oxen-core/tests/core_tests/chaingen.cpp

1780 lines
63 KiB
C++

// Copyright (c) 2014-2018, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
#include <vector>
#include <iostream>
#include <sstream>
#include <algorithm>
#include <array>
#include <random>
#include <sstream>
#include <fstream>
#include "include_base_utils.h"
#include "console_handler.h"
#include "common/rules.h"
#include "p2p/net_node.h"
#include "cryptonote_basic/cryptonote_basic.h"
#include "cryptonote_basic/cryptonote_basic_impl.h"
#include "cryptonote_basic/cryptonote_format_utils.h"
#include "cryptonote_basic/miner.h"
#include "chaingen.h"
#include "device/device.hpp"
using namespace std;
using namespace epee;
using namespace crypto;
using namespace cryptonote;
bool operator<(const last_reward_point& lhs, const last_reward_point& rhs) {
if (lhs.height != rhs.height) {
return lhs.height < rhs.height;
}
return lhs.priority < rhs.priority;
}
dereg_tx_builder linear_chain_generator::build_deregister(const crypto::public_key& pk, bool commit)
{
return dereg_tx_builder(*this, pk, commit);
}
cryptonote::account_base linear_chain_generator::create_account()
{
cryptonote::account_base account;
account.generate();
events_.push_back(account);
return account;
}
void linear_chain_generator::create_genesis_block()
{
constexpr uint64_t ts_start = 1338224400;
first_miner_.generate();
cryptonote::block gen_block;
gen_.construct_block(gen_block, first_miner_, ts_start);
events_.push_back(gen_block);
blocks_.push_back(gen_block);
}
void linear_chain_generator::create_block(const std::vector<cryptonote::transaction>& txs)
{
const auto blk = create_block_on_fork(blocks_.back(), txs);
blocks_.push_back(blk);
}
uint8_t linear_chain_generator::get_hf_version_at(uint64_t height) const {
uint8_t cur_hf_ver = 0;
for (auto i = 0u; i < hard_forks_.size(); ++i)
{
if (height < hard_forks_[i].second) break;
cur_hf_ver = hard_forks_[i].first;
}
assert(cur_hf_ver != 0);
return cur_hf_ver;
}
void linear_chain_generator::rewind_until_version(int hard_fork_version)
{
assert(gen_.m_hf_version < hard_fork_version);
if (blocks_.size() == 0)
create_genesis_block();
size_t start_index;
for (start_index = 0; start_index < hard_forks_.size(); ++start_index)
{
const uint8_t version = hard_forks_[start_index].first;
if (version > gen_.m_hf_version) break;
}
for (size_t i = start_index; i < hard_forks_.size() && gen_.m_hf_version < hard_fork_version; ++i)
{
auto cur_height = blocks_.size();
uint64_t next_fork_height = hard_forks_[i].second;
uint64_t blocks_till_next_hardfork = next_fork_height - cur_height;
rewind_blocks_n(blocks_till_next_hardfork);
gen_.m_hf_version = hard_forks_[i].first;
create_block();
}
assert(gen_.m_hf_version >= hard_fork_version);
}
int linear_chain_generator::get_hf_version() const {
return gen_.m_hf_version;
}
void linear_chain_generator::rewind_blocks_n(int n)
{
for (auto i = 0; i < n; ++i) {
create_block();
}
}
void linear_chain_generator::rewind_blocks()
{
rewind_blocks_n(CRYPTONOTE_MINED_MONEY_UNLOCK_WINDOW);
}
cryptonote::block linear_chain_generator::create_block_on_fork(const cryptonote::block& prev,
const std::vector<cryptonote::transaction>& txs)
{
const auto height = get_block_height(prev) + 1;
const auto& winner_pk = sn_list_.get_winner_pk(height);
const auto& sn_pk = winner_pk ? *winner_pk : crypto::null_pkey;
std::vector<sn_contributor_t> contribs = { { { crypto::null_pkey, crypto::null_pkey }, STAKING_PORTIONS } };
if (winner_pk) {
const auto& reg = sn_list_.find_registration(*winner_pk);
if (reg) {
contribs = { reg->contribution };
}
}
cryptonote::block blk;
gen_.construct_block(blk, prev, first_miner_, { txs.begin(), txs.end() }, sn_pk, contribs);
events_.push_back(blk);
/// now we can add sn from the buffer to be used in consequent nodes
sn_list_.add_registrations(registration_buffer_);
registration_buffer_.clear();
sn_list_.handle_deregistrations(deregistration_buffer_);
deregistration_buffer_.clear();
/// Note: depending on whether we check in hf9 or later, loki assignes different meaning to
/// "expiration height": in hf9 it expires nodes at their expiration height; after hf9 --
/// a the expiration height + 1.
if (get_hf_version() == network_version_9_service_nodes) {
sn_list_.expire_old(height);
} else {
sn_list_.expire_old(height - 1);
}
return blk;
}
QuorumState linear_chain_generator::get_quorum_idxs(const cryptonote::block& block) const
{
if (sn_list_.size() <= service_nodes::QUORUM_SIZE) {
std::cerr << "Not enough service nodes\n";
return {};
}
std::vector<size_t> pub_keys_indexes;
{
uint64_t seed = 0;
const crypto::hash block_hash = cryptonote::get_block_hash(block);
std::memcpy(&seed, block_hash.data, std::min(sizeof(seed), sizeof(block_hash.data)));
pub_keys_indexes.resize(sn_list_.size());
for (size_t i = 0; i < pub_keys_indexes.size(); i++) {
pub_keys_indexes[i] = i;
}
service_nodes::loki_shuffle(pub_keys_indexes, seed);
}
QuorumState quorum;
for (auto i = 0u; i < service_nodes::QUORUM_SIZE; ++i) {
quorum.voters.push_back({ sn_list_.at(pub_keys_indexes[i]).keys.pub, i });
}
for (auto i = service_nodes::QUORUM_SIZE; i < pub_keys_indexes.size(); ++i) {
quorum.to_test.push_back({ sn_list_.at(pub_keys_indexes[i]).keys.pub, i });
}
return quorum;
}
QuorumState linear_chain_generator::get_quorum_idxs(uint64_t height) const
{
const auto block = blocks_.at(height);
return get_quorum_idxs(block);
}
cryptonote::transaction linear_chain_generator::create_tx(const cryptonote::account_base& miner,
const cryptonote::account_base& acc,
uint64_t amount,
uint64_t fee)
{
cryptonote::transaction t;
TxBuilder(events_, t, blocks_.back(), miner, acc, amount, gen_.m_hf_version).with_fee(fee).build();
events_.push_back(t);
return t;
}
cryptonote::transaction linear_chain_generator::create_registration_tx(const cryptonote::account_base& acc,
const cryptonote::keypair& sn_keys)
{
const sn_contributor_t contr = { acc.get_keys().m_account_address, STAKING_PORTIONS };
const uint32_t reg_height = height() + 1;
uint32_t expires = reg_height + service_nodes::staking_num_lock_blocks(cryptonote::FAKECHAIN);
/// Account for some inconsistency in service_nodes::staking_num_lock_blocks
/// on the boundary between hardforks 9 and 10
if ((get_hf_version() == cryptonote::network_version_9_service_nodes && get_hf_version_at(expires) == cryptonote::network_version_10_bulletproofs)
|| get_hf_version() == cryptonote::network_version_10_bulletproofs)
{
expires += STAKING_REQUIREMENT_LOCK_BLOCKS_EXCESS;
}
