oxen-mq/tests/test_requests.cpp

189 lines
5.6 KiB
C++
Raw Normal View History

#include "common.h"
2021-01-14 19:37:14 +01:00
#include <oxenmq/hex.h>
2021-01-14 19:37:14 +01:00
using namespace oxenmq;
TEST_CASE("basic requests", "[requests]") {
std::string listen = random_localhost();
2021-01-14 19:37:14 +01:00
OxenMQ server{
"", "", // generate ephemeral keys
false, // not a service node
Added support for general (non-SN) communications The existing code was largely set up for SN-to-SN or client-to-SN communications, where messages can always get to the right place because we can always send by pubkey. This doesn't work when we want general communications with a random remote address. This commit overhauls the way loki-mq handles communication in a few important ways: - Listening instances no longer pass bind addresses into the constructor; instead they call `listen_curve()` or `listen_plain()` before invoking `start()`. - `listen_curve()` is equivalent to the existing bind support: it listens on a socket and accepts encrypted handshaked connections from anyone who already knows the server's public key. - `listen_plain()` is all new: it sets up a plain text listening socket over which random clients can connect and talk. End-points aren't verified, and it isn't encrypted, but if you don't know who you are talking to then encryption isn't doing anything anyway. - Connecting to a remote now connections in CURVE encryption or NULL (plain-text) encryption based on whether you provide a remote_pubkey. For CURVE, the connection will fail if the pubkey does not match. - `ConnectionID` objects are now returned when connecting to a remote address; this object is then passed in to send/request/etc. to direct the message. For SN communication, ConnectionID's can be created implicitly from SN pubkey strings, so the existing interface of `lmq.send(pubkey, ...)` will still work in most cases. - A ConnectionID is now passed to the ConnectSuccess and ConnectFailure callbacks. This can be used to uniquely identify which connection succeeded or failed, and can determine whether the remote is a service node (`.sn()`) and/or the pubkey (`.pubkey()`). (Obviously the service node status is only available when the client can do service node lookups, and the pubkey() is only non-empty for encrypted connections).
2020-02-28 05:16:43 +01:00
[](auto) { return ""; },
};
Added support for general (non-SN) communications The existing code was largely set up for SN-to-SN or client-to-SN communications, where messages can always get to the right place because we can always send by pubkey. This doesn't work when we want general communications with a random remote address. This commit overhauls the way loki-mq handles communication in a few important ways: - Listening instances no longer pass bind addresses into the constructor; instead they call `listen_curve()` or `listen_plain()` before invoking `start()`. - `listen_curve()` is equivalent to the existing bind support: it listens on a socket and accepts encrypted handshaked connections from anyone who already knows the server's public key. - `listen_plain()` is all new: it sets up a plain text listening socket over which random clients can connect and talk. End-points aren't verified, and it isn't encrypted, but if you don't know who you are talking to then encryption isn't doing anything anyway. - Connecting to a remote now connections in CURVE encryption or NULL (plain-text) encryption based on whether you provide a remote_pubkey. For CURVE, the connection will fail if the pubkey does not match. - `ConnectionID` objects are now returned when connecting to a remote address; this object is then passed in to send/request/etc. to direct the message. For SN communication, ConnectionID's can be created implicitly from SN pubkey strings, so the existing interface of `lmq.send(pubkey, ...)` will still work in most cases. - A ConnectionID is now passed to the ConnectSuccess and ConnectFailure callbacks. This can be used to uniquely identify which connection succeeded or failed, and can determine whether the remote is a service node (`.sn()`) and/or the pubkey (`.pubkey()`). (Obviously the service node status is only available when the client can do service node lookups, and the pubkey() is only non-empty for encrypted connections).
