
crypto::hash(), 0, transaction(), starting_rct_tx_hashes, 0),
false, "Failed to generate block");
if (!valid)
DO_CALLBACK(events, "mark_invalid_block");
events.push_back(blk_txes);
blk_last = blk_txes;
return true;
}
bool gen_bp_tx_validation_base::check_bp(const cryptonote::transaction &tx, size_t tx_idx, const size_t *sizes, const char *context) const
{
DEFINE_TESTS_ERROR_CONTEXT(context);
CHECK_TEST_CONDITION(tx.version >= txversion::v2_ringct);
CHECK_TEST_CONDITION(rct::is_rct_bulletproof(tx.rct_signatures.type));
size_t n_sizes = 0, n_amounts = 0;
for (size_t n = 0; n < tx_idx; ++n)
{
while (sizes[0] != (size_t)-1)
++sizes;
++sizes;
}
while (sizes[n_sizes] != (size_t)-1)
n_amounts += sizes[n_sizes++];
CHECK_TEST_CONDITION(tx.rct_signatures.p.bulletproofs.size() == n_sizes);
CHECK_TEST_CONDITION(rct::n_bulletproof_max_amounts(tx.rct_signatures.p.bulletproofs) == n_amounts);
for (size_t n = 0; n < n_sizes; ++n)
CHECK_TEST_CONDITION(rct::n_bulletproof_max_amounts(tx.rct_signatures.p.bulletproofs[n]) == sizes[n]);
return true;
}
// TODO(doyle): Revisit this. Is there some rule prohibiting a tx fee greater
// than the block reward? Monero is unaffected because they have multiple
// outputs of varying sizes in their miner tx, so the tx fee (inputs-outputs)
// (because they don't use a change addr in the tests, the remainder from
// sending can't be greater than the block reward) doesn't eclipse the reward
// and doesn't trigger the "base reward calculation bug" assert, whereas we do
// since we only have 1 output. So my fix is to make it so we don't generate
// a tx that makes too high of a fee from the change amount.
// - 2018/10/29
bool gen_bp_tx_valid_1::generate(std::vector<test_event_entry>& events) const
{
const uint64_t amounts_paid[] = {MK_COINS(120), (uint64_t)-1};
const size_t bp_sizes[] = {1, (size_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofPaddedBulletproof, 0 } };
return generate_with(events, 1, amounts_paid, true, rct_config, NULL, [&](const cryptonote::transaction &tx, size_t tx_idx){ return check_bp(tx, tx_idx, bp_sizes, "gen_bp_tx_valid_1"); });
}
bool gen_bp_tx_invalid_1_1::generate(std::vector<test_event_entry>& events) const
{
const uint64_t amounts_paid[] = {5, 5, (uint64_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofBulletproof , 0 } };
return generate_with(events, 1, amounts_paid, false, rct_config, NULL, NULL);
}
bool gen_bp_tx_valid_2::generate(std::vector<test_event_entry>& events) const
{
const uint64_t amounts_paid[] = {MK_COINS(60), MK_COINS(60), (uint64_t)-1};
const size_t bp_sizes[] = {2, (size_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofPaddedBulletproof, 0 } };
return generate_with(events, 1, amounts_paid, true, rct_config, NULL, [&](const cryptonote::transaction &tx, size_t tx_idx){ return check_bp(tx, tx_idx, bp_sizes, "gen_bp_tx_valid_2"); });
}
bool gen_bp_tx_valid_3::generate(std::vector<test_event_entry>& events) const
{
// const uint64_t amounts_paid[] = {50, 50, 50, (uint64_t)-1};
const uint64_t amounts_paid[] = {MK_COINS(40), MK_COINS(40), MK_COINS(40), (uint64_t)-1};
const size_t bp_sizes[] = {4, (size_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofPaddedBulletproof , 0 } };
return generate_with(events, 1, amounts_paid, true, rct_config, NULL, [&](const cryptonote::transaction &tx, size_t tx_idx){ return check_bp(tx, tx_idx, bp_sizes, "gen_bp_tx_valid_3"); });
}