const auto reg_idx = registration_buffer_.size();
registration_buffer_.push_back({ expires, sn_keys, contr, { reg_height, reg_idx } });
return make_default_registration_tx(events_, acc, sn_keys, blocks_.back(), gen_.m_hf_version);
}
cryptonote::transaction linear_chain_generator::create_registration_tx()
{
const auto sn_keys = keypair::generate(hw::get_device("default"));
return create_registration_tx(first_miner_, sn_keys);
}
cryptonote::transaction linear_chain_generator::create_deregister_tx(const crypto::public_key& pk,
uint64_t height,
const std::vector<sn_idx>& voters,
uint64_t fee,
bool commit)
{
cryptonote::tx_extra_service_node_deregister deregister;
deregister.block_height = height;
const auto idx = get_idx_in_tested(pk, height);
if (!idx) { MERROR("service node could not be found in the servcie node list"); throw std::exception(); }
deregister.service_node_index = *idx; /// idx inside nodes to test
/// need to create MIN_VOTES_TO_KICK_SERVICE_NODE (7) votes
for (const auto voter : voters) {
const auto reg = sn_list_.find_registration(voter.sn_pk);
if (!reg) return {};
const auto pk = reg->keys.pub;
const auto sk = reg->keys.sec;
const auto signature =
service_nodes::deregister_vote::sign_vote(deregister.block_height, deregister.service_node_index, pk, sk);
deregister.votes.push_back({ signature, (uint32_t)voter.idx_in_quorum });
}
if (commit) deregistration_buffer_.push_back(pk);
const auto deregister_tx = make_deregistration_tx(events_, first_miner_, blocks_.back(), deregister, gen_.m_hf_version, fee);
events_.push_back(deregister_tx);
return deregister_tx;
}
crypto::public_key linear_chain_generator::get_test_pk(uint32_t idx) const
{
const auto& to_test = get_quorum_idxs(height()).to_test;
return to_test.at(idx).sn_pk;
}
boost::optional<uint32_t> linear_chain_generator::get_idx_in_tested(const crypto::public_key& pk, uint64_t height) const
{
const auto& to_test = get_quorum_idxs(height).to_test;
for (const auto& sn : to_test) {
if (sn.sn_pk == pk) return sn.idx_in_quorum - service_nodes::QUORUM_SIZE;
}
return boost::none;
}
void linear_chain_generator::deregister(const crypto::public_key& pk) {
sn_list_.remove_node(pk);
}
inline void sn_list::remove_node(const crypto::public_key& pk)
{
const auto it =
std::find_if(sn_owners_.begin(), sn_owners_.end(), [pk](const sn_registration& sn) { return sn.keys.pub == pk; });
if (it != sn_owners_.end()) sn_owners_.erase(it); else abort();
}
inline void sn_list::add_registrations(const std::vector<sn_registration>& regs)
{
sn_owners_.insert(sn_owners_.begin(), regs.begin(), regs.end());
std::sort(sn_owners_.begin(), sn_owners_.end(),
[](const sn_registration &a, const sn_registration &b) {
return memcmp(reinterpret_cast<const void*>(&a.keys.pub), reinterpret_cast<const void*>(&b.keys.pub),
sizeof(a.keys.pub)) < 0;
});
}
void sn_list::handle_deregistrations(const std::vector<crypto::public_key>& dereg_buffer)
{
const auto size_before = sn_owners_.size();
auto end_it = sn_owners_.end();
for (const auto pk : dereg_buffer) {
end_it = std::remove_if(sn_owners_.begin(), end_it, [&pk](const sn_registration& sn) {
return sn.keys.pub == pk;
});
}
sn_owners_.erase(end_it, sn_owners_.end());
assert(sn_owners_.size() == size_before - dereg_buffer.size());
}
inline void sn_list::expire_old(uint64_t height)
{
/// remove_if is stable, no need for re-sorting
const auto new_end = std::remove_if(
sn_owners_.begin(), sn_owners_.end(), [height](const sn_registration& reg) { return height >= reg.valid_until; });
sn_owners_.erase(new_end, sn_owners_.end());
}
inline const boost::optional<sn_registration> sn_list::find_registration(const crypto::public_key& pk) const
{
const auto it =
std::find_if(sn_owners_.begin(), sn_owners_.end(), [pk](const sn_registration& sn) { return sn.keys.pub == pk; });
if (it == sn_owners_.end()) return boost::none;
return *it;
}
inline const boost::optional<crypto::public_key> sn_list::get_winner_pk(uint64_t height)
{
if (sn_owners_.empty()) return boost::none;
auto it =
std::min_element(sn_owners_.begin(), sn_owners_.end(), [](const sn_registration& lhs, const sn_registration& rhs) {
return lhs.last_reward < rhs.last_reward;
});
it->last_reward.height = height;
it->last_reward.priority = UINT32_MAX;
return it->keys.pub;
}
/// --------------------------------------------------------------
void test_generator::get_block_chain(std::vector<block_info>& blockchain, const crypto::hash& head, size_t n) const
{
crypto::hash curr = head;
while (null_hash != curr && blockchain.size() < n)
{
auto it = m_blocks_info.find(curr);
if (m_blocks_info.end() == it)
{
throw std::runtime_error("block hash wasn't found");
}
blockchain.push_back(it->second);
curr = it->second.prev_id;
}
std::reverse(blockchain.begin(), blockchain.end());
}
// TODO(loki): Copypasta
void test_generator::get_block_chain(std::vector<cryptonote::block>& blockchain, const crypto::hash& head, size_t n) const
{
crypto::hash curr = head;
while (null_hash != curr && blockchain.size() < n)
{
auto it = m_blocks_info.find(curr);
if (m_blocks_info.end() == it)
{
throw std::runtime_error("block hash wasn't found");
}
blockchain.push_back(it->second.block);
curr = it->second.prev_id;
}
std::reverse(blockchain.begin(), blockchain.end());
}
void test_generator::get_last_n_block_weights(std::vector<uint64_t>& block_weights, const crypto::hash& head, size_t n) const
{
std::vector<block_info> blockchain;
get_block_chain(blockchain, head, n);
BOOST_FOREACH(auto& bi, blockchain)
{
block_weights.push_back(bi.block_weight);
}
}
uint64_t test_generator::get_already_generated_coins(const crypto::hash& blk_id) const
{
auto it = m_blocks_info.find(blk_id);
if (it == m_blocks_info.end())
throw std::runtime_error("block hash wasn't found");
return it->second.already_generated_coins;
}
uint64_t test_generator::get_already_generated_coins(const cryptonote::block& blk) const
{
crypto::hash blk_hash;
get_block_hash(blk, blk_hash);
return get_already_generated_coins(blk_hash);
}
void test_generator::add_block(const cryptonote::block& blk, size_t txs_weight, std::vector<uint64_t>& block_weights, uint64_t already_generated_coins)
{
const size_t block_weight = txs_weight + get_transaction_weight(blk.miner_tx);
uint64_t block_reward;
cryptonote::get_base_block_reward(misc_utils::median(block_weights), block_weight, already_generated_coins, block_reward, m_hf_version, 0);
m_blocks_info.insert({get_block_hash(blk), block_info(blk.prev_id, already_generated_coins + block_reward, block_weight, blk)});
}