2020-02-28 05:16:43 +01:00
server.listen_curve(listen);
std::atomic<int> hellos{0}, his{0};
server.add_category("public", Access{AuthLevel::none});
server.add_request_command("public", "hello", [&](Message& m) {
m.send_reply("123");
});
server.start();
2021-01-14 19:37:14 +01:00
OxenMQ client(
[](LogLevel, const char* file, int line, std::string msg) { std::cerr << file << ":" << line << " --C-- " << msg << "\n"; }
);
//client.log_level(LogLevel::trace);
client.start();
std::atomic<bool> connected{false}, failed{false};
std::string pubkey;
auto c = client.connect_remote(address{listen, server.get_pubkey()},
Added support for general (non-SN) communications The existing code was largely set up for SN-to-SN or client-to-SN communications, where messages can always get to the right place because we can always send by pubkey. This doesn't work when we want general communications with a random remote address. This commit overhauls the way loki-mq handles communication in a few important ways: - Listening instances no longer pass bind addresses into the constructor; instead they call `listen_curve()` or `listen_plain()` before invoking `start()`. - `listen_curve()` is equivalent to the existing bind support: it listens on a socket and accepts encrypted handshaked connections from anyone who already knows the server's public key. - `listen_plain()` is all new: it sets up a plain text listening socket over which random clients can connect and talk. End-points aren't verified, and it isn't encrypted, but if you don't know who you are talking to then encryption isn't doing anything anyway. - Connecting to a remote now connections in CURVE encryption or NULL (plain-text) encryption based on whether you provide a remote_pubkey. For CURVE, the connection will fail if the pubkey does not match. - `ConnectionID` objects are now returned when connecting to a remote address; this object is then passed in to send/request/etc. to direct the message. For SN communication, ConnectionID's can be created implicitly from SN pubkey strings, so the existing interface of `lmq.send(pubkey, ...)` will still work in most cases. - A ConnectionID is now passed to the ConnectSuccess and ConnectFailure callbacks. This can be used to uniquely identify which connection succeeded or failed, and can determine whether the remote is a service node (`.sn()`) and/or the pubkey (`.pubkey()`). (Obviously the service node status is only available when the client can do service node lookups, and the pubkey() is only non-empty for encrypted connections).
2020-02-28 05:16:43 +01:00
[&](auto conn) { pubkey = conn.pubkey(); connected = true; },
[&](auto, auto) { failed = true; });
1.1.0: invocation-time SN auth; failure responses This replaces the recognition of SN status to be checked per-command invocation rather than on connection. As this breaks the API quite substantially, though doesn't really affect the functionality, it seems suitable to bump the minor version. This requires a fundamental shift in how the calling application tells LokiMQ about service nodes: rather than using a callback invoked on connection, the application now has to call set_active_sns() (or the more efficient update_active_sns(), if changes are readily available) to update the list whenever it changes. LokiMQ then keeps this list internally and uses it when determining whether to invoke. This release also brings better request responses on errors: when a request fails, the data argument will now be set to the failure reason, one of: - TIMEOUT - UNKNOWNCOMMAND - NOT_A_SERVICE_NODE (the remote isn't running in SN mode) - FORBIDDEN (auth level denies the request) - FORBIDDEN_SN (SN required and the remote doesn't see us as a SN) Some of these (UNKNOWNCOMMAND, NOT_A_SERVICE_NODE, FORBIDDEN) were already sent by remotes, but there was no connection to a request and so they would log a warning, but the request would have to time out. These errors (minus TIMEOUT, plus NO_REPLY_TAG signalling that a command is a request but didn't include a reply tag) are also sent in response to regular commands, but they simply result in a log warning showing the error type and the command that caused the failure when received.
2020-04-13 00:57:19 +02:00
wait_for([&] { return connected || failed; });
{
auto lock = catch_lock();
1.1.0: invocation-time SN auth; failure responses This replaces the recognition of SN status to be checked per-command invocation rather than on connection. As this breaks the API quite substantially, though doesn't really affect the functionality, it seems suitable to bump the minor version. This requires a fundamental shift in how the calling application tells LokiMQ about service nodes: rather than using a callback invoked on connection, the application now has to call set_active_sns() (or the more efficient update_active_sns(), if changes are readily available) to update the list whenever it changes. LokiMQ then keeps this list internally and uses it when determining whether to invoke. This release also brings better request responses on errors: when a request fails, the data argument will now be set to the failure reason, one of: - TIMEOUT - UNKNOWNCOMMAND - NOT_A_SERVICE_NODE (the remote isn't running in SN mode) - FORBIDDEN (auth level denies the request) - FORBIDDEN_SN (SN required and the remote doesn't see us as a SN) Some of these (UNKNOWNCOMMAND, NOT_A_SERVICE_NODE, FORBIDDEN) were already sent by remotes, but there was no connection to a request and so they would log a warning, but the request would have to time out. These errors (minus TIMEOUT, plus NO_REPLY_TAG signalling that a command is a request but didn't include a reply tag) are also sent in response to regular commands, but they simply result in a log warning showing the error type and the command that caused the failure when received.
