mirror of https://github.com/oxen-io/oxen-mq
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
803 lines
36 KiB
803 lines
36 KiB
// Copyright (c) 2019-2020, The Loki Project |
|
// |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, are |
|
// permitted provided that the following conditions are met: |
|
// |
|
// 1. Redistributions of source code must retain the above copyright notice, this list of |
|
// conditions and the following disclaimer. |
|
// |
|
// 2. Redistributions in binary form must reproduce the above copyright notice, this list |
|
// of conditions and the following disclaimer in the documentation and/or other |
|
// materials provided with the distribution. |
|
// |
|
// 3. Neither the name of the copyright holder nor the names of its contributors may be |
|
// used to endorse or promote products derived from this software without specific |
|
// prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY |
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
|
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL |
|
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF |
|
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
#pragma once |
|
|
|
#include <vector> |
|
#include <algorithm> |
|
#include <functional> |
|
#include <cstring> |
|
#include <ostream> |
|
#include <sstream> |
|
#include <string_view> |
|
#include <variant> |
|
|
|
#include "bt_value.h" |
|
|
|
namespace lokimq { |
|
|
|
using namespace std::literals; |
|
|
|
/** \file |
|
* LokiMQ serialization for internal commands is very simple: we support two primitive types, |
|
* strings and integers, and two container types, lists and dicts with string keys. On the wire |
|
* these go in BitTorrent byte encoding as described in BEP-0003 |
|
* (https://www.bittorrent.org/beps/bep_0003.html#bencoding). |
|
* |
|
* On the C++ side, on input we allow strings, integral types, STL-like containers of these types, |
|
* and STL-like containers of pairs with a string first value and any of these types as second |
|
* value. We also accept std::variants of these. |
|
* |
|
* One minor deviation from BEP-0003 is that we don't support serializing values that don't fit in a |
|
* 64-bit integer (BEP-0003 specifies arbitrary precision integers). |
|
* |
|
* On deserialization we can either deserialize into a special bt_value type supports everything |
|
* (with arbitrary nesting), or we can fill a container of your given type (though this fails if the |
|
* container isn't compatible with the deserialized data). |
|
* |
|
* There is also a stream deserialization that allows you to deserialize without needing heap |
|
* allocations (as long as you know the precise data structure layout). |
|
*/ |
|
|
|
/// Exception throw if deserialization fails |
|
class bt_deserialize_invalid : public std::invalid_argument { |
|
using std::invalid_argument::invalid_argument; |
|
}; |
|
|
|
/// A more specific subclass that is thown if the serialization type is an initial mismatch: for |
|
/// example, trying deserializing an int but the next thing in input is a list. This is not, |
|
/// however, thrown if the type initially looks fine but, say, a nested serialization fails. This |
|
/// error will only be thrown when the input stream has not been advanced (and so can be tried for a |
|
/// different type). |
|
class bt_deserialize_invalid_type : public bt_deserialize_invalid { |
|
using bt_deserialize_invalid::bt_deserialize_invalid; |
|
}; |
|
|
|
namespace detail { |
|
|
|
/// Reads digits into an unsigned 64-bit int. |
|
uint64_t extract_unsigned(std::string_view& s); |
|
// (Provide non-constant lvalue and rvalue ref functions so that we only accept explicit |
|
// string_views but not implicitly converted ones) |
|
inline uint64_t extract_unsigned(std::string_view&& s) { return extract_unsigned(s); } |
|
|
|
// Fallback base case; we only get here if none of the partial specializations below work |
|
template <typename T, typename SFINAE = void> |
|
struct bt_serialize { static_assert(!std::is_same_v<T, T>, "Cannot serialize T: unsupported type for bt serialization"); }; |
|
|
|
template <typename T, typename SFINAE = void> |
|
struct bt_deserialize { static_assert(!std::is_same_v<T, T>, "Cannot deserialize T: unsupported type for bt deserialization"); }; |
|
|
|
/// Checks that we aren't at the end of a string view and throws if we are. |
|
inline void bt_need_more(const std::string_view &s) { |
|
if (s.empty()) |
|
throw bt_deserialize_invalid{"Unexpected end of string while deserializing"}; |
|
} |
|
|
|