static void manual_calc_batched_governance(const test_generator &generator, const crypto::hash &head, loki_miner_tx_context &miner_tx_context, int hard_fork_version, uint64_t height)
{
miner_tx_context.batched_governance = 0;
if (hard_fork_version >= cryptonote::network_version_10_bulletproofs &&
cryptonote::height_has_governance_output(cryptonote::FAKECHAIN, hard_fork_version, height))
{
const cryptonote::config_t &network = cryptonote::get_config(cryptonote::FAKECHAIN, hard_fork_version);
uint64_t num_blocks = network.GOVERNANCE_REWARD_INTERVAL_IN_BLOCKS;
uint64_t start_height = height - num_blocks;
if (height < num_blocks)
{
start_height = 0;
num_blocks = height;
}
std::vector<block> blockchain;
blockchain.reserve(num_blocks);
generator.get_block_chain(blockchain, head, num_blocks);
for (const block &entry : blockchain)
{
uint64_t block_height = cryptonote::get_block_height(entry);
if (block_height < start_height)
continue;
if (entry.major_version >= network_version_10_bulletproofs)
miner_tx_context.batched_governance += cryptonote::derive_governance_from_block_reward(cryptonote::FAKECHAIN, entry);
}
}
}
bool test_generator::construct_block(cryptonote::block& blk, uint64_t height, const crypto::hash& prev_id,
const cryptonote::account_base& miner_acc, uint64_t timestamp, uint64_t already_generated_coins,
std::vector<uint64_t>& block_weights, const std::list<cryptonote::transaction>& tx_list,
const crypto::public_key& sn_pub_key /* = crypto::null_key */, const std::vector<sn_contributor_t>& sn_infos)
{
/// a temporary workaround
blk.major_version = m_hf_version;
blk.minor_version = m_hf_version;
blk.timestamp = timestamp;
blk.prev_id = prev_id;
blk.tx_hashes.reserve(tx_list.size());
BOOST_FOREACH(const transaction &tx, tx_list)
{
crypto::hash tx_hash;
get_transaction_hash(tx, tx_hash);
blk.tx_hashes.push_back(tx_hash);
}
uint64_t total_fee = 0;
size_t txs_weight = 0;
BOOST_FOREACH(auto& tx, tx_list)
{
uint64_t fee = 0;
bool r = get_tx_fee(tx, fee);
CHECK_AND_ASSERT_MES(r, false, "wrong transaction passed to construct_block");
total_fee += fee;
txs_weight += get_transaction_weight(tx);
}
blk.miner_tx = AUTO_VAL_INIT(blk.miner_tx);
size_t target_block_weight = txs_weight + get_transaction_weight(blk.miner_tx);
cryptonote::loki_miner_tx_context miner_tx_context(cryptonote::FAKECHAIN, sn_pub_key, sn_infos);
manual_calc_batched_governance(*this, prev_id, miner_tx_context, m_hf_version, height);
while (true)
{
if (!construct_miner_tx(height, misc_utils::median(block_weights), already_generated_coins, target_block_weight, total_fee, miner_acc.get_keys().m_account_address, blk.miner_tx, blobdata(), m_hf_version, miner_tx_context))
return false;
size_t actual_block_weight = txs_weight + get_transaction_weight(blk.miner_tx);
if (target_block_weight < actual_block_weight)
{
target_block_weight = actual_block_weight;
}
else if (actual_block_weight < target_block_weight)
{
size_t delta = target_block_weight - actual_block_weight;
blk.miner_tx.extra.resize(blk.miner_tx.extra.size() + delta, 0);
actual_block_weight = txs_weight + get_transaction_weight(blk.miner_tx);
if (actual_block_weight == target_block_weight)
{
break;
}
else
{
CHECK_AND_ASSERT_MES(target_block_weight < actual_block_weight, false, "Unexpected block size");
delta = actual_block_weight - target_block_weight;
blk.miner_tx.extra.resize(blk.miner_tx.extra.size() - delta);
actual_block_weight = txs_weight + get_transaction_weight(blk.miner_tx);
if (actual_block_weight == target_block_weight)
{
break;
}
else
{
CHECK_AND_ASSERT_MES(actual_block_weight < target_block_weight, false, "Unexpected block size");
blk.miner_tx.extra.resize(blk.miner_tx.extra.size() + delta, 0);
target_block_weight = txs_weight + get_transaction_weight(blk.miner_tx);
}
}
}
else
{
break;
}
}
//blk.tree_root_hash = get_tx_tree_hash(blk);
// Nonce search...
blk.nonce = 0;
while (!miner::find_nonce_for_given_block(blk, get_test_difficulty(m_hf_version), height))
blk.timestamp++;
add_block(blk, txs_weight, block_weights, already_generated_coins);
return true;
}
bool test_generator::construct_block(cryptonote::block& blk, const cryptonote::account_base& miner_acc, uint64_t timestamp)
{
std::vector<uint64_t> block_weights;
std::list<cryptonote::transaction> tx_list;
return construct_block(blk, 0, null_hash, miner_acc, timestamp, 0, block_weights, tx_list);
}
bool test_generator::construct_block(cryptonote::block& blk, const cryptonote::block& blk_prev,
const cryptonote::account_base& miner_acc,
const std::list<cryptonote::transaction>& tx_list/* = {}*/,
const crypto::public_key& sn_pub_key /* = crypto::null_key */, const std::vector<sn_contributor_t>& sn_infos)
{
uint64_t height = boost::get<txin_gen>(blk_prev.miner_tx.vin.front()).height + 1;
crypto::hash prev_id = get_block_hash(blk_prev);
// Keep difficulty unchanged
uint64_t timestamp = blk_prev.timestamp + current_difficulty_window(m_hf_version); // DIFFICULTY_BLOCKS_ESTIMATE_TIMESPAN;
uint64_t already_generated_coins = get_already_generated_coins(prev_id);
std::vector<uint64_t> block_weights;
get_last_n_block_weights(block_weights, prev_id, CRYPTONOTE_REWARD_BLOCKS_WINDOW);
return construct_block(blk, height, prev_id, miner_acc, timestamp, already_generated_coins, block_weights, tx_list, sn_pub_key, sn_infos);
}
bool test_generator::construct_block_manually(block& blk, const block& prev_block, const account_base& miner_acc,
int actual_params/* = bf_none*/, uint8_t major_ver/* = 0*/,
uint8_t minor_ver/* = 0*/, uint64_t timestamp/* = 0*/,
const crypto::hash& prev_id/* = crypto::hash()*/, const difficulty_type& diffic/* = 1*/,
const transaction& miner_tx/* = transaction()*/,
const std::vector<crypto::hash>& tx_hashes/* = std::vector<crypto::hash>()*/,
size_t txs_weight/* = 0*/)
{
blk.major_version = actual_params & bf_major_ver ? major_ver : CURRENT_BLOCK_MAJOR_VERSION;
blk.minor_version = actual_params & bf_minor_ver ? minor_ver : CURRENT_BLOCK_MINOR_VERSION;
blk.timestamp = actual_params & bf_timestamp ? timestamp : prev_block.timestamp + DIFFICULTY_BLOCKS_ESTIMATE_TIMESPAN; // Keep difficulty unchanged
blk.prev_id = actual_params & bf_prev_id ? prev_id : get_block_hash(prev_block);
blk.tx_hashes = actual_params & bf_tx_hashes ? tx_hashes : std::vector<crypto::hash>();
size_t height = get_block_height(prev_block) + 1;
uint64_t already_generated_coins = get_already_generated_coins(prev_block);
std::vector<uint64_t> block_weights;
get_last_n_block_weights(block_weights, get_block_hash(prev_block), CRYPTONOTE_REWARD_BLOCKS_WINDOW);