2020-04-13 00:57:19 +02:00
REQUIRE( connected );
REQUIRE_FALSE( failed );
REQUIRE( to_hex(pubkey) == to_hex(server.get_pubkey()) );
}
std::atomic<bool> got_reply{false};
bool success;
std::vector<std::string> data;
Added support for general (non-SN) communications The existing code was largely set up for SN-to-SN or client-to-SN communications, where messages can always get to the right place because we can always send by pubkey. This doesn't work when we want general communications with a random remote address. This commit overhauls the way loki-mq handles communication in a few important ways: - Listening instances no longer pass bind addresses into the constructor; instead they call `listen_curve()` or `listen_plain()` before invoking `start()`. - `listen_curve()` is equivalent to the existing bind support: it listens on a socket and accepts encrypted handshaked connections from anyone who already knows the server's public key. - `listen_plain()` is all new: it sets up a plain text listening socket over which random clients can connect and talk. End-points aren't verified, and it isn't encrypted, but if you don't know who you are talking to then encryption isn't doing anything anyway. - Connecting to a remote now connections in CURVE encryption or NULL (plain-text) encryption based on whether you provide a remote_pubkey. For CURVE, the connection will fail if the pubkey does not match. - `ConnectionID` objects are now returned when connecting to a remote address; this object is then passed in to send/request/etc. to direct the message. For SN communication, ConnectionID's can be created implicitly from SN pubkey strings, so the existing interface of `lmq.send(pubkey, ...)` will still work in most cases. - A ConnectionID is now passed to the ConnectSuccess and ConnectFailure callbacks. This can be used to uniquely identify which connection succeeded or failed, and can determine whether the remote is a service node (`.sn()`) and/or the pubkey (`.pubkey()`). (Obviously the service node status is only available when the client can do service node lookups, and the pubkey() is only non-empty for encrypted connections).
2020-02-28 05:16:43 +01:00
client.request(c, "public.hello", [&](bool ok, std::vector<std::string> data_) {
got_reply = true;
success = ok;
data = std::move(data_);
});
1.1.0: invocation-time SN auth; failure responses This replaces the recognition of SN status to be checked per-command invocation rather than on connection. As this breaks the API quite substantially, though doesn't really affect the functionality, it seems suitable to bump the minor version. This requires a fundamental shift in how the calling application tells LokiMQ about service nodes: rather than using a callback invoked on connection, the application now has to call set_active_sns() (or the more efficient update_active_sns(), if changes are readily available) to update the list whenever it changes. LokiMQ then keeps this list internally and uses it when determining whether to invoke. This release also brings better request responses on errors: when a request fails, the data argument will now be set to the failure reason, one of: - TIMEOUT - UNKNOWNCOMMAND - NOT_A_SERVICE_NODE (the remote isn't running in SN mode) - FORBIDDEN (auth level denies the request) - FORBIDDEN_SN (SN required and the remote doesn't see us as a SN) Some of these (UNKNOWNCOMMAND, NOT_A_SERVICE_NODE, FORBIDDEN) were already sent by remotes, but there was no connection to a request and so they would log a warning, but the request would have to time out. These errors (minus TIMEOUT, plus NO_REPLY_TAG signalling that a command is a request but didn't include a reply tag) are also sent in response to regular commands, but they simply result in a log warning showing the error type and the command that caused the failure when received.