/// Deserializes a signed or unsigned 64-bit integer from a string. Sets the second bool to true |
|
/// iff the value read was negative, false if positive; in either case the unsigned value is return |
|
/// in .first. Throws an exception if the read value doesn't fit in a int64_t (if negative) or a |
|
/// uint64_t (if positive). Removes consumed characters from the string_view. |
|
std::pair<uint64_t, bool> bt_deserialize_integer(std::string_view& s); |
|
|
|
/// Integer specializations |
|
template <typename T> |
|
struct bt_serialize<T, std::enable_if_t<std::is_integral_v<T>>> { |
|
static_assert(sizeof(T) <= sizeof(uint64_t), "Serialization of integers larger than uint64_t is not supported"); |
|
void operator()(std::ostream &os, const T &val) { |
|
// Cast 1-byte types to a larger type to avoid iostream interpreting them as single characters |
|
using output_type = std::conditional_t<(sizeof(T) > 1), T, std::conditional_t<std::is_signed_v<T>, int, unsigned>>; |
|
os << 'i' << static_cast<output_type>(val) << 'e'; |
|
} |
|
}; |
|
|
|
template <typename T> |
|
struct bt_deserialize<T, std::enable_if_t<std::is_integral_v<T>>> { |
|
void operator()(std::string_view& s, T &val) { |
|
constexpr uint64_t umax = static_cast<uint64_t>(std::numeric_limits<T>::max()); |
|
constexpr int64_t smin = static_cast<int64_t>(std::numeric_limits<T>::min()); |
|
|
|
auto [magnitude, negative] = bt_deserialize_integer(s); |
|
|
|
if (std::is_signed_v<T>) { |
|
if (!negative) { |
|
if (magnitude > umax) |
|
throw bt_deserialize_invalid("Integer deserialization failed: found too-large value " + std::to_string(magnitude) + " > " + std::to_string(umax)); |
|
val = static_cast<T>(magnitude); |
|
} else { |
|
auto sval = -static_cast<int64_t>(magnitude); |
|
if (!std::is_same_v<T, int64_t> && sval < smin) |
|
throw bt_deserialize_invalid("Integer deserialization failed: found too-low value " + std::to_string(sval) + " < " + std::to_string(smin)); |
|
val = static_cast<T>(sval); |
|
} |
|
} else { |
|
if (negative) |
|
throw bt_deserialize_invalid("Integer deserialization failed: found negative value -" + std::to_string(magnitude) + " but type is unsigned"); |
|
if (!std::is_same_v<T, uint64_t> && magnitude > umax) |
|
throw bt_deserialize_invalid("Integer deserialization failed: found too-large value " + std::to_string(magnitude) + " > " + std::to_string(umax)); |
|
val = static_cast<T>(magnitude); |
|
} |
|
} |
|
}; |
|
|
|
extern template struct bt_deserialize<int64_t>; |
|
extern template struct bt_deserialize<uint64_t>; |
|
|
|
template <> |
|
struct bt_serialize<std::string_view> { |
|
void operator()(std::ostream &os, const std::string_view &val) { os << val.size(); os.put(':'); os.write(val.data(), val.size()); } |
|
}; |
|
template <> |
|
struct bt_deserialize<std::string_view> { |
|
void operator()(std::string_view& s, std::string_view& val); |
|
}; |
|
|
|
/// String specialization |
|
template <> |
|
struct bt_serialize<std::string> { |
|
void operator()(std::ostream &os, const std::string &val) { bt_serialize<std::string_view>{}(os, val); } |
|
}; |
|
template <> |
|
struct bt_deserialize<std::string> { |
|
void operator()(std::string_view& s, std::string& val) { std::string_view view; bt_deserialize<std::string_view>{}(s, view); val = {view.data(), view.size()}; } |
|
}; |
|
|
|
/// char * and string literals -- we allow serialization for convenience, but not deserialization |
|
template <> |
|
struct bt_serialize<char *> { |
|
void operator()(std::ostream &os, const char *str) { bt_serialize<std::string_view>{}(os, {str, std::strlen(str)}); } |
|
}; |
|
template <size_t N> |
|
struct bt_serialize<char[N]> { |
|
void operator()(std::ostream &os, const char *str) { bt_serialize<std::string_view>{}(os, {str, N-1}); } |
|
}; |
|
|
|
/// Partial dict validity; we don't check the second type for serializability, that will be handled |
|
/// via the base case static_assert if invalid. |
|
template <typename T, typename = void> struct is_bt_input_dict_container_impl : std::false_type {}; |
|
template <typename T> |
|
struct is_bt_input_dict_container_impl<T, std::enable_if_t< |
|
std::is_same_v<std::string, std::remove_cv_t<typename T::value_type::first_type>> || |
|
std::is_same_v<std::string_view, std::remove_cv_t<typename T::value_type::first_type>>, |
|
std::void_t<typename T::const_iterator /* is const iterable */, |
|
typename T::value_type::second_type /* has a second type */>>> |
|
: std::true_type {}; |
|
|
|
/// Determines whether the type looks like something we can insert into (using `v.insert(v.end(), x)`) |