if (actual_params & bf_miner_tx)
{
blk.miner_tx = miner_tx;
}
else
{
// TODO: This will work, until size of constructed block is less then CRYPTONOTE_BLOCK_GRANTED_FULL_REWARD_ZONE
cryptonote::loki_miner_tx_context miner_tx_context(cryptonote::FAKECHAIN);
manual_calc_batched_governance(*this, prev_id, miner_tx_context, m_hf_version, height);
size_t current_block_weight = txs_weight + get_transaction_weight(blk.miner_tx);
if (!construct_miner_tx(height, misc_utils::median(block_weights), already_generated_coins, current_block_weight, 0, miner_acc.get_keys().m_account_address, blk.miner_tx, blobdata(), m_hf_version, miner_tx_context))
return false;
}
//blk.tree_root_hash = get_tx_tree_hash(blk);
difficulty_type a_diffic = actual_params & bf_diffic ? diffic : get_test_difficulty(m_hf_version);
fill_nonce(blk, a_diffic, height);
add_block(blk, txs_weight, block_weights, already_generated_coins);
return true;
}
bool test_generator::construct_block_manually_tx(cryptonote::block& blk, const cryptonote::block& prev_block,
const cryptonote::account_base& miner_acc,
const std::vector<crypto::hash>& tx_hashes, size_t txs_weight)
{
return construct_block_manually(blk, prev_block, miner_acc, bf_tx_hashes, 0, 0, 0, crypto::hash(), 0, transaction(), tx_hashes, txs_weight);
}
cryptonote::transaction make_registration_tx(std::vector<test_event_entry>& events,
const cryptonote::account_base& account,
const cryptonote::keypair& service_node_keys,
uint64_t operator_cut,
const std::vector<cryptonote::account_public_address>& addresses,
const std::vector<uint64_t>& portions,
const cryptonote::block& head,
uint8_t hf_version)
{
const auto new_height = cryptonote::get_block_height(head) + 1;
const auto staking_requirement = service_nodes::get_staking_requirement(cryptonote::FAKECHAIN, new_height, hf_version);
uint64_t amount = service_nodes::portions_to_amount(portions[0], staking_requirement);
cryptonote::transaction tx;
const auto unlock_time = new_height + service_nodes::staking_num_lock_blocks(cryptonote::FAKECHAIN);
std::vector<uint8_t> extra;
add_service_node_pubkey_to_tx_extra(extra, service_node_keys.pub);
const uint64_t exp_timestamp = time(nullptr) + STAKING_AUTHORIZATION_EXPIRATION_WINDOW;
crypto::hash hash;
if (!cryptonote::get_registration_hash(addresses, operator_cut, portions, exp_timestamp, hash))
{
MERROR("Could not make registration hash from addresses and portions");
return {};
}
crypto::signature signature;
crypto::generate_signature(hash, service_node_keys.pub, service_node_keys.sec, signature);
add_service_node_register_to_tx_extra(extra, addresses, operator_cut, portions, exp_timestamp, signature);
add_service_node_contributor_to_tx_extra(extra, addresses.at(0));
TxBuilder(events, tx, head, account, account, amount, hf_version).is_staking(true).with_extra(extra).with_unlock_time(unlock_time).with_per_output_unlock(true).build();
events.push_back(tx);
return tx;
}
cryptonote::transaction make_deregistration_tx(const std::vector<test_event_entry>& events,
const cryptonote::account_base& account,
const cryptonote::block& head,
const cryptonote::tx_extra_service_node_deregister& deregister,
uint8_t hf_version,
uint64_t fee)
{
cryptonote::transaction tx;
std::vector<uint8_t> extra;
const bool full_tx_deregister_made = cryptonote::add_service_node_deregister_to_tx_extra(tx.extra, deregister);
if (!full_tx_deregister_made) {
MERROR("Could not add deregister to extra");
return {};
}
const uint64_t amount = 0;
if (fee) TxBuilder(events, tx, head, account, account, amount, hf_version).with_fee(fee).with_extra(extra).with_per_output_unlock(true).build();
tx.version = cryptonote::transaction::get_max_version_for_hf(hf_version, cryptonote::FAKECHAIN);
tx.type = cryptonote::transaction::type_deregister;
return tx;
}
cryptonote::transaction make_default_registration_tx(std::vector<test_event_entry>& events,
const cryptonote::account_base& account,
const cryptonote::keypair& service_node_keys,
const cryptonote::block& head,
uint8_t hf_version)
{
return make_registration_tx(events, account, service_node_keys, 0, { account.get_keys().m_account_address }, { STAKING_PORTIONS }, head, hf_version);
}
namespace
{
uint64_t get_inputs_amount(const vector<tx_source_entry> &s)
{
uint64_t r = 0;
BOOST_FOREACH(const tx_source_entry &e, s)
{
r += e.amount;
}
return r;
}
}
uint64_t get_amount(const cryptonote::account_base& account, const cryptonote::transaction& tx, rct::key& mask, int i)
{
crypto::public_key tx_pub_key = get_tx_pub_key_from_extra(tx);
crypto::key_derivation derivation;
if (!crypto::generate_key_derivation(tx_pub_key, account.get_keys().m_view_secret_key, derivation))
return 0;
if (tx.vout[i].target.type() != typeid(cryptonote::txout_to_key))
return 0;
hw::device& hwdev = hw::get_device("default");
uint64_t money_transferred = 0;
crypto::secret_key scalar1;
hwdev.derivation_to_scalar(derivation, i, scalar1);
try
{
switch (tx.rct_signatures.type)
{
case rct::RCTTypeSimple:
case rct::RCTTypeBulletproof:
money_transferred = rct::decodeRctSimple(tx.rct_signatures, rct::sk2rct(scalar1), i, mask, hwdev);
break;
case rct::RCTTypeFull:
money_transferred = rct::decodeRct(tx.rct_signatures, rct::sk2rct(scalar1), i, hwdev);
break;
case rct::RCTTypeNull:
money_transferred = tx.vout[i].amount;
break;
default:
LOG_PRINT_L0("Unsupported rct type: " << tx.rct_signatures.type);
return 0;
}
}
catch (const std::exception &e)
{
LOG_PRINT_L0("Failed to decode input " << i);
return 0;
}
return money_transferred;
}
uint64_t get_amount(const cryptonote::account_base& account, const cryptonote::transaction& tx, int i)
{
rct::key mask_unused;
return get_amount(account, tx, mask_unused, i);
}
bool init_output_indices(std::vector<output_index>& outs, std::vector<size_t>& outs_mine, const std::vector<cryptonote::block>& blockchain, const map_hash2tx_t& mtx, const cryptonote::account_base& from) {
for (const block& blk : blockchain) {
vector<const transaction*> vtx;
vtx.push_back(&blk.miner_tx);
for(const crypto::hash &h : blk.tx_hashes) {
const auto cit = mtx.find(h);
if (mtx.end() == cit)
throw std::runtime_error("block contains an unknown tx hash");
vtx.push_back(cit->second);
}
for (size_t i = 0; i < vtx.size(); i++) {
const transaction &tx = *vtx[i];
for (size_t j = 0; j < tx.vout.size(); ++j) {
const tx_out &out = tx.vout[j];
if (out.target.which() == 2) { // out_to_key
const auto height = boost::get<txin_gen>(*blk.miner_tx.vin.begin()).height; /// replace with front?
