session-ios/SessionMessagingKit/Open Groups/Crypto/OpenGroupAPI+Crypto.swift

406 lines
19 KiB
Swift

// Copyright © 2023 Rangeproof Pty Ltd. All rights reserved.
//
// stringlint:disable
import Foundation
import CryptoKit
import Sodium
import Clibsodium
import Curve25519Kit
import SessionUtilitiesKit
// MARK: - Nonce
internal extension OpenGroupAPI {
class NonceGenerator16Byte: NonceGenerator {
public var NonceBytes: Int { 16 }
}
class NonceGenerator24Byte: NonceGenerator {
public var NonceBytes: Int { 24 }
}
}
public extension Crypto.Size {
static let nonce16: Crypto.Size = Crypto.Size(id: "nonce16") { OpenGroupAPI.NonceGenerator16Byte().NonceBytes }
static let nonce24: Crypto.Size = Crypto.Size(id: "nonce24") { OpenGroupAPI.NonceGenerator24Byte().NonceBytes }
}
public extension Crypto.Action {
static func generateNonce16() -> Crypto.Action {
return Crypto.Action(id: "generateNonce16") { OpenGroupAPI.NonceGenerator16Byte().nonce() }
}
static func generateNonce24() -> Crypto.Action {
return Crypto.Action(id: "generateNonce24") { OpenGroupAPI.NonceGenerator24Byte().nonce() }
}
}
// MARK: - AeadXChaCha20Poly1305Ietf
public extension Crypto.Size {
static let aeadXChaCha20KeyBytes: Crypto.Size = Crypto.Size(id: "aeadXChaCha20KeyBytes") {
Sodium().aead.xchacha20poly1305ietf.KeyBytes
}
static let aeadXChaCha20ABytes: Crypto.Size = Crypto.Size(id: "aeadXChaCha20ABytes") {
Sodium().aead.xchacha20poly1305ietf.ABytes
}
}
public extension Crypto.Action {
/// This method is the same as the standard AeadXChaCha20Poly1305Ietf `encrypt` method except it allows the
/// specification of a nonce which allows for deterministic behaviour with unit testing
static func encryptAeadXChaCha20(
message: Bytes,
secretKey: Bytes,
nonce: Bytes,
additionalData: Bytes? = nil,
using dependencies: Dependencies
) -> Crypto.Action {
return Crypto.Action(
id: "encryptAeadXChaCha20",
args: [message, secretKey, nonce, additionalData]
) {
guard secretKey.count == dependencies.crypto.size(.aeadXChaCha20KeyBytes) else { return nil }
var authenticatedCipherText = Bytes(
repeating: 0,
count: message.count + dependencies.crypto.size(.aeadXChaCha20ABytes)
)
var authenticatedCipherTextLen: UInt64 = 0
let result = crypto_aead_xchacha20poly1305_ietf_encrypt(
&authenticatedCipherText, &authenticatedCipherTextLen,
message, UInt64(message.count),
additionalData, UInt64(additionalData?.count ?? 0),
nil, nonce, secretKey
)
guard result == 0 else { return nil }
return authenticatedCipherText
}
}
static func decryptAeadXChaCha20(
authenticatedCipherText: Bytes,
secretKey: Bytes,
nonce: Bytes,
additionalData: Bytes? = nil
) -> Crypto.Action {
return Crypto.Action(
id: "decryptAeadXChaCha20",
args: [authenticatedCipherText, secretKey, nonce, additionalData]
) {
return Sodium().aead.xchacha20poly1305ietf.decrypt(
authenticatedCipherText: authenticatedCipherText,
secretKey: secretKey,
nonce: nonce,
additionalData: additionalData
)
}
}
}
// MARK: - Blinding
/// These extenion methods are used to generate a sign "blinded" messages
///
/// According to the Swift engineers the only situation when `UnsafeRawBufferPointer.baseAddress` is nil is when it's an
/// empty collection; as such our guard cases wihch return `-1` when unwrapping this value should never be hit and we can ignore
/// them as possible results.