2020-04-13 00:57:19 +02:00
reply_sleep();
{
auto lock = catch_lock();
REQUIRE( got_reply.load() );
REQUIRE( success );
REQUIRE( data == std::vector<std::string>{{"123"}} );
}
Added support for general (non-SN) communications The existing code was largely set up for SN-to-SN or client-to-SN communications, where messages can always get to the right place because we can always send by pubkey. This doesn't work when we want general communications with a random remote address. This commit overhauls the way loki-mq handles communication in a few important ways: - Listening instances no longer pass bind addresses into the constructor; instead they call `listen_curve()` or `listen_plain()` before invoking `start()`. - `listen_curve()` is equivalent to the existing bind support: it listens on a socket and accepts encrypted handshaked connections from anyone who already knows the server's public key. - `listen_plain()` is all new: it sets up a plain text listening socket over which random clients can connect and talk. End-points aren't verified, and it isn't encrypted, but if you don't know who you are talking to then encryption isn't doing anything anyway. - Connecting to a remote now connections in CURVE encryption or NULL (plain-text) encryption based on whether you provide a remote_pubkey. For CURVE, the connection will fail if the pubkey does not match. - `ConnectionID` objects are now returned when connecting to a remote address; this object is then passed in to send/request/etc. to direct the message. For SN communication, ConnectionID's can be created implicitly from SN pubkey strings, so the existing interface of `lmq.send(pubkey, ...)` will still work in most cases. - A ConnectionID is now passed to the ConnectSuccess and ConnectFailure callbacks. This can be used to uniquely identify which connection succeeded or failed, and can determine whether the remote is a service node (`.sn()`) and/or the pubkey (`.pubkey()`). (Obviously the service node status is only available when the client can do service node lookups, and the pubkey() is only non-empty for encrypted connections).
2020-02-28 05:16:43 +01:00
}
TEST_CASE("request from server to client", "[requests]") {
std::string listen = random_localhost();
2021-01-14 19:37:14 +01:00
OxenMQ server{
Added support for general (non-SN) communications The existing code was largely set up for SN-to-SN or client-to-SN communications, where messages can always get to the right place because we can always send by pubkey. This doesn't work when we want general communications with a random remote address. This commit overhauls the way loki-mq handles communication in a few important ways: - Listening instances no longer pass bind addresses into the constructor; instead they call `listen_curve()` or `listen_plain()` before invoking `start()`. - `listen_curve()` is equivalent to the existing bind support: it listens on a socket and accepts encrypted handshaked connections from anyone who already knows the server's public key. - `listen_plain()` is all new: it sets up a plain text listening socket over which random clients can connect and talk. End-points aren't verified, and it isn't encrypted, but if you don't know who you are talking to then encryption isn't doing anything anyway. - Connecting to a remote now connections in CURVE encryption or NULL (plain-text) encryption based on whether you provide a remote_pubkey. For CURVE, the connection will fail if the pubkey does not match. - `ConnectionID` objects are now returned when connecting to a remote address; this object is then passed in to send/request/etc. to direct the message. For SN communication, ConnectionID's can be created implicitly from SN pubkey strings, so the existing interface of `lmq.send(pubkey, ...)` will still work in most cases. - A ConnectionID is now passed to the ConnectSuccess and ConnectFailure callbacks. This can be used to uniquely identify which connection succeeded or failed, and can determine whether the remote is a service node (`.sn()`) and/or the pubkey (`.pubkey()`). (Obviously the service node status is only available when the client can do service node lookups, and the pubkey() is only non-empty for encrypted connections).
2020-02-28 05:16:43 +01:00
"", "", // generate ephemeral keys
false, // not a service node
[](auto) { return ""; },
};
server.listen_curve(listen);
std::atomic<int> hellos{0}, his{0};
server.add_category("public", Access{AuthLevel::none});
server.add_request_command("public", "hello", [&](Message& m) {
m.send_reply("123");
});
server.start();
2021-01-14 19:37:14 +01:00
OxenMQ client(
Added support for general (non-SN) communications The existing code was largely set up for SN-to-SN or client-to-SN communications, where messages can always get to the right place because we can always send by pubkey. This doesn't work when we want general communications with a random remote address. This commit overhauls the way loki-mq handles communication in a few important ways: - Listening instances no longer pass bind addresses into the constructor; instead they call `listen_curve()` or `listen_plain()` before invoking `start()`. - `listen_curve()` is equivalent to the existing bind support: it listens on a socket and accepts encrypted handshaked connections from anyone who already knows the server's public key. - `listen_plain()` is all new: it sets up a plain text listening socket over which random clients can connect and talk. End-points aren't verified, and it isn't encrypted, but if you don't know who you are talking to then encryption isn't doing anything anyway. - Connecting to a remote now connections in CURVE encryption or NULL (plain-text) encryption based on whether you provide a remote_pubkey. For CURVE, the connection will fail if the pubkey does not match. - `ConnectionID` objects are now returned when connecting to a remote address; this object is then passed in to send/request/etc. to direct the message. For SN communication, ConnectionID's can be created implicitly from SN pubkey strings, so the existing interface of `lmq.send(pubkey, ...)` will still work in most cases. - A ConnectionID is now passed to the ConnectSuccess and ConnectFailure callbacks. This can be used to uniquely identify which connection succeeded or failed, and can determine whether the remote is a service node (`.sn()`) and/or the pubkey (`.pubkey()`). (Obviously the service node status is only available when the client can do service node lookups, and the pubkey() is only non-empty for encrypted connections).