output_index oi(out.target, out.amount, height, i, j, &blk, vtx[i]);
oi.unlock_time = (tx.version < 3) ? tx.unlock_time : tx.output_unlock_times[j];
oi.idx = outs.size();
oi.mask = rct::zeroCommit(out.amount);
oi.is_coin_base = (i == 0);
oi.deterministic_key_pair = false;
oi.set_rct(tx.version >= 2);
const auto gov_key = cryptonote::get_deterministic_keypair_from_height(height);
bool account_received_money = is_out_to_acc(from.get_keys(), boost::get<txout_to_key>(out.target), gov_key.pub, {}, j);
if (account_received_money)
oi.deterministic_key_pair = true;
if (!account_received_money)
account_received_money = is_out_to_acc(from.get_keys(), boost::get<txout_to_key>(out.target), get_tx_pub_key_from_extra(tx), get_additional_tx_pub_keys_from_extra(tx), j);
if (account_received_money)
{
outs_mine.push_back(oi.idx);
if (oi.amount == 0)
{
oi.amount = get_amount(from, tx, j);
oi.mask = tx.rct_signatures.outPk[j].mask;
}
}
outs.push_back(oi);
}
}
}
}
return true;
}
bool init_spent_output_indices(std::vector<output_index>& outs,
const std::vector<size_t>& outs_mine,
const std::vector<cryptonote::block>& blockchain,
const map_hash2tx_t& mtx,
const cryptonote::account_base& from)
{
if (mtx.empty())
{
// NOTE: There are no transactions, so outputs haven't been spent yet (i.e. a blockchain with strictly just rewards)
return true;
}
for (size_t out_idx : outs_mine) {
output_index& oi = outs[out_idx];
// construct key image for this output
crypto::key_image img;
keypair in_ephemeral;
crypto::public_key out_key = boost::get<txout_to_key>(oi.out).key;
std::unordered_map<crypto::public_key, cryptonote::subaddress_index> subaddresses;
subaddresses[from.get_keys().m_account_address.m_spend_public_key] = {0,0};
const auto tx_pk = oi.deterministic_key_pair ? get_deterministic_keypair_from_height(oi.blk_height).pub
: get_tx_pub_key_from_extra(*oi.p_tx);
generate_key_image_helper(from.get_keys(),
subaddresses,
out_key,
tx_pk,
get_additional_tx_pub_keys_from_extra(*oi.p_tx),
oi.out_no,
in_ephemeral,
img,
hw::get_device(("default")));
// lookup for this key image in the events vector
BOOST_FOREACH(auto& tx_pair, mtx) {
const transaction& tx = *tx_pair.second;
BOOST_FOREACH(const txin_v &in, tx.vin) {
if (typeid(txin_to_key) == in.type()) {
const txin_to_key &itk = boost::get<txin_to_key>(in);
if (itk.k_image == img) {
oi.spent = true;
}
}
}
}
}
return true;
}
static bool fill_output_entries(const std::vector<output_index>& out_indices, size_t sender_out, size_t nmix, size_t& real_entry_idx, std::vector<tx_source_entry::output_entry>& output_entries)
{
if (out_indices.size() <= nmix)
return false;
bool sender_out_found = false;
size_t rest = nmix;
for (size_t i = 0; i < out_indices.size() && (0 < rest || !sender_out_found); ++i)
{
const output_index& oi = out_indices[i];
if (oi.spent)
continue;
bool append = false;
if (i == sender_out)
{
append = true;
sender_out_found = true;
real_entry_idx = output_entries.size();
}
else if (0 < rest)
{
--rest;
append = true;
}
if (append)
{
rct::key comm = oi.commitment();
const txout_to_key& otk = boost::get<txout_to_key>(oi.out);
output_entries.push_back(tx_source_entry::output_entry(oi.idx, rct::ctkey({rct::pk2rct(otk.key), comm})));
}
}
return 0 == rest && sender_out_found;
}
bool fill_tx_sources(std::vector<tx_source_entry>& sources, const std::vector<test_event_entry>& events,
const block& blk_head, const cryptonote::account_base& from, uint64_t amount, size_t nmix)
{
/// Don't fill up sources if the amount is zero
if (amount == 0) return true;
std::vector<output_index> outs;
std::vector<size_t> outs_mine;
std::vector<cryptonote::block> blockchain;
map_hash2tx_t mtx;
if (!find_block_chain(events, blockchain, mtx, get_block_hash(blk_head)))
return false;
if (!init_output_indices(outs, outs_mine, blockchain, mtx, from))
return false;
if (!init_spent_output_indices(outs, outs_mine, blockchain, mtx, from))
return false;
uint64_t sources_amount = 0;
bool sources_found = false;
for (const size_t sender_out : outs_mine) {
const output_index& oi = outs[sender_out];
if (oi.spent) continue;
if (!cryptonote::rules::is_output_unlocked(oi.unlock_time, get_block_height(blk_head))) continue;
cryptonote::tx_source_entry ts;
const auto& tx = *oi.p_tx;
ts.amount = oi.amount;
ts.real_output_in_tx_index = oi.out_no;
ts.real_out_tx_key = get_tx_pub_key_from_extra(tx); // incoming tx public key
ts.real_out_additional_tx_keys = get_additional_tx_pub_keys_from_extra(tx);
ts.mask = rct::identity();
ts.rct = true;
rct::key comm = rct::zeroCommit(ts.amount);
for(auto & ot : ts.outputs)
ot.second.mask = comm;
/// Filling in the mask
{
crypto::key_derivation derivation;
bool r = crypto::generate_key_derivation(ts.real_out_tx_key, from.get_keys().m_view_secret_key, derivation);
CHECK_AND_ASSERT_MES(r, false, "Failed to generate key derivation");
crypto::secret_key amount_key;
crypto::derivation_to_scalar(derivation, oi.out_no, amount_key);
if (tx.rct_signatures.type == rct::RCTTypeSimple ||
tx.rct_signatures.type == rct::RCTTypeBulletproof ||
tx.rct_signatures.type == rct::RCTTypeBulletproof2)
{
rct::decodeRctSimple(tx.rct_signatures, rct::sk2rct(amount_key), oi.out_no, ts.mask, hw::get_device("default"));
}
else if (tx.rct_signatures.type == rct::RCTTypeFull)
{
rct::decodeRct(tx.rct_signatures, rct::sk2rct(amount_key), oi.out_no, ts.mask, hw::get_device("default"));
}
}
if (!fill_output_entries(outs, sender_out, nmix, ts.real_output, ts.outputs)) continue;
sources.push_back(ts);
sources_amount += ts.amount;
sources_found = amount <= sources_amount;
if (sources_found) return true;
}
return false;
}
bool fill_tx_destination(tx_destination_entry &de, const cryptonote::account_public_address &to, uint64_t amount) {
de.addr = to;
de.amount = amount;
return true;
}
void fill_tx_sources_and_multi_destinations(const std::vector<test_event_entry>& events,
const block& blk_head,
const cryptonote::account_base& from,
const cryptonote::account_public_address& to,
uint64_t const *amount,
int num_amounts,
uint64_t fee,
size_t nmix,
std::vector<tx_source_entry>& sources,
std::vector<tx_destination_entry>& destinations,
bool always_add_change_ouput,
uint64_t *change_amount)
{
sources.clear();
destinations.clear();
uint64_t total_amount = fee;
for (int i = 0; i < num_amounts; ++i)
total_amount += amount[i];
if (!fill_tx_sources(sources, events, blk_head, from, total_amount, nmix))
throw std::runtime_error("couldn't fill transaction sources");
for (int i = 0; i < num_amounts; ++i)
{
tx_destination_entry de;
if (!fill_tx_destination(de, to, amount[i]))
throw std::runtime_error("couldn't fill transaction destination");
destinations.push_back(de);
}
tx_destination_entry de_change;
uint64_t cash_back = get_inputs_amount(sources) - (total_amount);
if (0 < cash_back || always_add_change_ouput)
{
if (!fill_tx_destination(de_change, get_address(from), cash_back))
throw std::runtime_error("couldn't fill transaction cache back destination");