|
template <typename T, typename = void> struct is_bt_insertable_impl : std::false_type {}; |
|
template <typename T> |
|
struct is_bt_insertable_impl<T, |
|
std::void_t<decltype(std::declval<T>().insert(std::declval<T>().end(), std::declval<typename T::value_type>()))>> |
|
: std::true_type {}; |
|
template <typename T> |
|
constexpr bool is_bt_insertable = is_bt_insertable_impl<T>::value; |
|
|
|
/// Determines whether the given type looks like a compatible map (i.e. has std::string keys) that |
|
/// we can insert into. |
|
template <typename T, typename = void> struct is_bt_output_dict_container_impl : std::false_type {}; |
|
template <typename T> |
|
struct is_bt_output_dict_container_impl<T, std::enable_if_t< |
|
std::is_same_v<std::string, std::remove_cv_t<typename T::value_type::first_type>> && is_bt_insertable<T>, |
|
std::void_t<typename T::value_type::second_type /* has a second type */>>> |
|
: std::true_type {}; |
|
|
|
template <typename T> |
|
constexpr bool is_bt_output_dict_container = is_bt_output_dict_container_impl<T>::value; |
|
template <typename T> |
|
constexpr bool is_bt_input_dict_container = is_bt_output_dict_container_impl<T>::value; |
|
|
|
// Sanity checks: |
|
static_assert(is_bt_input_dict_container<bt_dict>); |
|
static_assert(is_bt_output_dict_container<bt_dict>); |
|
|
|
/// Specialization for a dict-like container (such as an unordered_map). We accept anything for a |
|
/// dict that is const iterable over something that looks like a pair with std::string for first |
|
/// value type. The value (i.e. second element of the pair) also must be serializable. |
|
template <typename T> |
|
struct bt_serialize<T, std::enable_if_t<is_bt_input_dict_container<T>>> { |
|
using second_type = typename T::value_type::second_type; |
|
using ref_pair = std::reference_wrapper<const typename T::value_type>; |
|
void operator()(std::ostream &os, const T &dict) { |
|
os << 'd'; |
|
std::vector<ref_pair> pairs; |
|
pairs.reserve(dict.size()); |
|
for (const auto &pair : dict) |
|
pairs.emplace(pairs.end(), pair); |
|
std::sort(pairs.begin(), pairs.end(), [](ref_pair a, ref_pair b) { return a.get().first < b.get().first; }); |
|
for (auto &ref : pairs) { |
|
bt_serialize<std::string>{}(os, ref.get().first); |
|
bt_serialize<second_type>{}(os, ref.get().second); |
|
} |
|
os << 'e'; |
|
} |
|
}; |
|
|
|
template <typename T> |
|
struct bt_deserialize<T, std::enable_if_t<is_bt_output_dict_container<T>>> { |
|
using second_type = typename T::value_type::second_type; |
|
void operator()(std::string_view& s, T& dict) { |
|
// Smallest dict is 2 bytes "de", for an empty dict. |
|
if (s.size() < 2) throw bt_deserialize_invalid("Deserialization failed: end of string found where dict expected"); |
|
if (s[0] != 'd') throw bt_deserialize_invalid_type("Deserialization failed: expected 'd', found '"s + s[0] + "'"s); |
|
s.remove_prefix(1); |
|
dict.clear(); |
|
bt_deserialize<std::string> key_deserializer; |
|
bt_deserialize<second_type> val_deserializer; |
|
|
|
while (!s.empty() && s[0] != 'e') { |
|
std::string key; |
|
second_type val; |
|
key_deserializer(s, key); |
|
val_deserializer(s, val); |
|
dict.insert(dict.end(), typename T::value_type{std::move(key), std::move(val)}); |
|
} |
|
if (s.empty()) |
|
throw bt_deserialize_invalid("Deserialization failed: encountered end of string before dict was finished"); |
|
s.remove_prefix(1); // Consume the 'e' |
|
} |
|
}; |
|
|
|
|
|
/// Accept anything that looks iterable; value serialization validity isn't checked here (it fails |
|
/// via the base case static assert). |
|
template <typename T, typename = void> struct is_bt_input_list_container_impl : std::false_type {}; |
|
template <typename T> |
|
struct is_bt_input_list_container_impl<T, std::enable_if_t< |
|
!std::is_same_v<T, std::string> && !std::is_same_v<T, std::string_view> && !is_bt_input_dict_container<T>, |
|
std::void_t<typename T::const_iterator, typename T::value_type>>> |
|
: std::true_type {}; |
|
|
|
template <typename T, typename = void> struct is_bt_output_list_container_impl : std::false_type {}; |
|
template <typename T> |
|
struct is_bt_output_list_container_impl<T, std::enable_if_t< |
|
!std::is_same_v<T, std::string> && !is_bt_output_dict_container<T> && is_bt_insertable<T>>> |
|
: std::true_type {}; |
|
|
|
template <typename T> |
|
constexpr bool is_bt_output_list_container = is_bt_output_list_container_impl<T>::value; |
|
template <typename T> |
|
constexpr bool is_bt_input_list_container = is_bt_input_list_container_impl<T>::value; |
|