2020-02-28 05:16:43 +01:00
[](LogLevel, const char* file, int line, std::string msg) { std::cerr << file << ":" << line << " --C-- " << msg << "\n"; }
);
//client.log_level(LogLevel::trace);
client.start();
std::atomic<bool> connected{false}, failed{false};
std::string pubkey;
auto c = client.connect_remote(address{listen, server.get_pubkey()},
Added support for general (non-SN) communications The existing code was largely set up for SN-to-SN or client-to-SN communications, where messages can always get to the right place because we can always send by pubkey. This doesn't work when we want general communications with a random remote address. This commit overhauls the way loki-mq handles communication in a few important ways: - Listening instances no longer pass bind addresses into the constructor; instead they call `listen_curve()` or `listen_plain()` before invoking `start()`. - `listen_curve()` is equivalent to the existing bind support: it listens on a socket and accepts encrypted handshaked connections from anyone who already knows the server's public key. - `listen_plain()` is all new: it sets up a plain text listening socket over which random clients can connect and talk. End-points aren't verified, and it isn't encrypted, but if you don't know who you are talking to then encryption isn't doing anything anyway. - Connecting to a remote now connections in CURVE encryption or NULL (plain-text) encryption based on whether you provide a remote_pubkey. For CURVE, the connection will fail if the pubkey does not match. - `ConnectionID` objects are now returned when connecting to a remote address; this object is then passed in to send/request/etc. to direct the message. For SN communication, ConnectionID's can be created implicitly from SN pubkey strings, so the existing interface of `lmq.send(pubkey, ...)` will still work in most cases. - A ConnectionID is now passed to the ConnectSuccess and ConnectFailure callbacks. This can be used to uniquely identify which connection succeeded or failed, and can determine whether the remote is a service node (`.sn()`) and/or the pubkey (`.pubkey()`). (Obviously the service node status is only available when the client can do service node lookups, and the pubkey() is only non-empty for encrypted connections).
2020-02-28 05:16:43 +01:00
[&](auto conn) { pubkey = conn.pubkey(); connected = true; },
[&](auto, auto) { failed = true; });
Added support for general (non-SN) communications The existing code was largely set up for SN-to-SN or client-to-SN communications, where messages can always get to the right place because we can always send by pubkey. This doesn't work when we want general communications with a random remote address. This commit overhauls the way loki-mq handles communication in a few important ways: - Listening instances no longer pass bind addresses into the constructor; instead they call `listen_curve()` or `listen_plain()` before invoking `start()`. - `listen_curve()` is equivalent to the existing bind support: it listens on a socket and accepts encrypted handshaked connections from anyone who already knows the server's public key. - `listen_plain()` is all new: it sets up a plain text listening socket over which random clients can connect and talk. End-points aren't verified, and it isn't encrypted, but if you don't know who you are talking to then encryption isn't doing anything anyway. - Connecting to a remote now connections in CURVE encryption or NULL (plain-text) encryption based on whether you provide a remote_pubkey. For CURVE, the connection will fail if the pubkey does not match. - `ConnectionID` objects are now returned when connecting to a remote address; this object is then passed in to send/request/etc. to direct the message. For SN communication, ConnectionID's can be created implicitly from SN pubkey strings, so the existing interface of `lmq.send(pubkey, ...)` will still work in most cases. - A ConnectionID is now passed to the ConnectSuccess and ConnectFailure callbacks. This can be used to uniquely identify which connection succeeded or failed, and can determine whether the remote is a service node (`.sn()`) and/or the pubkey (`.pubkey()`). (Obviously the service node status is only available when the client can do service node lookups, and the pubkey() is only non-empty for encrypted connections).