///
/// For more information see:
/// https://forums.swift.org/t/when-is-unsafemutablebufferpointer-baseaddress-nil/32136/5
/// https://github.com/apple/swift-evolution/blob/master/proposals/0055-optional-unsafe-pointers.md#unsafebufferpointer
public extension Crypto.Action {
private static let scalarLength: Int = Int(crypto_core_ed25519_scalarbytes()) // 32
private static let noClampLength: Int = Int(Sodium.lib_crypto_scalarmult_ed25519_bytes()) // 32
private static let scalarMultLength: Int = Int(crypto_scalarmult_bytes()) // 32
fileprivate static let publicKeyLength: Int = Int(crypto_scalarmult_bytes()) // 32
fileprivate static let secretKeyLength: Int = Int(crypto_sign_secretkeybytes()) // 64
/// 64-byte blake2b hash then reduce to get the blinding factor
static func generateBlindingFactor(
serverPublicKey: String,
using dependencies: Dependencies
) -> Crypto.Action {
return Crypto.Action(
id: "generateBlindingFactor",
args: [serverPublicKey]
) {
/// k = salt.crypto_core_ed25519_scalar_reduce(blake2b(server_pk, digest_size=64).digest())
let serverPubKeyData: Data = Data(hex: serverPublicKey)
guard
!serverPubKeyData.isEmpty,
let serverPublicKeyHashBytes: Bytes = try? dependencies.crypto.perform(
.hash(message: [UInt8](serverPubKeyData), outputLength: 64)
)
else { return nil }
/// Reduce the server public key into an ed25519 scalar (`k`)
let kPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Crypto.Action.scalarLength)
_ = serverPublicKeyHashBytes.withUnsafeBytes { (serverPublicKeyHashPtr: UnsafeRawBufferPointer) -> Int32 in
guard let serverPublicKeyHashBaseAddress: UnsafePointer<UInt8> = serverPublicKeyHashPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
return -1 // Impossible case (refer to comments at top of extension)
}
Sodium.lib_crypto_core_ed25519_scalar_reduce(kPtr, serverPublicKeyHashBaseAddress)
return 0
}
return Data(bytes: kPtr, count: Crypto.Action.scalarLength).bytes
}
}
/// Calculate k*a. To get 'a' (the Ed25519 private key scalar) we call the sodium function to
/// convert to an *x* secret key, which seems wrong--but isn't because converted keys use the
/// same secret scalar secret (and so this is just the most convenient way to get 'a' out of
/// a sodium Ed25519 secret key)
fileprivate static func generatePrivateKeyScalar(secretKey: Bytes) -> Bytes {
/// a = s.to_curve25519_private_key().encode()
let aPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Crypto.Action.scalarMultLength)
/// Looks like the `crypto_sign_ed25519_sk_to_curve25519` function can't actually fail so no need to verify the result
/// See: https://github.com/jedisct1/libsodium/blob/master/src/libsodium/crypto_sign/ed25519/ref10/keypair.c#L70
_ = secretKey.withUnsafeBytes { (secretKeyPtr: UnsafeRawBufferPointer) -> Int32 in
guard let secretKeyBaseAddress: UnsafePointer<UInt8> = secretKeyPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
return -1 // Impossible case (refer to comments at top of extension)
}
return crypto_sign_ed25519_sk_to_curve25519(aPtr, secretKeyBaseAddress)
}
return Data(bytes: aPtr, count: Crypto.Action.scalarMultLength).bytes
}
/// Constructs an Ed25519 signature from a root Ed25519 key and a blinded scalar/pubkey pair, with one tweak to the
/// construction: we add kA into the hashed value that yields r so that we have domain separation for different blinded
/// pubkeys (this doesn't affect verification at all)
static func sogsSignature(
message: Bytes,
secretKey: Bytes,
blindedSecretKey ka: Bytes,
blindedPublicKey kA: Bytes
) -> Crypto.Action {
return Crypto.Action(
id: "sogsSignature",
args: [message, secretKey, ka, kA]
) {
/// H_rh = sha512(s.encode()).digest()[32:]
let H_rh: Bytes = Bytes(SHA512.hash(data: secretKey).suffix(32))
/// r = salt.crypto_core_ed25519_scalar_reduce(sha512_multipart(H_rh, kA, message_parts))
let combinedHashBytes: Bytes = SHA512.hash(data: H_rh + kA + message).bytes
let rPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Crypto.Action.scalarLength)
_ = combinedHashBytes.withUnsafeBytes { (combinedHashPtr: UnsafeRawBufferPointer) -> Int32 in
guard let combinedHashBaseAddress: UnsafePointer<UInt8> = combinedHashPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
return -1 // Impossible case (refer to comments at top of extension)
}
Sodium.lib_crypto_core_ed25519_scalar_reduce(rPtr, combinedHashBaseAddress)
return 0
}
/// sig_R = salt.crypto_scalarmult_ed25519_base_noclamp(r)
let sig_RPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Crypto.Action.noClampLength)
guard crypto_scalarmult_ed25519_base_noclamp(sig_RPtr, rPtr) == 0 else { return nil }
/// HRAM = salt.crypto_core_ed25519_scalar_reduce(sha512_multipart(sig_R, kA, message_parts))
let sig_RBytes: Bytes = Data(bytes: sig_RPtr, count: Crypto.Action.noClampLength).bytes
let HRAMHashBytes: Bytes = SHA512.hash(data: sig_RBytes + kA + message).bytes
let HRAMPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Crypto.Action.scalarLength)
_ = HRAMHashBytes.withUnsafeBytes { (HRAMHashPtr: UnsafeRawBufferPointer) -> Int32 in
guard let HRAMHashBaseAddress: UnsafePointer<UInt8> = HRAMHashPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
return -1 // Impossible case (refer to comments at top of extension)
}
Sodium.lib_crypto_core_ed25519_scalar_reduce(HRAMPtr, HRAMHashBaseAddress)
return 0
}
/// sig_s = salt.crypto_core_ed25519_scalar_add(r, salt.crypto_core_ed25519_scalar_mul(HRAM, ka))
let sig_sMulPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Crypto.Action.scalarLength)
let sig_sPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Crypto.Action.scalarLength)
_ = ka.withUnsafeBytes { (kaPtr: UnsafeRawBufferPointer) -> Int32 in
guard let kaBaseAddress: UnsafePointer<UInt8> = kaPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
return -1 // Impossible case (refer to comments at top of extension)
}
Sodium.lib_crypto_core_ed25519_scalar_mul(sig_sMulPtr, HRAMPtr, kaBaseAddress)
Sodium.lib_crypto_core_ed25519_scalar_add(sig_sPtr, rPtr, sig_sMulPtr)
return 0
}
/// full_sig = sig_R + sig_s
return (Data(bytes: sig_RPtr, count: Crypto.Action.noClampLength).bytes + Data(bytes: sig_sPtr, count: Crypto.Action.scalarLength).bytes)
}
}
/// Combines two keys (`kA`)
static func combineKeys(
lhsKeyBytes: Bytes,
rhsKeyBytes: Bytes
) -> Crypto.Action {
return Crypto.Action(
id: "combineKeys",
args: [lhsKeyBytes, rhsKeyBytes]
) {
let combinedPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Crypto.Action.noClampLength)
let result = rhsKeyBytes.withUnsafeBytes { (rhsKeyBytesPtr: UnsafeRawBufferPointer) -> Int32 in
return lhsKeyBytes.withUnsafeBytes { (lhsKeyBytesPtr: UnsafeRawBufferPointer) -> Int32 in
guard let lhsKeyBytesBaseAddress: UnsafePointer<UInt8> = lhsKeyBytesPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
return -1 // Impossible case (refer to comments at top of extension)
}
guard let rhsKeyBytesBaseAddress: UnsafePointer<UInt8> = rhsKeyBytesPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
return -1 // Impossible case (refer to comments at top of extension)
}
return Sodium.lib_crypto_scalarmult_ed25519_noclamp(combinedPtr, lhsKeyBytesBaseAddress, rhsKeyBytesBaseAddress)
}
}
/// Ensure the above worked
guard result == 0 else { return nil }
return Data(bytes: combinedPtr, count: Crypto.Action.noClampLength).bytes
}
}
/// Calculate a shared secret for a message from A to B:
///
/// BLAKE2b(a kB || kA || kB)
///
/// The receiver can calulate the same value via:
///
/// BLAKE2b(b kA || kA || kB)
static func sharedBlindedEncryptionKey(
secretKey: Bytes,
otherBlindedPublicKey: Bytes,
fromBlindedPublicKey kA: Bytes,
toBlindedPublicKey kB: Bytes,
using dependencies: Dependencies
) -> Crypto.Action {
return Crypto.Action(
id: "sharedBlindedEncryptionKey",
args: [secretKey, otherBlindedPublicKey, kA, kB]
) {
let aBytes: Bytes = generatePrivateKeyScalar(secretKey: secretKey)