|
|
// Sanity checks: |
|
static_assert(is_bt_input_list_container<bt_list>); |
|
static_assert(is_bt_output_list_container<bt_list>); |
|
|
|
/// List specialization |
|
template <typename T> |
|
struct bt_serialize<T, std::enable_if_t<is_bt_input_list_container<T>>> { |
|
void operator()(std::ostream& os, const T& list) { |
|
os << 'l'; |
|
for (const auto &v : list) |
|
bt_serialize<std::remove_cv_t<typename T::value_type>>{}(os, v); |
|
os << 'e'; |
|
} |
|
}; |
|
template <typename T> |
|
struct bt_deserialize<T, std::enable_if_t<is_bt_output_list_container<T>>> { |
|
using value_type = typename T::value_type; |
|
void operator()(std::string_view& s, T& list) { |
|
// Smallest list is 2 bytes "le", for an empty list. |
|
if (s.size() < 2) throw bt_deserialize_invalid("Deserialization failed: end of string found where list expected"); |
|
if (s[0] != 'l') throw bt_deserialize_invalid_type("Deserialization failed: expected 'l', found '"s + s[0] + "'"s); |
|
s.remove_prefix(1); |
|
list.clear(); |
|
bt_deserialize<value_type> deserializer; |
|
while (!s.empty() && s[0] != 'e') { |
|
value_type v; |
|
deserializer(s, v); |
|
list.insert(list.end(), std::move(v)); |
|
} |
|
if (s.empty()) |
|
throw bt_deserialize_invalid("Deserialization failed: encountered end of string before list was finished"); |
|
s.remove_prefix(1); // Consume the 'e' |
|
} |
|
}; |
|
|
|
/// variant visitor; serializes whatever is contained |
|
class bt_serialize_visitor { |
|
std::ostream &os; |
|
public: |
|
using result_type = void; |
|
bt_serialize_visitor(std::ostream &os) : os{os} {} |
|
template <typename T> void operator()(const T &val) const { |
|
bt_serialize<T>{}(os, val); |
|
} |
|
}; |
|
|
|
template <typename T> |
|
constexpr bool is_bt_deserializable = std::is_same_v<T, std::string> || std::is_integral_v<T> || |
|
is_bt_output_dict_container<T> || is_bt_output_list_container<T>; |
|
|
|
// General template and base case; this base will only actually be invoked when Ts... is empty, |
|
// which means we reached the end without finding any variant type capable of holding the value. |
|
template <typename SFINAE, typename Variant, typename... Ts> |
|
struct bt_deserialize_try_variant_impl { |
|
void operator()(std::string_view&, Variant&) { |
|
throw bt_deserialize_invalid("Deserialization failed: could not deserialize value into any variant type"); |
|
} |
|
}; |
|
|
|
template <typename... Ts, typename Variant> |
|
void bt_deserialize_try_variant(std::string_view& s, Variant& variant) { |
|
bt_deserialize_try_variant_impl<void, Variant, Ts...>{}(s, variant); |
|
} |
|
|
|
|
|
template <typename Variant, typename T, typename... Ts> |
|
struct bt_deserialize_try_variant_impl<std::enable_if_t<is_bt_deserializable<T>>, Variant, T, Ts...> { |
|
void operator()(std::string_view& s, Variant& variant) { |
|
if ( is_bt_output_list_container<T> ? s[0] == 'l' : |
|
is_bt_output_dict_container<T> ? s[0] == 'd' : |
|
std::is_integral_v<T> ? s[0] == 'i' : |
|
std::is_same_v<T, std::string> ? s[0] >= '0' && s[0] <= '9' : |
|
false) { |
|
T val; |
|
bt_deserialize<T>{}(s, val); |
|
variant = std::move(val); |
|
} else { |
|
bt_deserialize_try_variant<Ts...>(s, variant); |
|
} |
|
} |
|
}; |
|
|
|
template <typename Variant, typename T, typename... Ts> |
|
struct bt_deserialize_try_variant_impl<std::enable_if_t<!is_bt_deserializable<T>>, Variant, T, Ts...> { |
|
void operator()(std::string_view& s, Variant& variant) { |
|
// Unsupported deserialization type, skip it |
|
bt_deserialize_try_variant<Ts...>(s, variant); |
|
} |
|
}; |
|
|
|
// Serialization of a variant; all variant types must be bt-serializable. |
|
template <typename... Ts> |
|
struct bt_serialize<std::variant<Ts...>, std::void_t<bt_serialize<Ts>...>> { |
|
void operator()(std::ostream &os, const std::variant<Ts...>& val) { |
|
std::visit(bt_serialize_visitor{os}, val); |
|
} |
|
}; |
|
|
|
// Deserialization to a variant; at least one variant type must be bt-deserializble. |
|
template <typename... Ts> |
|
struct bt_deserialize<std::variant<Ts...>, std::enable_if_t<(is_bt_deserializable<Ts> || ...)>> { |
|
void operator()(std::string_view& s, std::variant<Ts...>& val) { |
|
bt_deserialize_try_variant<Ts...>(s, val); |
|
} |
|
}; |
|
|
|
template <> |
|
struct bt_serialize<bt_value> : bt_serialize<bt_variant> {}; |
|
|
|
template <> |
|
struct bt_deserialize<bt_value> { |
|
void operator()(std::string_view& s, bt_value& val); |
|
}; |
|
|
|
template <typename T> |
|
struct bt_stream_serializer { |
|
const T &val; |
|
explicit bt_stream_serializer(const T &val) : val{val} {} |