2020-02-28 05:16:43 +01:00
int i;
for (i = 0; i < 5; i++) {
if (connected.load())
break;
std::this_thread::sleep_for(50ms);
}
{
auto lock = catch_lock();
REQUIRE( connected.load() );
REQUIRE( !failed.load() );
REQUIRE( i <= 1 );
REQUIRE( to_hex(pubkey) == to_hex(server.get_pubkey()) );
}
Added support for general (non-SN) communications The existing code was largely set up for SN-to-SN or client-to-SN communications, where messages can always get to the right place because we can always send by pubkey. This doesn't work when we want general communications with a random remote address. This commit overhauls the way loki-mq handles communication in a few important ways: - Listening instances no longer pass bind addresses into the constructor; instead they call `listen_curve()` or `listen_plain()` before invoking `start()`. - `listen_curve()` is equivalent to the existing bind support: it listens on a socket and accepts encrypted handshaked connections from anyone who already knows the server's public key. - `listen_plain()` is all new: it sets up a plain text listening socket over which random clients can connect and talk. End-points aren't verified, and it isn't encrypted, but if you don't know who you are talking to then encryption isn't doing anything anyway. - Connecting to a remote now connections in CURVE encryption or NULL (plain-text) encryption based on whether you provide a remote_pubkey. For CURVE, the connection will fail if the pubkey does not match. - `ConnectionID` objects are now returned when connecting to a remote address; this object is then passed in to send/request/etc. to direct the message. For SN communication, ConnectionID's can be created implicitly from SN pubkey strings, so the existing interface of `lmq.send(pubkey, ...)` will still work in most cases. - A ConnectionID is now passed to the ConnectSuccess and ConnectFailure callbacks. This can be used to uniquely identify which connection succeeded or failed, and can determine whether the remote is a service node (`.sn()`) and/or the pubkey (`.pubkey()`). (Obviously the service node status is only available when the client can do service node lookups, and the pubkey() is only non-empty for encrypted connections).
2020-02-28 05:16:43 +01:00
std::atomic<bool> got_reply{false};
bool success;
std::vector<std::string> data;
client.request(c, "public.hello", [&](bool ok, std::vector<std::string> data_) {
got_reply = true;
success = ok;
data = std::move(data_);
});
std::this_thread::sleep_for(50ms);
{
auto lock = catch_lock();
REQUIRE( got_reply.load() );
REQUIRE( success );
REQUIRE( data == std::vector<std::string>{{"123"}} );
}
}
TEST_CASE("request timeouts", "[requests][timeout]") {
std::string listen = random_localhost();
2021-01-14 19:37:14 +01:00
OxenMQ server{
"", "", // generate ephemeral keys
false, // not a service node
[](auto) { return ""; },
};
server.listen_curve(listen);
std::atomic<int> hellos{0}, his{0};
server.add_category("public", Access{AuthLevel::none});
server.add_request_command("public", "blackhole", [&](Message& m) { /* doesn't reply */ });
server.start();
2021-01-14 19:37:14 +01:00
OxenMQ client(
[](LogLevel, const char* file, int line, std::string msg) { std::cerr << file << ":" << line << " --C-- " << msg << "\n"; }
);
//client.log_level(LogLevel::trace);
client.CONN_CHECK_INTERVAL = 10ms; // impatience (don't set this low in production code)
client.start();
std::atomic<bool> connected{false}, failed{false};
std::string pubkey;
auto c = client.connect_remote(address{listen, server.get_pubkey()},
[&](auto conn) { pubkey = conn.pubkey(); connected = true; },
[&](auto, auto) { failed = true; });
1.1.0: invocation-time SN auth; failure responses This replaces the recognition of SN status to be checked per-command invocation rather than on connection. As this breaks the API quite substantially, though doesn't really affect the functionality, it seems suitable to bump the minor version. This requires a fundamental shift in how the calling application tells LokiMQ about service nodes: rather than using a callback invoked on connection, the application now has to call set_active_sns() (or the more efficient update_active_sns(), if changes are readily available) to update the list whenever it changes. LokiMQ then keeps this list internally and uses it when determining whether to invoke. This release also brings better request responses on errors: when a request fails, the data argument will now be set to the failure reason, one of: - TIMEOUT - UNKNOWNCOMMAND - NOT_A_SERVICE_NODE (the remote isn't running in SN mode) - FORBIDDEN (auth level denies the request) - FORBIDDEN_SN (SN required and the remote doesn't see us as a SN) Some of these (UNKNOWNCOMMAND, NOT_A_SERVICE_NODE, FORBIDDEN) were already sent by remotes, but there was no connection to a request and so they would log a warning, but the request would have to time out. These errors (minus TIMEOUT, plus NO_REPLY_TAG signalling that a command is a request but didn't include a reply tag) are also sent in response to regular commands, but they simply result in a log warning showing the error type and the command that caused the failure when received.
