session-ios/SessionMessagingKit/Utilities/Sodium+Utilities.swift

289 lines
15 KiB
Swift

// Copyright © 2022 Rangeproof Pty Ltd. All rights reserved.
import Foundation
import Clibsodium
import Sodium
import Curve25519Kit
import SessionUtilitiesKit
/// These extenion methods are used to generate a sign "blinded" messages
///
/// According to the Swift engineers the only situation when `UnsafeRawBufferPointer.baseAddress` is nil is when it's an
/// empty collection; as such our guard cases wihch return `-1` when unwrapping this value should never be hit and we can ignore
/// them as possible results.
///
/// For more information see:
/// https://forums.swift.org/t/when-is-unsafemutablebufferpointer-baseaddress-nil/32136/5
/// https://github.com/apple/swift-evolution/blob/master/proposals/0055-optional-unsafe-pointers.md#unsafebufferpointer
extension Sodium {
private static let scalarLength: Int = Int(crypto_core_ed25519_scalarbytes()) // 32
private static let noClampLength: Int = Int(Sodium.lib_crypto_scalarmult_ed25519_bytes()) // 32
private static let scalarMultLength: Int = Int(crypto_scalarmult_bytes()) // 32
private static let publicKeyLength: Int = Int(crypto_scalarmult_bytes()) // 32
private static let secretKeyLength: Int = Int(crypto_sign_secretkeybytes()) // 64
/// 64-byte blake2b hash then reduce to get the blinding factor
public func generateBlindingFactor(serverPublicKey: String, genericHash: GenericHashType) -> Bytes? {
/// k = salt.crypto_core_ed25519_scalar_reduce(blake2b(server_pk, digest_size=64).digest())
let serverPubKeyData: Data = Data(hex: serverPublicKey)
guard !serverPubKeyData.isEmpty, let serverPublicKeyHashBytes: Bytes = genericHash.hash(message: [UInt8](serverPubKeyData), outputLength: 64) else {
return nil
}
/// Reduce the server public key into an ed25519 scalar (`k`)
let kPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Sodium.scalarLength)
_ = serverPublicKeyHashBytes.withUnsafeBytes { (serverPublicKeyHashPtr: UnsafeRawBufferPointer) -> Int32 in
guard let serverPublicKeyHashBaseAddress: UnsafePointer<UInt8> = serverPublicKeyHashPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
return -1 // Impossible case (refer to comments at top of extension)
}
Sodium.lib_crypto_core_ed25519_scalar_reduce(kPtr, serverPublicKeyHashBaseAddress)
return 0
}
return Data(bytes: kPtr, count: Sodium.scalarLength).bytes
}
/// Calculate k*a. To get 'a' (the Ed25519 private key scalar) we call the sodium function to
/// convert to an *x* secret key, which seems wrong--but isn't because converted keys use the
/// same secret scalar secret (and so this is just the most convenient way to get 'a' out of
/// a sodium Ed25519 secret key)
func generatePrivateKeyScalar(secretKey: Bytes) -> Bytes {
/// a = s.to_curve25519_private_key().encode()
let aPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Sodium.scalarMultLength)
/// Looks like the `crypto_sign_ed25519_sk_to_curve25519` function can't actually fail so no need to verify the result
/// See: https://github.com/jedisct1/libsodium/blob/master/src/libsodium/crypto_sign/ed25519/ref10/keypair.c#L70
_ = secretKey.withUnsafeBytes { (secretKeyPtr: UnsafeRawBufferPointer) -> Int32 in
guard let secretKeyBaseAddress: UnsafePointer<UInt8> = secretKeyPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
return -1 // Impossible case (refer to comments at top of extension)
}
return crypto_sign_ed25519_sk_to_curve25519(aPtr, secretKeyBaseAddress)
}
return Data(bytes: aPtr, count: Sodium.scalarMultLength).bytes
}
/// Constructs a "blinded" key pair (`ka, kA`) based on an open group server `publicKey` and an ed25519 `keyPair`
public func blindedKeyPair(serverPublicKey: String, edKeyPair: Box.KeyPair, genericHash: GenericHashType) -> Box.KeyPair? {
guard edKeyPair.publicKey.count == Sodium.publicKeyLength && edKeyPair.secretKey.count == Sodium.secretKeyLength else {
return nil
}
guard let kBytes: Bytes = generateBlindingFactor(serverPublicKey: serverPublicKey, genericHash: genericHash) else {
return nil
}
let aBytes: Bytes = generatePrivateKeyScalar(secretKey: edKeyPair.secretKey)
/// Generate the blinded key pair `ka`, `kA`
let kaPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Sodium.secretKeyLength)
let kAPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Sodium.publicKeyLength)
_ = aBytes.withUnsafeBytes { (aPtr: UnsafeRawBufferPointer) -> Int32 in
return kBytes.withUnsafeBytes { (kPtr: UnsafeRawBufferPointer) -> Int32 in
guard let kBaseAddress: UnsafePointer<UInt8> = kPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
return -1 // Impossible case (refer to comments at top of extension)
}
guard let aBaseAddress: UnsafePointer<UInt8> = aPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
return -1 // Impossible case (refer to comments at top of extension)
}
Sodium.lib_crypto_core_ed25519_scalar_mul(kaPtr, kBaseAddress, aBaseAddress)
return 0
}
}
guard crypto_scalarmult_ed25519_base_noclamp(kAPtr, kaPtr) == 0 else { return nil }
return Box.KeyPair(
publicKey: Data(bytes: kAPtr, count: Sodium.publicKeyLength).bytes,
secretKey: Data(bytes: kaPtr, count: Sodium.secretKeyLength).bytes
)
}
/// Constructs an Ed25519 signature from a root Ed25519 key and a blinded scalar/pubkey pair, with one tweak to the
/// construction: we add kA into the hashed value that yields r so that we have domain separation for different blinded
/// pubkeys (this doesn't affect verification at all)
public func sogsSignature(message: Bytes, secretKey: Bytes, blindedSecretKey ka: Bytes, blindedPublicKey kA: Bytes) -> Bytes? {
/// H_rh = sha512(s.encode()).digest()[32:]
let H_rh: Bytes = Bytes(secretKey.sha512().suffix(32))
/// r = salt.crypto_core_ed25519_scalar_reduce(sha512_multipart(H_rh, kA, message_parts))
let combinedHashBytes: Bytes = (H_rh + kA + message).sha512()
let rPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Sodium.scalarLength)
_ = combinedHashBytes.withUnsafeBytes { (combinedHashPtr: UnsafeRawBufferPointer) -> Int32 in
guard let combinedHashBaseAddress: UnsafePointer<UInt8> = combinedHashPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
return -1 // Impossible case (refer to comments at top of extension)
}
Sodium.lib_crypto_core_ed25519_scalar_reduce(rPtr, combinedHashBaseAddress)
return 0
}
/// sig_R = salt.crypto_scalarmult_ed25519_base_noclamp(r)
let sig_RPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Sodium.noClampLength)
guard crypto_scalarmult_ed25519_base_noclamp(sig_RPtr, rPtr) == 0 else { return nil }
/// HRAM = salt.crypto_core_ed25519_scalar_reduce(sha512_multipart(sig_R, kA, message_parts))
let sig_RBytes: Bytes = Data(bytes: sig_RPtr, count: Sodium.noClampLength).bytes
let HRAMHashBytes: Bytes = (sig_RBytes + kA + message).sha512()
let HRAMPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Sodium.scalarLength)
_ = HRAMHashBytes.withUnsafeBytes { (HRAMHashPtr: UnsafeRawBufferPointer) -> Int32 in
guard let HRAMHashBaseAddress: UnsafePointer<UInt8> = HRAMHashPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
return -1 // Impossible case (refer to comments at top of extension)
}
Sodium.lib_crypto_core_ed25519_scalar_reduce(HRAMPtr, HRAMHashBaseAddress)
return 0
}
/// sig_s = salt.crypto_core_ed25519_scalar_add(r, salt.crypto_core_ed25519_scalar_mul(HRAM, ka))
let sig_sMulPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Sodium.scalarLength)
let sig_sPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Sodium.scalarLength)
_ = ka.withUnsafeBytes { (kaPtr: UnsafeRawBufferPointer) -> Int32 in
guard let kaBaseAddress: UnsafePointer<UInt8> = kaPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
return -1 // Impossible case (refer to comments at top of extension)
}
Sodium.lib_crypto_core_ed25519_scalar_mul(sig_sMulPtr, HRAMPtr, kaBaseAddress)
Sodium.lib_crypto_core_ed25519_scalar_add(sig_sPtr, rPtr, sig_sMulPtr)
return 0
}
/// full_sig = sig_R + sig_s
return (Data(bytes: sig_RPtr, count: Sodium.noClampLength).bytes + Data(bytes: sig_sPtr, count: Sodium.scalarLength).bytes)
}
/// Combines two keys (`kA`)
public func combineKeys(lhsKeyBytes: Bytes, rhsKeyBytes: Bytes) -> Bytes? {
let combinedPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Sodium.noClampLength)
let result = rhsKeyBytes.withUnsafeBytes { (rhsKeyBytesPtr: UnsafeRawBufferPointer) -> Int32 in
return lhsKeyBytes.withUnsafeBytes { (lhsKeyBytesPtr: UnsafeRawBufferPointer) -> Int32 in
guard let lhsKeyBytesBaseAddress: UnsafePointer<UInt8> = lhsKeyBytesPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