|
operator std::string() const { |
|
std::ostringstream oss; |
|
oss << *this; |
|
return oss.str(); |
|
} |
|
}; |
|
template <typename T> |
|
std::ostream &operator<<(std::ostream &os, const bt_stream_serializer<T> &s) { |
|
bt_serialize<T>{}(os, s.val); |
|
return os; |
|
} |
|
|
|
} // namespace detail |
|
|
|
|
|
/// Returns a wrapper around a value reference that can serialize the value directly to an output |
|
/// stream. This class is intended to be used inline (i.e. without being stored) as in: |
|
/// |
|
/// std::list<int> my_list{{1,2,3}}; |
|
/// std::cout << bt_serializer(my_list); |
|
/// |
|
/// While it is possible to store the returned object and use it, such as: |
|
/// |
|
/// auto encoded = bt_serializer(42); |
|
/// std::cout << encoded; |
|
/// |
|
/// this approach is not generally recommended: the returned object stores a reference to the |
|
/// passed-in type, which may not survive. If doing this note that it is the caller's |
|
/// responsibility to ensure the serializer is not used past the end of the lifetime of the value |
|
/// being serialized. |
|
/// |
|
/// Also note that serializing directly to an output stream is more efficient as no intermediate |
|
/// string containing the entire serialization has to be constructed. |
|
/// |
|
template <typename T> |
|
detail::bt_stream_serializer<T> bt_serializer(const T &val) { return detail::bt_stream_serializer<T>{val}; } |
|
|
|
/// Serializes the given value into a std::string. |
|
/// |
|
/// int number = 42; |
|
/// std::string encoded = bt_serialize(number); |
|
/// // Equivalent: |
|
/// //auto encoded = (std::string) bt_serialize(number); |
|
/// |
|
/// This takes any serializable type: integral types, strings, lists of serializable types, and |
|
/// string->value maps of serializable types. |
|
template <typename T> |
|
std::string bt_serialize(const T &val) { return bt_serializer(val); } |
|
|
|
/// Deserializes the given string view directly into `val`. Usage: |
|
/// |
|
/// std::string encoded = "i42e"; |
|
/// int value; |
|
/// bt_deserialize(encoded, value); // Sets value to 42 |
|
/// |
|
template <typename T, std::enable_if_t<!std::is_const_v<T>, int> = 0> |
|
void bt_deserialize(std::string_view s, T& val) { |
|
return detail::bt_deserialize<T>{}(s, val); |
|
} |
|
|
|
|
|
/// Deserializes the given string_view into a `T`, which is returned. |
|
/// |
|
/// std::string encoded = "li1ei2ei3ee"; // bt-encoded list of ints: [1,2,3] |
|
/// auto mylist = bt_deserialize<std::list<int>>(encoded); |
|
/// |
|
template <typename T> |
|
T bt_deserialize(std::string_view s) { |
|
T val; |
|
bt_deserialize(s, val); |
|
return val; |
|
} |
|
|
|
/// Deserializes the given value into a generic `bt_value` type (wrapped std::variant) which is |
|
/// capable of holding all possible BT-encoded values (including recursion). |
|
/// |
|
/// Example: |
|
/// |
|
/// std::string encoded = "i42e"; |
|
/// auto val = bt_get(encoded); |
|
/// int v = get_int<int>(val); // fails unless the encoded value was actually an integer that |
|
/// // fits into an `int` |
|
/// |
|
inline bt_value bt_get(std::string_view s) { |
|
return bt_deserialize<bt_value>(s); |
|
} |
|
|
|
/// Helper functions to extract a value of some integral type from a bt_value which contains either |
|
/// a int64_t or uint64_t. Does range checking, throwing std::overflow_error if the stored value is |
|
/// outside the range of the target type. |
|
/// |
|
/// Example: |
|
/// |
|
/// std::string encoded = "i123456789e"; |
|
/// auto val = bt_get(encoded); |
|
/// auto v = get_int<uint32_t>(val); // throws if the decoded value doesn't fit in a uint32_t |
|
template <typename IntType, std::enable_if_t<std::is_integral_v<IntType>, int> = 0> |
|
IntType get_int(const bt_value &v) { |
|
if (std::holds_alternative<uint64_t>(v)) { |
|
uint64_t value = std::get<uint64_t>(v); |
|
if constexpr (!std::is_same_v<IntType, uint64_t>) |
|
if (value > static_cast<uint64_t>(std::numeric_limits<IntType>::max())) |
|
throw std::overflow_error("Unable to extract integer value: stored value is too large for the requested type"); |
|
return static_cast<IntType>(value); |
|
} |
|
|
|
int64_t value = std::get<int64_t>(v); |
|
if constexpr (!std::is_same_v<IntType, int64_t>) |
|
if (value > static_cast<int64_t>(std::numeric_limits<IntType>::max()) |
|
|| value < static_cast<int64_t>(std::numeric_limits<IntType>::min())) |
|
throw std::overflow_error("Unable to extract integer value: stored value is outside the range of the requested type"); |