bool gen_bp_tx_valid_16::generate(std::vector<test_event_entry>& events) const
{
// const uint64_t amounts_paid[] = {5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, (uint64_t)-1};
const uint64_t amounts_paid[] = {MK_COINS(15), MK_COINS(15), MK_COINS(15), MK_COINS(15), MK_COINS(15), MK_COINS(15), MK_COINS(15), MK_COINS(15), MK_COINS(15), MK_COINS(15), MK_COINS(15), MK_COINS(15), MK_COINS(15), MK_COINS(15), MK_COINS(15), MK_COINS(15), (uint64_t)-1};
const size_t bp_sizes[] = {16, (size_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofPaddedBulletproof , 0 } };
return generate_with(events, 1, amounts_paid, true, rct_config, NULL, [&](const cryptonote::transaction &tx, size_t tx_idx){ return check_bp(tx, tx_idx, bp_sizes, "gen_bp_tx_valid_16"); });
}
bool gen_bp_tx_invalid_4_2_1::generate(std::vector<test_event_entry>& events) const
{
const uint64_t amounts_paid[] = {1, 1, 1, 1, 1, 1, 1, (uint64_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofMultiOutputBulletproof , 0 } };
return generate_with(events, 1, amounts_paid, false, rct_config, NULL, NULL);
}
bool gen_bp_tx_invalid_16_16::generate(std::vector<test_event_entry>& events) const
{
const uint64_t amounts_paid[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, (uint64_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofMultiOutputBulletproof , 0 } };
return generate_with(events, 1, amounts_paid, false, rct_config, NULL, NULL);
}
bool gen_bp_txs_valid_2_and_2::generate(std::vector<test_event_entry>& events) const
{
//const uint64_t amounts_paid[] = {1000, 1000, (size_t)-1, 1000, 1000, (uint64_t)-1};
const uint64_t amounts_paid[] = {MK_COINS(60), MK_COINS(60), (size_t)-1, MK_COINS(60), MK_COINS(60), (uint64_t)-1};
const size_t bp_sizes[] = {2, (size_t)-1, 2, (size_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofPaddedBulletproof, 0 }, {rct::RangeProofPaddedBulletproof, 0 } };
return generate_with(events, 2, amounts_paid, true, rct_config, NULL, [&](const cryptonote::transaction &tx, size_t tx_idx){ return check_bp(tx, tx_idx, bp_sizes, "gen_bp_txs_valid_2_and_2"); });
}
bool gen_bp_txs_invalid_2_and_8_2_and_16_16_1::generate(std::vector<test_event_entry>& events) const
{
const uint64_t amounts_paid[] = {1, 1, (uint64_t)-1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, (uint64_t)-1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, (uint64_t)-1};
const rct::RCTConfig rct_config[] = {{rct::RangeProofMultiOutputBulletproof, 0}, {rct::RangeProofMultiOutputBulletproof, 0}, {rct::RangeProofMultiOutputBulletproof, 0}};
return generate_with(events, 3, amounts_paid, false, rct_config, NULL, NULL);
}
bool gen_bp_txs_valid_2_and_3_and_2_and_4::generate(std::vector<test_event_entry>& events) const
{
// const uint64_t amounts_paid[] = {11111115000, 11111115000, (uint64_t)-1, 11111115000, 11111115000, 11111115001, (uint64_t)-1, 11111115000, 11111115002, (uint64_t)-1, 11111115000, 11111115000, 11111115000, 11111115003, (uint64_t)-1};
const uint64_t amounts_paid[] = {MK_COINS(60), MK_COINS(60), (uint64_t)-1, MK_COINS(40), MK_COINS(40), MK_COINS(40), (uint64_t)-1, MK_COINS(60), MK_COINS(60), (uint64_t)-1, MK_COINS(30), MK_COINS(30), MK_COINS(30), MK_COINS(30), (uint64_t)-1};
const rct::RCTConfig rct_config[] = {{rct::RangeProofPaddedBulletproof, 0}, {rct::RangeProofPaddedBulletproof, 0}, {rct::RangeProofPaddedBulletproof, 0}, {rct::RangeProofPaddedBulletproof, 0}};