2020-04-13 00:57:19 +02:00
wait_for([&] { return connected || failed; });
REQUIRE( connected );
REQUIRE_FALSE( failed );
REQUIRE( to_hex(pubkey) == to_hex(server.get_pubkey()) );
std::atomic<bool> got_triggered{false};
bool success;
std::vector<std::string> data;
client.request(c, "public.blackhole", [&](bool ok, std::vector<std::string> data_) {
got_triggered = true;
success = ok;
data = std::move(data_);
},
2021-01-14 19:37:14 +01:00
oxenmq::send_option::request_timeout{10ms}
);
std::atomic<bool> got_triggered2{false};
client.request(c, "public.blackhole", [&](bool ok, std::vector<std::string> data_) {
got_triggered = true;
success = ok;
data = std::move(data_);
},
2021-01-14 19:37:14 +01:00
oxenmq::send_option::request_timeout{200ms}
);
std::this_thread::sleep_for(100ms);
1.1.0: invocation-time SN auth; failure responses This replaces the recognition of SN status to be checked per-command invocation rather than on connection. As this breaks the API quite substantially, though doesn't really affect the functionality, it seems suitable to bump the minor version. This requires a fundamental shift in how the calling application tells LokiMQ about service nodes: rather than using a callback invoked on connection, the application now has to call set_active_sns() (or the more efficient update_active_sns(), if changes are readily available) to update the list whenever it changes. LokiMQ then keeps this list internally and uses it when determining whether to invoke. This release also brings better request responses on errors: when a request fails, the data argument will now be set to the failure reason, one of: - TIMEOUT - UNKNOWNCOMMAND - NOT_A_SERVICE_NODE (the remote isn't running in SN mode) - FORBIDDEN (auth level denies the request) - FORBIDDEN_SN (SN required and the remote doesn't see us as a SN) Some of these (UNKNOWNCOMMAND, NOT_A_SERVICE_NODE, FORBIDDEN) were already sent by remotes, but there was no connection to a request and so they would log a warning, but the request would have to time out. These errors (minus TIMEOUT, plus NO_REPLY_TAG signalling that a command is a request but didn't include a reply tag) are also sent in response to regular commands, but they simply result in a log warning showing the error type and the command that caused the failure when received.
2020-04-13 00:57:19 +02:00
REQUIRE( got_triggered );
REQUIRE_FALSE( got_triggered2 );
REQUIRE_FALSE( success );
1.1.0: invocation-time SN auth; failure responses This replaces the recognition of SN status to be checked per-command invocation rather than on connection. As this breaks the API quite substantially, though doesn't really affect the functionality, it seems suitable to bump the minor version. This requires a fundamental shift in how the calling application tells LokiMQ about service nodes: rather than using a callback invoked on connection, the application now has to call set_active_sns() (or the more efficient update_active_sns(), if changes are readily available) to update the list whenever it changes. LokiMQ then keeps this list internally and uses it when determining whether to invoke. This release also brings better request responses on errors: when a request fails, the data argument will now be set to the failure reason, one of: - TIMEOUT - UNKNOWNCOMMAND - NOT_A_SERVICE_NODE (the remote isn't running in SN mode) - FORBIDDEN (auth level denies the request) - FORBIDDEN_SN (SN required and the remote doesn't see us as a SN) Some of these (UNKNOWNCOMMAND, NOT_A_SERVICE_NODE, FORBIDDEN) were already sent by remotes, but there was no connection to a request and so they would log a warning, but the request would have to time out. These errors (minus TIMEOUT, plus NO_REPLY_TAG signalling that a command is a request but didn't include a reply tag) are also sent in response to regular commands, but they simply result in a log warning showing the error type and the command that caused the failure when received.
2020-04-13 00:57:19 +02:00
REQUIRE( data == std::vector<std::string>{{"TIMEOUT"}} );
}