|
return static_cast<IntType>(value); |
|
} |
|
|
|
/// Class that allows you to walk through a bt-encoded list in memory without copying or allocating |
|
/// memory. It accesses existing memory directly and so the caller must ensure that the referenced |
|
/// memory stays valid for the lifetime of the bt_list_consumer object. |
|
class bt_list_consumer { |
|
protected: |
|
std::string_view data; |
|
bt_list_consumer() = default; |
|
public: |
|
bt_list_consumer(std::string_view data_); |
|
|
|
/// Copy constructor. Making a copy copies the current position so can be used for multipass |
|
/// iteration through a list. |
|
bt_list_consumer(const bt_list_consumer&) = default; |
|
bt_list_consumer& operator=(const bt_list_consumer&) = default; |
|
|
|
/// Returns true if the next value indicates the end of the list |
|
bool is_finished() const { return data.front() == 'e'; } |
|
/// Returns true if the next element looks like an encoded string |
|
bool is_string() const { return data.front() >= '0' && data.front() <= '9'; } |
|
/// Returns true if the next element looks like an encoded integer |
|
bool is_integer() const { return data.front() == 'i'; } |
|
/// Returns true if the next element looks like an encoded negative integer |
|
bool is_negative_integer() const { return is_integer() && data.size() >= 2 && data[1] == '-'; } |
|
/// Returns true if the next element looks like an encoded list |
|
bool is_list() const { return data.front() == 'l'; } |
|
/// Returns true if the next element looks like an encoded dict |
|
bool is_dict() const { return data.front() == 'd'; } |
|
|
|
/// Attempt to parse the next value as a string (and advance just past it). Throws if the next |
|
/// value is not a string. |
|
std::string consume_string(); |
|
std::string_view consume_string_view(); |
|
|
|
/// Attempts to parse the next value as an integer (and advance just past it). Throws if the |
|
/// next value is not an integer. |
|
template <typename IntType> |
|
IntType consume_integer() { |
|
if (!is_integer()) throw bt_deserialize_invalid_type{"next value is not an integer"}; |
|
std::string_view next{data}; |
|
IntType ret; |
|
detail::bt_deserialize<IntType>{}(next, ret); |
|
data = next; |
|
return ret; |
|
} |
|
|
|
/// Consumes a list, return it as a list-like type. This typically requires dynamic allocation, |
|
/// but only has to parse the data once. Compare with consume_list_data() which allows |
|
/// alloc-free traversal, but requires parsing twice (if the contents are to be used). |
|
template <typename T = bt_list> |
|
T consume_list() { |
|
T list; |
|
consume_list(list); |
|
return list; |
|
} |
|
|
|
/// Same as above, but takes a pre-existing list-like data type. |
|
template <typename T> |
|
void consume_list(T& list) { |
|
if (!is_list()) throw bt_deserialize_invalid_type{"next bt value is not a list"}; |
|
std::string_view n{data}; |
|
detail::bt_deserialize<T>{}(n, list); |
|
data = n; |
|
} |
|
|
|
/// Consumes a dict, return it as a dict-like type. This typically requires dynamic allocation, |
|
/// but only has to parse the data once. Compare with consume_dict_data() which allows |
|
/// alloc-free traversal, but requires parsing twice (if the contents are to be used). |
|
template <typename T = bt_dict> |
|
T consume_dict() { |
|
T dict; |
|
consume_dict(dict); |
|
return dict; |
|
} |
|
|
|
/// Same as above, but takes a pre-existing dict-like data type. |
|
template <typename T> |
|
void consume_dict(T& dict) { |
|
if (!is_dict()) throw bt_deserialize_invalid_type{"next bt value is not a dict"}; |
|
std::string_view n{data}; |
|
detail::bt_deserialize<T>{}(n, dict); |
|
data = n; |
|
} |
|
|
|
/// Consumes a value without returning it. |
|
void skip_value(); |
|
|
|
/// Attempts to parse the next value as a list and returns the string_view that contains the |
|
/// entire thing. This is recursive into both lists and dicts and likely to be quite |
|
/// inefficient for large, nested structures (unless the values only need to be skipped but |
|
/// aren't separately needed). This, however, does not require dynamic memory allocation. |
|
std::string_view consume_list_data(); |
|
|
|
/// Attempts to parse the next value as a dict and returns the string_view that contains the |
|
/// entire thing. This is recursive into both lists and dicts and likely to be quite |
|
/// inefficient for large, nested structures (unless the values only need to be skipped but |
|
/// aren't separately needed). This, however, does not require dynamic memory allocation. |
|