const size_t bp_sizes[] = {2, (size_t)-1, 4, (size_t)-1, 2, (size_t)-1, 4, (size_t)-1};
return generate_with(events, 4, amounts_paid, true, rct_config, NULL, [&](const cryptonote::transaction &tx, size_t tx_idx) { return check_bp(tx, tx_idx, bp_sizes, "gen_bp_txs_valid_2_and_3_and_2_and_4"); });
}
bool gen_bp_tx_invalid_not_enough_proofs::generate(std::vector<test_event_entry>& events) const
{
DEFINE_TESTS_ERROR_CONTEXT("gen_bp_tx_invalid_not_enough_proofs");
const uint64_t amounts_paid[] = {5, 5, (uint64_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofBulletproof, 0 } };
return generate_with(events, 1, amounts_paid, false, rct_config, NULL, [&](cryptonote::transaction &tx, size_t idx){
CHECK_TEST_CONDITION(tx.rct_signatures.type == rct::RCTTypeBulletproof || tx.rct_signatures.type == rct::RCTTypeBulletproof2);
CHECK_TEST_CONDITION(!tx.rct_signatures.p.bulletproofs.empty());
tx.rct_signatures.p.bulletproofs.pop_back();
CHECK_TEST_CONDITION(!tx.rct_signatures.p.bulletproofs.empty());
return true;
});
}
bool gen_bp_tx_invalid_empty_proofs::generate(std::vector<test_event_entry>& events) const
{
DEFINE_TESTS_ERROR_CONTEXT("gen_bp_tx_invalid_empty_proofs");
const uint64_t amounts_paid[] = {50, 50, (uint64_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofBulletproof, 0 } };
return generate_with(events, 1, amounts_paid, false, rct_config, NULL, [&](cryptonote::transaction &tx, size_t idx){
CHECK_TEST_CONDITION(tx.rct_signatures.type == rct::RCTTypeBulletproof || tx.rct_signatures.type == rct::RCTTypeBulletproof2);
tx.rct_signatures.p.bulletproofs.clear();
return true;
});
}
bool gen_bp_tx_invalid_too_many_proofs::generate(std::vector<test_event_entry>& events) const
{
DEFINE_TESTS_ERROR_CONTEXT("gen_bp_tx_invalid_too_many_proofs");
const uint64_t amounts_paid[] = {10000, (uint64_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofBulletproof, 0 } };
return generate_with(events, 1, amounts_paid, false, rct_config, NULL, [&](cryptonote::transaction &tx, size_t idx){
CHECK_TEST_CONDITION(tx.rct_signatures.type == rct::RCTTypeBulletproof || tx.rct_signatures.type == rct::RCTTypeBulletproof2);
CHECK_TEST_CONDITION(!tx.rct_signatures.p.bulletproofs.empty());
tx.rct_signatures.p.bulletproofs.push_back(tx.rct_signatures.p.bulletproofs.back());
return true;
});
}
bool gen_bp_tx_invalid_wrong_amount::generate(std::vector<test_event_entry>& events) const
{
DEFINE_TESTS_ERROR_CONTEXT("gen_bp_tx_invalid_wrong_amount");
const uint64_t amounts_paid[] = {10, (uint64_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofBulletproof, 0 } };
return generate_with(events, 1, amounts_paid, false, rct_config, NULL, [&](cryptonote::transaction &tx, size_t idx){
CHECK_TEST_CONDITION(tx.rct_signatures.type == rct::RCTTypeBulletproof || tx.rct_signatures.type == rct::RCTTypeBulletproof2);
CHECK_TEST_CONDITION(!tx.rct_signatures.p.bulletproofs.empty());
tx.rct_signatures.p.bulletproofs.back() = rct::bulletproof_PROVE(1000, rct::skGen());
return true;
});
}
bool gen_bp_tx_invalid_borromean_type::generate(std::vector<test_event_entry>& events) const
{
DEFINE_TESTS_ERROR_CONTEXT("gen_bp_tx_invalid_borromean_type");
const uint64_t amounts_paid[] = {5, 5, (uint64_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofBorromean, 0 } };
return generate_with(events, 1, amounts_paid, false, rct_config, NULL, [&](cryptonote::transaction &tx, size_t tx_idx){
return true;
});
}