destinations.push_back(de_change);
}
if (change_amount) *change_amount = (cash_back > 0) ? cash_back : 0;
}
map_txid_output_t::iterator block_tracker::find_out(const crypto::hash &txid, size_t out)
{
return find_out(std::make_pair(txid, out));
}
map_txid_output_t::iterator block_tracker::find_out(const output_hasher &id)
{
return m_map_outs.find(id);
}
void block_tracker::process(const std::vector<cryptonote::block>& blockchain, const map_hash2tx_t& mtx)
{
std::vector<const cryptonote::block*> blks;
blks.reserve(blockchain.size());
BOOST_FOREACH (const block& blk, blockchain) {
auto hsh = get_block_hash(blk);
auto it = m_blocks.find(hsh);
if (it == m_blocks.end()){
m_blocks[hsh] = blk;
}
blks.push_back(&m_blocks[hsh]);
}
process(blks, mtx);
}
void block_tracker::process(const std::vector<const cryptonote::block*>& blockchain, const map_hash2tx_t& mtx)
{
BOOST_FOREACH (const block* blk, blockchain) {
vector<const transaction*> vtx;
vtx.push_back(&(blk->miner_tx));
BOOST_FOREACH(const crypto::hash &h, blk->tx_hashes) {
const map_hash2tx_t::const_iterator cit = mtx.find(h);
CHECK_AND_ASSERT_THROW_MES(mtx.end() != cit, "block contains an unknown tx hash");
vtx.push_back(cit->second);
}
for (size_t i = 0; i < vtx.size(); i++) {
process(blk, vtx[i], i);
}
}
}
void block_tracker::process(const block* blk, const transaction * tx, size_t i)
{
for (size_t j = 0; j < tx->vout.size(); ++j) {
const tx_out &out = tx->vout[j];
if (typeid(cryptonote::txout_to_key) != out.target.type()) { // out_to_key
continue;
}
const uint64_t rct_amount = tx->version == 2 ? 0 : out.amount;
const output_hasher hid = std::make_pair(tx->hash, j);
auto it = find_out(hid);
if (it != m_map_outs.end()){
continue;
}
output_index oi(out.target, out.amount, boost::get<txin_gen>(blk->miner_tx.vin.front()).height, i, j, blk, tx);
oi.set_rct(tx->version == 2);
oi.idx = m_outs[rct_amount].size();
oi.unlock_time = tx->unlock_time;
oi.is_coin_base = tx->vin.size() == 1 && tx->vin.back().type() == typeid(cryptonote::txin_gen);
m_outs[rct_amount].push_back(oi);
m_map_outs.insert({hid, oi});
}
}
void block_tracker::global_indices(const cryptonote::transaction *tx, std::vector<uint64_t> &indices)
{
indices.clear();
for(size_t j=0; j < tx->vout.size(); ++j){
auto it = find_out(tx->hash, j);
if (it != m_map_outs.end()){
indices.push_back(it->second.idx);
}
}
}
void block_tracker::get_fake_outs(size_t num_outs, uint64_t amount, uint64_t global_index, uint64_t cur_height, std::vector<get_outs_entry> &outs){
auto & vct = m_outs[amount];
const size_t n_outs = vct.size();
std::set<size_t> used;
std::vector<size_t> choices;
choices.resize(n_outs);
for(size_t i=0; i < n_outs; ++i) choices[i] = i;
shuffle(choices.begin(), choices.end(), std::default_random_engine(crypto::rand<unsigned>()));
size_t n_iters = 0;
ssize_t idx = -1;
outs.reserve(num_outs);
while(outs.size() < num_outs){
n_iters += 1;
idx = (idx + 1) % n_outs;
size_t oi_idx = choices[(size_t)idx];
CHECK_AND_ASSERT_THROW_MES((n_iters / n_outs) <= outs.size(), "Fake out pick selection problem");
auto & oi = vct[oi_idx];
if (oi.idx == global_index)
continue;
if (oi.out.type() != typeid(cryptonote::txout_to_key))
continue;
if (oi.unlock_time > cur_height)
continue;
if (used.find(oi_idx) != used.end())
continue;
rct::key comm = oi.commitment();
auto out = boost::get<txout_to_key>(oi.out);
auto item = std::make_tuple(oi.idx, out.key, comm);
outs.push_back(item);
used.insert(oi_idx);
}
}
std::string block_tracker::dump_data()
{
ostringstream ss;
for (auto &m_out : m_outs)
{
auto & vct = m_out.second;
ss << m_out.first << " => |vector| = " << vct.size() << '\n';
for (const auto & oi : vct)
{
auto out = boost::get<txout_to_key>(oi.out);
ss << " idx: " << oi.idx
<< ", rct: " << oi.rct
<< ", xmr: " << oi.amount
<< ", key: " << dump_keys(out.key.data)
<< ", msk: " << dump_keys(oi.comm.bytes)
<< ", txid: " << dump_keys(oi.p_tx->hash.data)
<< '\n';
}
}
return ss.str();
}
void block_tracker::dump_data(const std::string & fname)
{
ofstream myfile;
myfile.open (fname);
myfile << dump_data();
myfile.close();
}
std::string dump_data(const cryptonote::transaction &tx)
{
ostringstream ss;
ss << "msg: " << dump_keys(tx.rct_signatures.message.bytes)
<< ", vin: ";
for(auto & in : tx.vin){
if (typeid(txin_to_key) == in.type()){
auto tk = boost::get<txin_to_key>(in);
std::vector<uint64_t> full_off;
int64_t last = -1;
ss << " i: " << tk.amount << " [";
for(auto ix : tk.key_offsets){
ss << ix << ", ";
if (last == -1){
last = ix;
full_off.push_back(ix);
} else {
last += ix;
full_off.push_back((uint64_t)last);
}
}
ss << "], full: [";
for(auto ix : full_off){
ss << ix << ", ";
}
ss << "]; ";
} else if (typeid(txin_gen) == in.type()){
ss << " h: " << boost::get<txin_gen>(in).height << ", ";
} else {
ss << " ?, ";
}
}
ss << ", mixring: \n";
for (const auto & row : tx.rct_signatures.mixRing){
for(auto cur : row){
ss << " (" << dump_keys(cur.dest.bytes) << ", " << dump_keys(cur.mask.bytes) << ")\n ";
}
ss << "; ";
}
return ss.str();
}
cryptonote::account_public_address get_address(const var_addr_t& inp)
{
if (typeid(cryptonote::account_public_address) == inp.type()){
return boost::get<cryptonote::account_public_address>(inp);
} else if(typeid(cryptonote::account_keys) == inp.type()){
return boost::get<cryptonote::account_keys>(inp).m_account_address;
} else if (typeid(cryptonote::account_base) == inp.type()){
return boost::get<cryptonote::account_base>(inp).get_keys().m_account_address;
} else if (typeid(cryptonote::tx_destination_entry) == inp.type()){
return boost::get<cryptonote::tx_destination_entry>(inp).addr;
} else {
throw std::runtime_error("Unexpected type");
}
}
cryptonote::account_public_address get_address(const cryptonote::account_public_address& inp)
{
return inp;
}
cryptonote::account_public_address get_address(const cryptonote::account_keys& inp)
{
return inp.m_account_address;
}
cryptonote::account_public_address get_address(const cryptonote::account_base& inp)
{
return inp.get_keys().m_account_address;
}
cryptonote::account_public_address get_address(const cryptonote::tx_destination_entry& inp)
{
return inp.addr;
}
uint64_t sum_amount(const std::vector<tx_destination_entry>& destinations)
{
uint64_t amount = 0;
for(auto & cur : destinations){
amount += cur.amount;
}
return amount;
}
uint64_t sum_amount(const std::vector<cryptonote::tx_source_entry>& sources)
{
uint64_t amount = 0;
for(auto & cur : sources){
amount += cur.amount;
}
return amount;
}
void fill_tx_destinations(const var_addr_t& from, const std::vector<tx_destination_entry>& dests,
uint64_t fee,
const std::vector<tx_source_entry> &sources,
std::vector<tx_destination_entry>& destinations,
bool always_change)
{
destinations.clear();
uint64_t amount = sum_amount(dests);
std::copy(dests.begin(), dests.end(), std::back_inserter(destinations));
tx_destination_entry de_change;
uint64_t cache_back = get_inputs_amount(sources) - (amount + fee);