std::string_view consume_dict_data(); |
|
}; |
|
|
|
|
|
/// Class that allows you to walk through key-value pairs of a bt-encoded dict in memory without |
|
/// copying or allocating memory. It accesses existing memory directly and so the caller must |
|
/// ensure that the referenced memory stays valid for the lifetime of the bt_dict_consumer object. |
|
class bt_dict_consumer : private bt_list_consumer { |
|
std::string_view key_; |
|
|
|
/// Consume the key if not already consumed and there is a key present (rather than 'e'). |
|
/// Throws exception if what should be a key isn't a string, or if the key consumes the entire |
|
/// data (i.e. requires that it be followed by something). Returns true if the key was consumed |
|
/// (either now or previously and cached). |
|
bool consume_key(); |
|
|
|
/// Clears the cached key and returns it. Must have already called consume_key directly or |
|
/// indirectly via one of the `is_{...}` methods. |
|
std::string_view flush_key() { |
|
std::string_view k; |
|
k.swap(key_); |
|
return k; |
|
} |
|
|
|
public: |
|
bt_dict_consumer(std::string_view data_); |
|
|
|
/// Copy constructor. Making a copy copies the current position so can be used for multipass |
|
/// iteration through a list. |
|
bt_dict_consumer(const bt_dict_consumer&) = default; |
|
bt_dict_consumer& operator=(const bt_dict_consumer&) = default; |
|
|
|
/// Returns true if the next value indicates the end of the dict |
|
bool is_finished() { return !consume_key() && data.front() == 'e'; } |
|
/// Operator bool is an alias for `!is_finished()` |
|
operator bool() { return !is_finished(); } |
|
/// Returns true if the next value looks like an encoded string |
|
bool is_string() { return consume_key() && data.front() >= '0' && data.front() <= '9'; } |
|
/// Returns true if the next element looks like an encoded integer |
|
bool is_integer() { return consume_key() && data.front() == 'i'; } |
|
/// Returns true if the next element looks like an encoded negative integer |
|
bool is_negative_integer() { return is_integer() && data.size() >= 2 && data[1] == '-'; } |
|
/// Returns true if the next element looks like an encoded list |
|
bool is_list() { return consume_key() && data.front() == 'l'; } |
|
/// Returns true if the next element looks like an encoded dict |
|
bool is_dict() { return consume_key() && data.front() == 'd'; } |
|
/// Returns the key of the next pair. This does not have to be called; it is also returned by |
|
/// all of the other consume_* methods. The value is cached whether called here or by some |
|
/// other method; accessing it multiple times simple accesses the cache until the next value is |
|
/// consumed. |
|
std::string_view key() { |
|
if (!consume_key()) |
|
throw bt_deserialize_invalid{"Cannot access next key: at the end of the dict"}; |
|
return key_; |
|
} |
|
|
|
/// Attempt to parse the next value as a string->string pair (and advance just past it). Throws |
|
/// if the next value is not a string. |
|
std::pair<std::string_view, std::string_view> next_string(); |
|
|
|
/// Attempts to parse the next value as an string->integer pair (and advance just past it). |
|
/// Throws if the next value is not an integer. |
|
template <typename IntType> |
|
std::pair<std::string_view, IntType> next_integer() { |
|
if (!is_integer()) throw bt_deserialize_invalid_type{"next bt dict value is not an integer"}; |
|
std::pair<std::string_view, IntType> ret; |
|
ret.second = bt_list_consumer::consume_integer<IntType>(); |
|
ret.first = flush_key(); |
|
return ret; |
|
} |
|
|
|
/// Consumes a string->list pair, return it as a list-like type. This typically requires |
|
/// dynamic allocation, but only has to parse the data once. Compare with consume_list_data() |
|
/// which allows alloc-free traversal, but requires parsing twice (if the contents are to be |
|
/// used). |
|
template <typename T = bt_list> |
|
std::pair<std::string_view, T> next_list() { |
|
std::pair<std::string_view, T> pair; |
|
pair.first = consume_list(pair.second); |
|
return pair; |
|
} |
|
|
|
/// Same as above, but takes a pre-existing list-like data type. Returns the key. |
|
template <typename T> |
|
std::string_view next_list(T& list) { |
|
if (!is_list()) throw bt_deserialize_invalid_type{"next bt value is not a list"}; |
|
bt_list_consumer::consume_list(list); |
|
return flush_key(); |
|
} |
|
|
|
/// Consumes a string->dict pair, return it as a dict-like type. This typically requires |
|
/// dynamic allocation, but only has to parse the data once. Compare with consume_dict_data() |
|