let combinedKeyBytes: Bytes = try dependencies.crypto.perform(
.combineKeys(lhsKeyBytes: aBytes, rhsKeyBytes: otherBlindedPublicKey)
)
return try dependencies.crypto.perform(
.hash(message: (combinedKeyBytes + kA + kB), outputLength: 32)
)
}
}
}
public extension Crypto.KeyPairType {
/// Constructs a "blinded" key pair (`ka, kA`) based on an open group server `publicKey` and an ed25519 `keyPair`
static func blindedKeyPair(
serverPublicKey: String,
edKeyPair: KeyPair,
using dependencies: Dependencies
) -> Crypto.KeyPairType {
return Crypto.KeyPairType(
id: "blindedKeyPair",
args: [serverPublicKey, edKeyPair]
) {
guard
edKeyPair.publicKey.count == Crypto.Action.publicKeyLength,
edKeyPair.secretKey.count == Crypto.Action.secretKeyLength,
let kBytes: Bytes = try? dependencies.crypto.perform(
.generateBlindingFactor(serverPublicKey: serverPublicKey, using: dependencies)
)
else { return nil }
let aBytes: Bytes = Crypto.Action.generatePrivateKeyScalar(secretKey: edKeyPair.secretKey)
/// Generate the blinded key pair `ka`, `kA`
let kaPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Crypto.Action.secretKeyLength)
let kAPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Crypto.Action.publicKeyLength)
_ = aBytes.withUnsafeBytes { (aPtr: UnsafeRawBufferPointer) -> Int32 in
return kBytes.withUnsafeBytes { (kPtr: UnsafeRawBufferPointer) -> Int32 in
guard let kBaseAddress: UnsafePointer<UInt8> = kPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
return -1 // Impossible case (refer to comments at top of extension)
}
guard let aBaseAddress: UnsafePointer<UInt8> = aPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
return -1 // Impossible case (refer to comments at top of extension)
}
Sodium.lib_crypto_core_ed25519_scalar_mul(kaPtr, kBaseAddress, aBaseAddress)
return 0
}
}
guard crypto_scalarmult_ed25519_base_noclamp(kAPtr, kaPtr) == 0 else { return nil }
return KeyPair(
publicKey: Data(bytes: kAPtr, count: Crypto.Action.publicKeyLength).bytes,
secretKey: Data(bytes: kaPtr, count: Crypto.Action.secretKeyLength).bytes
)
}
}
}
public extension Crypto.Verification {
/// This method should be used to check if a users standard sessionId matches a blinded one
static func sessionId(
_ standardSessionId: String,
matchesBlindedId blindedSessionId: String,
serverPublicKey: String,
using dependencies: Dependencies
) -> Crypto.Verification {
return Crypto.Verification(
id: "sessionId",
args: [standardSessionId, blindedSessionId, serverPublicKey]
) {
// Only support generating blinded keys for standard session ids
guard
let sessionId: SessionId = SessionId(from: standardSessionId),
sessionId.prefix == .standard,
let blindedId: SessionId = SessionId(from: blindedSessionId),
(
blindedId.prefix == .blinded15 ||
blindedId.prefix == .blinded25
),
let kBytes: Bytes = try? dependencies.crypto.perform(
.generateBlindingFactor(serverPublicKey: serverPublicKey, using: dependencies)
)
else { return false }
/// From the session id (ignoring 05 prefix) we have two possible ed25519 pubkeys; the first is the positive (which is what
/// Signal's XEd25519 conversion always uses)
///
/// Note: The below method is code we have exposed from the `curve25519_verify` method within the Curve25519 library
/// rather than custom code we have written
guard let xEd25519Key: Data = try? Ed25519.publicKey(from: Data(hex: sessionId.publicKey)) else { return false }
/// Blind the positive public key
guard
let pk1: Bytes = try? dependencies.crypto.perform(
.combineKeys(lhsKeyBytes: kBytes, rhsKeyBytes: xEd25519Key.bytes)
)
else { return false }
/// For the negative, what we're going to get out of the above is simply the negative of pk1, so flip the sign bit to get pk2
/// pk2 = pk1[0:31] + bytes([pk1[31] ^ 0b1000_0000])
let pk2: Bytes = (pk1[0..<31] + [(pk1[31] ^ 0b1000_0000)])
return (
SessionId(.blinded15, publicKey: pk1).publicKey == blindedId.publicKey ||
SessionId(.blinded15, publicKey: pk2).publicKey == blindedId.publicKey
)
}
}
}