if (cache_back > 0 || always_change) {
if (!fill_tx_destination(de_change, get_address(from), cache_back <= 0 ? 0 : cache_back))
throw std::runtime_error("couldn't fill transaction cache back destination");
destinations.push_back(de_change);
}
}
void fill_tx_destinations(const var_addr_t& from, const cryptonote::account_public_address& to,
uint64_t amount, uint64_t fee,
const std::vector<tx_source_entry> &sources,
std::vector<tx_destination_entry>& destinations,
std::vector<tx_destination_entry>& destinations_pure,
bool always_change)
{
destinations.clear();
tx_destination_entry de;
if (!fill_tx_destination(de, to, amount))
throw std::runtime_error("couldn't fill transaction destination");
destinations.push_back(de);
destinations_pure.push_back(de);
tx_destination_entry de_change;
uint64_t cache_back = get_inputs_amount(sources) - (amount + fee);
if (cache_back > 0 || always_change) {
if (!fill_tx_destination(de_change, get_address(from), cache_back <= 0 ? 0 : cache_back))
throw std::runtime_error("couldn't fill transaction cache back destination");
destinations.push_back(de_change);
}
}
void fill_tx_sources_and_destinations(const std::vector<test_event_entry>& events, const block& blk_head,
const cryptonote::account_base& from, const cryptonote::account_public_address& to,
uint64_t amount, uint64_t fee, size_t nmix, std::vector<tx_source_entry>& sources,
std::vector<tx_destination_entry>& destinations, uint64_t *change_amount)
{
uint64_t *amounts = &amount;
int num_amounts = 1;
fill_tx_sources_and_multi_destinations(events, blk_head, from, to, amounts, num_amounts, fee, nmix, sources, destinations, true /*always_add_change_output*/, change_amount);
}
void fill_tx_destinations(const var_addr_t& from, const cryptonote::account_public_address& to,
uint64_t amount, uint64_t fee,
const std::vector<tx_source_entry> &sources,
std::vector<tx_destination_entry>& destinations, bool always_change)
{
std::vector<tx_destination_entry> destinations_pure;
fill_tx_destinations(from, to, amount, fee, sources, destinations, destinations_pure, always_change);
}
void fill_nonce(cryptonote::block& blk, const difficulty_type& diffic, uint64_t height)
{
blk.nonce = 0;
while (!miner::find_nonce_for_given_block(blk, diffic, height))
blk.timestamp++;
}
crypto::public_key get_output_key(const keypair& txkey,
const cryptonote::account_public_address& addr,
size_t output_index)
{
crypto::key_derivation derivation;
crypto::generate_key_derivation(addr.m_view_public_key, txkey.sec, derivation);
crypto::public_key out_eph_public_key;
crypto::derive_public_key(derivation, output_index, addr.m_spend_public_key, out_eph_public_key);
return out_eph_public_key;
}
cryptonote::tx_destination_entry build_dst(const var_addr_t& to, bool is_subaddr, uint64_t amount)
{
tx_destination_entry de;
de.amount = amount;
de.addr = get_address(to);
de.is_subaddress = is_subaddr;
return de;
}
std::vector<cryptonote::tx_destination_entry> build_dsts(const var_addr_t& to1, bool sub1, uint64_t am1)
{
std::vector<cryptonote::tx_destination_entry> res;
res.push_back(build_dst(to1, sub1, am1));
return res;
}
std::vector<cryptonote::tx_destination_entry> build_dsts(std::initializer_list<dest_wrapper_t> inps)
{
std::vector<cryptonote::tx_destination_entry> res;
res.reserve(inps.size());
for(auto & c : inps){
res.push_back(build_dst(c.addr, c.is_subaddr, c.amount));
}
return res;
}
bool construct_tx_to_key(const std::vector<test_event_entry>& events, cryptonote::transaction& tx, const cryptonote::block& blk_head,
const cryptonote::account_base& from, const var_addr_t& to, uint64_t amount,
uint64_t fee, size_t nmix, rct::RangeProofType range_proof_type, int bp_version)
{
vector<tx_source_entry> sources;
vector<tx_destination_entry> destinations;
fill_tx_sources_and_destinations(events, blk_head, from, get_address(to), amount, fee, nmix, sources, destinations);
cryptonote::tx_destination_entry change_addr;
return construct_tx_rct(from.get_keys(), sources, destinations, change_addr, std::vector<uint8_t>(), tx, 0, range_proof_type, bp_version);
}
bool construct_tx_to_key(const std::vector<test_event_entry>& events, cryptonote::transaction& tx, const cryptonote::block& blk_head,
const cryptonote::account_base& from, std::vector<cryptonote::tx_destination_entry> destinations,
uint64_t fee, size_t nmix, rct::RangeProofType range_proof_type, int bp_version)
{
vector<tx_source_entry> sources;
vector<tx_destination_entry> destinations_all;
uint64_t amount = sum_amount(destinations);
if (!fill_tx_sources(sources, events, blk_head, from, amount + fee, nmix))
throw std::runtime_error("couldn't fill transaction sources");
fill_tx_destinations(from, destinations, fee, sources, destinations_all, true);
cryptonote::tx_destination_entry change_addr;
return construct_tx_rct(from.get_keys(), sources, destinations_all, change_addr, std::vector<uint8_t>(), tx, 0, range_proof_type, bp_version);
}
bool construct_tx_to_key(cryptonote::transaction& tx,
const cryptonote::account_base& from, const var_addr_t& to, uint64_t amount,
std::vector<cryptonote::tx_source_entry> &sources,
uint64_t fee, rct::RangeProofType range_proof_type, int bp_version)
{
cryptonote::tx_destination_entry change_addr;
vector<tx_destination_entry> destinations;
fill_tx_destinations(from, get_address(to), amount, fee, sources, destinations);
return construct_tx_rct(from.get_keys(), sources, destinations, change_addr, std::vector<uint8_t>(), tx, 0, range_proof_type, bp_version);
}
bool construct_tx_to_key(cryptonote::transaction& tx,
const cryptonote::account_base& from,
const std::vector<cryptonote::tx_destination_entry>& destinations,
std::vector<cryptonote::tx_source_entry> &sources,
uint64_t fee, rct::RangeProofType range_proof_type, int bp_version)
{
cryptonote::tx_destination_entry change_addr;
vector<tx_destination_entry> all_destinations;
fill_tx_destinations(from, destinations, fee, sources, all_destinations, true);
return construct_tx_rct(from.get_keys(), sources, all_destinations, change_addr, std::vector<uint8_t>(), tx, 0, range_proof_type, bp_version);
}
bool construct_tx_rct(const cryptonote::account_keys& sender_account_keys, std::vector<cryptonote::tx_source_entry>& sources, const std::vector<cryptonote::tx_destination_entry>& destinations, const boost::optional<cryptonote::tx_destination_entry>& change_addr, std::vector<uint8_t> extra, cryptonote::transaction& tx, uint64_t unlock_time, rct::RangeProofType range_proof_type, int bp_version)
{
std::unordered_map<crypto::public_key, cryptonote::subaddress_index> subaddresses;
subaddresses[sender_account_keys.m_account_address.m_spend_public_key] = {0, 0};
crypto::secret_key tx_key;
std::vector<crypto::secret_key> additional_tx_keys;
std::vector<tx_destination_entry> destinations_copy = destinations;
rct::RCTConfig rct_config = {range_proof_type, bp_version};