/// which allows alloc-free traversal, but requires parsing twice (if the contents are to be |
|
/// used). |
|
template <typename T = bt_dict> |
|
std::pair<std::string_view, T> next_dict() { |
|
std::pair<std::string_view, T> pair; |
|
pair.first = consume_dict(pair.second); |
|
return pair; |
|
} |
|
|
|
/// Same as above, but takes a pre-existing dict-like data type. Returns the key. |
|
template <typename T> |
|
std::string_view next_dict(T& dict) { |
|
if (!is_dict()) throw bt_deserialize_invalid_type{"next bt value is not a dict"}; |
|
bt_list_consumer::consume_dict(dict); |
|
return flush_key(); |
|
} |
|
|
|
/// Attempts to parse the next value as a string->list pair and returns the string_view that |
|
/// contains the entire thing. This is recursive into both lists and dicts and likely to be |
|
/// quite inefficient for large, nested structures (unless the values only need to be skipped |
|
/// but aren't separately needed). This, however, does not require dynamic memory allocation. |
|
std::pair<std::string_view, std::string_view> next_list_data() { |
|
if (data.size() < 2 || !is_list()) throw bt_deserialize_invalid_type{"next bt dict value is not a list"}; |
|
return {flush_key(), bt_list_consumer::consume_list_data()}; |
|
} |
|
|
|
/// Same as next_list_data(), but wraps the value in a bt_list_consumer for convenience |
|
std::pair<std::string_view, bt_list_consumer> next_list_consumer() { return next_list_data(); } |
|
|
|
/// Attempts to parse the next value as a string->dict pair and returns the string_view that |
|
/// contains the entire thing. This is recursive into both lists and dicts and likely to be |
|
/// quite inefficient for large, nested structures (unless the values only need to be skipped |
|
/// but aren't separately needed). This, however, does not require dynamic memory allocation. |
|
std::pair<std::string_view, std::string_view> next_dict_data() { |
|
if (data.size() < 2 || !is_dict()) throw bt_deserialize_invalid_type{"next bt dict value is not a dict"}; |
|
return {flush_key(), bt_list_consumer::consume_dict_data()}; |
|
} |
|
|
|
/// Same as next_dict_data(), but wraps the value in a bt_dict_consumer for convenience |
|
std::pair<std::string_view, bt_dict_consumer> next_dict_consumer() { return next_dict_data(); } |
|
|
|
/// Skips ahead until we find the first key >= the given key or reach the end of the dict. |
|
/// Returns true if we found an exact match, false if we reached some greater value or the end. |
|
/// If we didn't hit the end, the next `consumer_*()` call will return the key-value pair we |
|
/// found (either the exact match or the first key greater than the requested key). |
|
/// |
|
/// Two important notes: |
|
/// |
|
/// - properly encoded bt dicts must have lexicographically sorted keys, and this method assumes |
|
/// that the input is correctly sorted (and thus if we find a greater value then your key does |
|
/// not exist). |
|
/// - this is irreversible; you cannot returned to skipped values without reparsing. (You *can* |
|
/// however, make a copy of the bt_dict_consumer before calling and use the copy to return to |
|
/// the pre-skipped position). |
|
bool skip_until(std::string_view find) { |
|
while (consume_key() && key_ < find) { |
|
flush_key(); |
|
skip_value(); |
|
} |
|
return key_ == find; |
|
} |
|
|
|
/// The `consume_*` functions are wrappers around next_whatever that discard the returned key. |
|
/// |
|
/// Intended for use with skip_until such as: |
|
/// |
|
/// std::string value; |
|
/// if (d.skip_until("key")) |
|
/// value = d.consume_string(); |
|
/// |
|
|
|
auto consume_string_view() { return next_string().second; } |
|
auto consume_string() { return std::string{consume_string_view()}; } |
|
|
|
template <typename IntType> |
|
auto consume_integer() { return next_integer<IntType>().second; } |
|
|
|
template <typename T = bt_list> |
|
auto consume_list() { return next_list<T>().second; } |
|
|
|
template <typename T> |
|
void consume_list(T& list) { next_list(list); } |
|
|
|
template <typename T = bt_dict> |
|
auto consume_dict() { return next_dict<T>().second; } |
|
|
|
template <typename T> |
|
void consume_dict(T& dict) { next_dict(dict); } |
|
|
|
std::string_view consume_list_data() { return next_list_data().second; } |
|
std::string_view consume_dict_data() { return next_dict_data().second; } |
|
|
|
bt_list_consumer consume_list_consumer() { return consume_list_data(); } |
|
bt_dict_consumer consume_dict_consumer() { return consume_dict_data(); } |
|
}; |
|
|
|
|
|
} // namespace lokimq
|
|
|