\begin{frame} \frametitle{Introduction} \small \begin{block}{\bf Setting} \begin{itemize} \item Outgoing solutions to the ``radial wave equation" \item Transparent radiation boundary conditions on spherical domain \item \alert{Dirichlet-to-Neumann map}, \alert{Macdonald function} \end{itemize} \end{block} \begin{block}{\bf Outline} \begin{itemize} \item Radial wave equation and the Macdonald function \item Non-reflecting boundary conditions \item Identities for roots of the Macdonald function \item Other work \end{itemize} \end{block} \end{frame} \begin{frame} \begin{center} \Huge Radial Wave Equation \end{center} \end{frame} \begin{frame} \frametitle{Radial Wave Equation} \scriptsize \begin{block}{\bf Overview} \begin{itemize} \item Ordinary wave equation on $\color{ec}\mathbb{R}^{3}$, ($\color{ec}c=1$ here): \hspace{2em} $\color{ec} \Delta\psi - \frac{1}{c^{2}}\frac{\partial^{2}\psi}{\partial t^{2}} = 0$ \item Laplace operator in spherical coordinates: $$\color{ec} \Delta\psi = \frac{1}{r^{2}}\frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r} \psi + \frac {1}{r^{2}}\Delta_{S^2} \psi, \hspace{2em} \Delta_{S^2} = \frac{1}{\sin \theta}\frac{\partial}{\partial\theta}\sin\theta\frac{\partial}{\partial\theta} + \frac{1}{\sin^{2}\theta}\frac{\partial^{2}}{\partial \phi^{2}} $$ \item Generic solution in terms of $\color{ec} Y_{\ell m}(\theta,\phi)$ of $\color{ec} \Delta_{S^2}$, where $$\color{ec} \Delta_{S^2}Y_{\ell m}(\theta,\phi) = -\ell(\ell+1)Y_{\ell m}(\theta,\phi)$$ is: $$\color{ec} \psi = \sum_{\ell =0}^\infty \sum_{m = - \ell}^\ell \psi_{\ell m}(t,r) Y_{\ell m}(\theta,\phi) = \sum_{\ell =0}^\infty \sum_{m = - \ell}^\ell \frac{\Psi_{\ell m}(t,r)}{r}Y_{\ell m}(\theta,\phi). $$ \end{itemize} \end{block} \end{frame} \begin{frame} \frametitle{Radial Wave Equation} \scriptsize \begin{block}{\bf Overview} \begin{itemize} \item "multipole" solution $\color{ec} \psi(t,r\sin\theta\cos\phi,r\sin\theta\sin\phi,r\cos\theta)$: $$\color{ec} \psi_{\ell m}(t,r)Y_{\ell m}(\theta,\phi) = r^{-1}\Psi_{\ell m}(t,r) Y_{\ell m}(\theta,\phi) $$ \item Eliminating angular dependence, multipole coefficients $\color{ec} \psi_{\ell m}$ and $\color{ec} \Psi_{\ell m}$ satisfy: $$\color{ec} - \partial^2_t \psi_{\ell m}+ \partial^2_r \psi_{\ell m} + \frac{2}{r}\partial_r \psi_{\ell m}- \frac{\ell(\ell+1)}{r^2}\psi_{\ell m} = 0, $$ $$\color{ec} -\partial^2_t\Psi_{\ell m} + \partial^2_r\Psi_{\ell m} - \frac{\ell(\ell+1)}{r^2}\Psi_{\ell m} = 0. $$ \end{itemize} \end{block} \end{frame}