return construct_tx_and_get_tx_key(sender_account_keys, subaddresses, sources, destinations_copy, change_addr, extra, tx, unlock_time, tx_key, additional_tx_keys, rct_config, nullptr);
}
transaction construct_tx_with_fee(std::vector<test_event_entry>& events, const cryptonote::block& blk_head,
const cryptonote::account_base& acc_from, const cryptonote::account_base& acc_to,
uint64_t amount, uint64_t fee)
{
transaction tx;
TxBuilder(events, tx, blk_head, acc_from, acc_to, amount, cryptonote::network_version_7).with_fee(fee).build();
events.push_back(tx);
return tx;
}
uint64_t get_balance(const cryptonote::account_base& addr, const std::vector<cryptonote::block>& blockchain, const map_hash2tx_t& mtx) {
uint64_t res = 0;
std::vector<output_index> outs;
std::vector<size_t> outs_mine;
map_hash2tx_t confirmed_txs;
get_confirmed_txs(blockchain, mtx, confirmed_txs);
if (!init_output_indices(outs, outs_mine, blockchain, confirmed_txs, addr))
return false;
if (!init_spent_output_indices(outs, outs_mine, blockchain, confirmed_txs, addr))
return false;
for (const size_t out_idx : outs_mine) {
if (outs[out_idx].spent) continue;
res += outs[out_idx].amount;
}
return res;
}
uint64_t get_unlocked_balance(const cryptonote::account_base& addr, const std::vector<cryptonote::block>& blockchain, const map_hash2tx_t& mtx) {
if (blockchain.empty()) return 0;
uint64_t res = 0;
std::vector<output_index> outs;
std::vector<size_t> outs_mine;
map_hash2tx_t confirmed_txs;
get_confirmed_txs(blockchain, mtx, confirmed_txs);
if (!init_output_indices(outs, outs_mine, blockchain, confirmed_txs, addr))
return false;
if (!init_spent_output_indices(outs, outs_mine, blockchain, confirmed_txs, addr))
return false;
for (const size_t out_idx : outs_mine) {
const auto unlocked = rules::is_output_unlocked(outs[out_idx].unlock_time, get_block_height(blockchain.back()));
if (outs[out_idx].spent || !unlocked) continue;
res += outs[out_idx].amount;
}
return res;
}
bool extract_hard_forks(const std::vector<test_event_entry>& events, v_hardforks_t& hard_forks)
{
for(auto & ev : events)
{
if (typeid(event_replay_settings) == ev.type())
{
const auto & rep_settings = boost::get<event_replay_settings>(ev);
if (rep_settings.hard_forks)
{
const auto & hf = rep_settings.hard_forks.get();
std::copy(hf.begin(), hf.end(), std::back_inserter(hard_forks));
}
}
}
return !hard_forks.empty();
}
void get_confirmed_txs(const std::vector<cryptonote::block>& blockchain, const map_hash2tx_t& mtx, map_hash2tx_t& confirmed_txs)
{
std::unordered_set<crypto::hash> confirmed_hashes;
BOOST_FOREACH(const block& blk, blockchain)
{
BOOST_FOREACH(const crypto::hash& tx_hash, blk.tx_hashes)
{
confirmed_hashes.insert(tx_hash);
}
}
BOOST_FOREACH(const auto& tx_pair, mtx)
{
if (0 != confirmed_hashes.count(tx_pair.first))
{
confirmed_txs.insert(tx_pair);
}
}
}
bool trim_block_chain(std::vector<cryptonote::block>& blockchain, const crypto::hash& tail){
size_t cut = 0;
bool found = true;
for(size_t i = 0; i < blockchain.size(); ++i){
crypto::hash chash = get_block_hash(blockchain[i]);
if (chash == tail){
cut = i;
found = true;
break;
}
}
if (found && cut > 0){
blockchain.erase(blockchain.begin(), blockchain.begin() + cut);
}
return found;
}
bool trim_block_chain(std::vector<const cryptonote::block*>& blockchain, const crypto::hash& tail){
size_t cut = 0;
bool found = true;
for(size_t i = 0; i < blockchain.size(); ++i){
crypto::hash chash = get_block_hash(*blockchain[i]);
if (chash == tail){
cut = i;
found = true;
break;
}
}
if (found && cut > 0){
blockchain.erase(blockchain.begin(), blockchain.begin() + cut);
}
return found;
}
uint64_t num_blocks(const std::vector<test_event_entry>& events)
{
uint64_t res = 0;
BOOST_FOREACH(const test_event_entry& ev, events)
{
if (typeid(block) == ev.type())
{
res += 1;
}
}
return res;
}
cryptonote::block get_head_block(const std::vector<test_event_entry>& events)
{
for(auto it = events.rbegin(); it != events.rend(); ++it)
{
auto &ev = *it;
if (typeid(block) == ev.type())
{
return boost::get<block>(ev);
}
}
throw std::runtime_error("No block event");
}
bool find_block_chain(const std::vector<test_event_entry>& events, std::vector<cryptonote::block>& blockchain, map_hash2tx_t& mtx, const crypto::hash& head) {
std::unordered_map<crypto::hash, const block*> block_index;
BOOST_FOREACH(const test_event_entry& ev, events)
{
if (typeid(block) == ev.type())
{
const block* blk = &boost::get<block>(ev);
block_index[get_block_hash(*blk)] = blk;
}
else if (typeid(transaction) == ev.type())
{
const transaction& tx = boost::get<transaction>(ev);
mtx[get_transaction_hash(tx)] = &tx;
}
}
bool b_success = false;
crypto::hash id = head;
for (auto it = block_index.find(id); block_index.end() != it; it = block_index.find(id))
{
blockchain.push_back(*it->second);
id = it->second->prev_id;
if (null_hash == id)
{
b_success = true;
break;
}
}
reverse(blockchain.begin(), blockchain.end());
return b_success;
}
bool find_block_chain(const std::vector<test_event_entry>& events, std::vector<const cryptonote::block*>& blockchain, map_hash2tx_t& mtx, const crypto::hash& head) {
std::unordered_map<crypto::hash, const block*> block_index;
BOOST_FOREACH(const test_event_entry& ev, events)
{
if (typeid(block) == ev.type())
{
const block* blk = &boost::get<block>(ev);
block_index[get_block_hash(*blk)] = blk;
}
else if (typeid(transaction) == ev.type())
{
const transaction& tx = boost::get<transaction>(ev);
mtx[get_transaction_hash(tx)] = &tx;
}
}
bool b_success = false;
crypto::hash id = head;
for (auto it = block_index.find(id); block_index.end() != it; it = block_index.find(id))
{
blockchain.push_back(it->second);
id = it->second->prev_id;
if (null_hash == id)
{
b_success = true;
break;
}
}
reverse(blockchain.begin(), blockchain.end());
return b_success;
}
void test_chain_unit_base::register_callback(const std::string& cb_name, verify_callback cb)
{
m_callbacks[cb_name] = cb;
}
bool test_chain_unit_base::verify(const std::string& cb_name, cryptonote::core& c, size_t ev_index, const std::vector<test_event_entry> &events)
{
auto cb_it = m_callbacks.find(cb_name);
if(cb_it == m_callbacks.end())
{
LOG_ERROR("Failed to find callback " << cb_name);
return false;
}
return cb_it->second(c, ev_index, events);
}
bool test_chain_unit_base::check_block_verification_context(const cryptonote::block_verification_context& bvc, size_t event_idx, const cryptonote::block& /*blk*/)
{
return !bvc.m_verifivation_failed;
}
bool test_chain_unit_base::check_tx_verification_context(const cryptonote::tx_verification_context& tvc, bool /*tx_added*/, size_t /*event_index*/, const cryptonote::transaction& /*tx*/)
{
return !tvc.m_verifivation_failed;
}
bool test_chain_unit_base::check_tx_verification_context_array(const std::vector<cryptonote::tx_verification_context>& tvcs, size_t /*tx_added*/, size_t /*event_index*/, const std::vector<cryptonote::transaction>& /*txs*/)
{
for (const cryptonote::tx_verification_context &tvc: tvcs)
if (tvc.m_verifivation_failed)
return false;
return true;
}