/* * SpanDSP - a series of DSP components for telephony * * bit_operations.h - Various bit level operations, such as bit reversal * * Written by Steve Underwood * * Copyright (C) 2006 Steve Underwood * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 2.1, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * $Id: bit_operations.h,v 1.27 2009/07/10 13:15:56 steveu Exp $ */ /*! \file */ #if !defined(_SPANDSP_BIT_OPERATIONS_H_) #define _SPANDSP_BIT_OPERATIONS_H_ #if defined(__i386__) || defined(__x86_64__) #if !defined(__SUNPRO_C) || (__SUNPRO_C >= 0x0590) #define SPANDSP_USE_86_ASM #endif #endif #if defined(__cplusplus) extern "C" { #endif /*! \brief Find the bit position of the highest set bit in a word \param bits The word to be searched \return The bit number of the highest set bit, or -1 if the word is zero. */ static __inline__ int top_bit(unsigned int bits) { #if defined(SPANDSP_USE_86_ASM) int res; __asm__ (" xorl %[res],%[res];\n" " decl %[res];\n" " bsrl %[bits],%[res]\n" : [res] "=&r" (res) : [bits] "rm" (bits)); return res; #elif defined(__ppc__) || defined(__powerpc__) int res; __asm__ ("cntlzw %[res],%[bits];\n" : [res] "=&r" (res) : [bits] "r" (bits)); return 31 - res; #elif defined(_M_IX86) /* Visual Studio i386 */ __asm { xor eax, eax dec eax bsr eax, bits } #elif defined(_M_X64) /* Visual Studio x86_64 */ /* TODO: Need the appropriate x86_64 code */ int res; if (bits == 0) return -1; res = 0; if (bits & 0xFFFF0000) { bits &= 0xFFFF0000; res += 16; } if (bits & 0xFF00FF00) { bits &= 0xFF00FF00; res += 8; } if (bits & 0xF0F0F0F0) { bits &= 0xF0F0F0F0; res += 4; } if (bits & 0xCCCCCCCC) { bits &= 0xCCCCCCCC; res += 2; } if (bits & 0xAAAAAAAA) { bits &= 0xAAAAAAAA; res += 1; } return res; #else int res; if (bits == 0) return -1; res = 0; if (bits & 0xFFFF0000) { bits &= 0xFFFF0000; res += 16; } if (bits & 0xFF00FF00) { bits &= 0xFF00FF00; res += 8; } if (bits & 0xF0F0F0F0) { bits &= 0xF0F0F0F0; res += 4; } if (bits & 0xCCCCCCCC) { bits &= 0xCCCCCCCC; res += 2; } if (bits & 0xAAAAAAAA) { bits &= 0xAAAAAAAA; res += 1; } return res; #endif } /*- End of function --------------------------------------------------------*/ /*! \brief Find the bit position of the lowest set bit in a word \param bits The word to be searched \return The bit number of the lowest set bit, or -1 if the word is zero. */ static __inline__ int bottom_bit(unsigned int bits) { int res; #if defined(SPANDSP_USE_86_ASM) __asm__ (" xorl %[res],%[res];\n" " decl %[res];\n" " bsfl %[bits],%[res]\n" : [res] "=&r" (res) : [bits] "rm" (bits)); return res; #else if (bits == 0) return -1; res = 31; if (bits & 0x0000FFFF) { bits &= 0x0000FFFF; res -= 16; } if (bits & 0x00FF00FF) { bits &= 0x00FF00FF; res -= 8; } if (bits & 0x0F0F0F0F) { bits &= 0x0F0F0F0F; res -= 4; } if (bits & 0x33333333) { bits &= 0x33333333; res -= 2; } if (bits & 0x55555555) { bits &= 0x55555555; res -= 1; } return res; #endif } /*- End of function --------------------------------------------------------*/ /*! \brief Bit reverse a byte. \param data The byte to be reversed. \return The bit reversed version of data. */ static __inline__ uint8_t bit_reverse8(uint8_t x) { #if defined(__i386__) || defined(__x86_64__) || defined(__ppc__) || defined(__powerpc__) /* If multiply is fast */ return ((x*0x0802U & 0x22110U) | (x*0x8020U & 0x88440U))*0x10101U >> 16; #else /* If multiply is slow, but we have a barrel shifter */ x = (x >> 4) | (x << 4); x = ((x & 0xCC) >> 2) | ((x & 0x33) << 2); return ((x & 0xAA) >> 1) | ((x & 0x55) << 1); #endif } /*- End of function --------------------------------------------------------*/ /*! \brief Bit reverse a 16 bit word. \param data The word to be reversed. \return The bit reversed version of data. */ SPAN_DECLARE(uint16_t) bit_reverse16(uint16_t data); /*! \brief Bit reverse a 32 bit word. \param data The word to be reversed. \return The bit reversed version of data. */ SPAN_DECLARE(uint32_t) bit_reverse32(uint32_t data); /*! \brief Bit reverse each of the four bytes in a 32 bit word. \param data The word to be reversed. \return The bit reversed version of data. */ SPAN_DECLARE(uint32_t) bit_reverse_4bytes(uint32_t data); #if defined(__x86_64__) /*! \brief Bit reverse each of the eight bytes in a 64 bit word. \param data The word to be reversed. \return The bit reversed version of data. */ SPAN_DECLARE(uint64_t) bit_reverse_8bytes(uint64_t data); #endif /*! \brief Bit reverse each bytes in a buffer. \param to The buffer to place the reversed data in. \param from The buffer containing the data to be reversed. \param len The length of the data in the buffer. */ SPAN_DECLARE(void) bit_reverse(uint8_t to[], const uint8_t from[], int len); /*! \brief Find the number of set bits in a 32 bit word. \param x The word to be searched. \return The number of set bits. */ SPAN_DECLARE(int) one_bits32(uint32_t x); /*! \brief Create a mask as wide as the number in a 32 bit word. \param x The word to be searched. \return The mask. */ SPAN_DECLARE(uint32_t) make_mask32(uint32_t x); /*! \brief Create a mask as wide as the number in a 16 bit word. \param x The word to be searched. \return The mask. */ SPAN_DECLARE(uint16_t) make_mask16(uint16_t x); /*! \brief Find the least significant one in a word, and return a word with just that bit set. \param x The word to be searched. \return The word with the single set bit. */ static __inline__ uint32_t least_significant_one32(uint32_t x) { return (x & (-(int32_t) x)); } /*- End of function --------------------------------------------------------*/ /*! \brief Find the most significant one in a word, and return a word with just that bit set. \param x The word to be searched. \return The word with the single set bit. */ static __inline__ uint32_t most_significant_one32(uint32_t x) { #if defined(__i386__) || defined(__x86_64__) || defined(__ppc__) || defined(__powerpc__) return 1 << top_bit(x); #else x = make_mask32(x); return (x ^ (x >> 1)); #endif } /*- End of function --------------------------------------------------------*/ /*! \brief Find the parity of a byte. \param x The byte to be checked. \return 1 for odd, or 0 for even. */ static __inline__ int parity8(uint8_t x) { x = (x ^ (x >> 4)) & 0x0F; return (0x6996 >> x) & 1; } /*- End of function --------------------------------------------------------*/ /*! \brief Find the parity of a 16 bit word. \param x The word to be checked. \return 1 for odd, or 0 for even. */ static __inline__ int parity16(uint16_t x) { x ^= (x >> 8); x = (x ^ (x >> 4)) & 0x0F; return (0x6996 >> x) & 1; } /*- End of function --------------------------------------------------------*/ /*! \brief Find the parity of a 32 bit word. \param x The word to be checked. \return 1 for odd, or 0 for even. */ static __inline__ int parity32(uint32_t x) { x ^= (x >> 16); x ^= (x >> 8); x = (x ^ (x >> 4)) & 0x0F; return (0x6996 >> x) & 1; } /*- End of function --------------------------------------------------------*/ #if defined(__cplusplus) } #endif #endif /*- End of file ------------------------------------------------------------*/