return -1 // Impossible case (refer to comments at top of extension)
}
guard let rhsKeyBytesBaseAddress: UnsafePointer<UInt8> = rhsKeyBytesPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
return -1 // Impossible case (refer to comments at top of extension)
}
return Sodium.lib_crypto_scalarmult_ed25519_noclamp(combinedPtr, lhsKeyBytesBaseAddress, rhsKeyBytesBaseAddress)
}
}
/// Ensure the above worked
guard result == 0 else { return nil }
return Data(bytes: combinedPtr, count: Sodium.noClampLength).bytes
}
/// Calculate a shared secret for a message from A to B:
///
/// BLAKE2b(a kB || kA || kB)
///
/// The receiver can calulate the same value via:
///
/// BLAKE2b(b kA || kA || kB)
public func sharedBlindedEncryptionKey(secretKey: Bytes, otherBlindedPublicKey: Bytes, fromBlindedPublicKey kA: Bytes, toBlindedPublicKey kB: Bytes, genericHash: GenericHashType) -> Bytes? {
let aBytes: Bytes = generatePrivateKeyScalar(secretKey: secretKey)
guard let combinedKeyBytes: Bytes = combineKeys(lhsKeyBytes: aBytes, rhsKeyBytes: otherBlindedPublicKey) else {
return nil
}
return genericHash.hash(message: (combinedKeyBytes + kA + kB), outputLength: 32)
}
/// This method should be used to check if a users standard sessionId matches a blinded one
public func sessionId(_ standardSessionId: String, matchesBlindedId blindedSessionId: String, serverPublicKey: String, genericHash: GenericHashType) -> Bool {
// Only support generating blinded keys for standard session ids
guard let sessionId: SessionId = SessionId(from: standardSessionId), sessionId.prefix == .standard else { return false }
guard let blindedId: SessionId = SessionId(from: blindedSessionId), blindedId.prefix == .blinded else { return false }
guard let kBytes: Bytes = generateBlindingFactor(serverPublicKey: serverPublicKey, genericHash: genericHash) else {
return false
}
/// From the session id (ignoring 05 prefix) we have two possible ed25519 pubkeys; the first is the positive (which is what
/// Signal's XEd25519 conversion always uses)
///
/// Note: The below method is code we have exposed from the `curve25519_verify` method within the Curve25519 library
/// rather than custom code we have written
guard let xEd25519Key: Data = try? Ed25519.publicKey(from: Data(hex: sessionId.publicKey)) else { return false }
/// Blind the positive public key
guard let pk1: Bytes = combineKeys(lhsKeyBytes: kBytes, rhsKeyBytes: xEd25519Key.bytes) else { return false }
/// For the negative, what we're going to get out of the above is simply the negative of pk1, so flip the sign bit to get pk2
/// pk2 = pk1[0:31] + bytes([pk1[31] ^ 0b1000_0000])
let pk2: Bytes = (pk1[0..<31] + [(pk1[31] ^ 0b1000_0000)])
return (
SessionId(.blinded, publicKey: pk1).publicKey == blindedId.publicKey ||
SessionId(.blinded, publicKey: pk2).publicKey == blindedId.publicKey
)
}
}
extension GenericHash {
public func hashSaltPersonal(
message: Bytes,
outputLength: Int,
key: Bytes? = nil,
salt: Bytes,
personal: Bytes
) -> Bytes? {
var output: [UInt8] = [UInt8](repeating: 0, count: outputLength)
let result = crypto_generichash_blake2b_salt_personal(
&output,
outputLength,
message,
UInt64(message.count),
key,
(key?.count ?? 0),
salt,
personal
)
guard result == 0 else { return nil }
return output
}
}
extension AeadXChaCha20Poly1305IetfType {
/// This method is the same as the standard AeadXChaCha20Poly1305IetfType `encrypt` method except it allows the
/// specification of a nonce which allows for deterministic behaviour with unit testing
public func encrypt(message: Bytes, secretKey: Bytes, nonce: Bytes, additionalData: Bytes? = nil) -> Bytes? {
guard secretKey.count == KeyBytes else { return nil }
var authenticatedCipherText = Bytes(repeating: 0, count: message.count + ABytes)
var authenticatedCipherTextLen: UInt64 = 0
let result = crypto_aead_xchacha20poly1305_ietf_encrypt(
&authenticatedCipherText, &authenticatedCipherTextLen,
message, UInt64(message.count),
additionalData, UInt64(additionalData?.count ?? 0),
nil, nonce, secretKey
)
guard result == 0 else { return nil }
return authenticatedCipherText
}
}
extension Box.KeyPair: Equatable {
public static func == (lhs: Box.KeyPair, rhs: Box.KeyPair) -> Bool {
return (
lhs.publicKey == rhs.publicKey &&
lhs.secretKey == rhs.secretKey
)
}
}