\begin{frame} \frametitle{Radial Wave Equation} \scriptsize \begin{block}{\bf Overview} \begin{itemize} \item The Macdonald function $\color{eqncolor}K_\nu (z)$ is a solution to the modified Bessel equation: $$\color{eqncolor} z^2 w'' + zw' - (z^2 + \nu^2)w = 0 $$ \item For half-integer order, $$\color{eqncolor} K_{\ell + 1/2}(z) = \sqrt{\frac{\pi}{2z}} e^{-z} W_\ell(z), \qquad W_\ell(z) = \sum_{k=0}^\ell \frac{c_{\ell k}}{z^k},\qquad c_{\ell k} = \frac{1}{2^k k!}\frac{(\ell + k)!}{(\ell - k)!} $$ \item $\color{eqncolor} K_{\ell+1/2}(z)$ can also be expressed using the monic \emph{Bessel polynomial} $\color{eqncolor}p_{\ell}(z)$: $$\color{eqncolor} K_{\ell+1/2}(z) = \sqrt{\frac{\pi}{2z}}\frac{e^{-z}}{z^\ell}p_{\ell}(z), \hspace{2em} p_{\ell}(z) = \sum_{k=0}^{\ell}c_{\ell k}z^{\ell-k} $$ \end{itemize} \end{block} \end{frame} \begin{frame} \frametitle{Radial Wave Equation} \scriptsize \begin{block}{\bf Overview} \begin{itemize} \item The set $\color{eqncolor}\{b_{\ell j}/(\ell+1/2): j = 1,\dots,\ell\}$ is the collection of roots scaled by the Bessel order $\color{eqncolor}\nu = \ell + 1/2$. \item These roots accumulate on a fixed transcendental curve in the left-half plane, a parametrization of which is given by: $$\color{eqncolor} z(\lambda) = -\sqrt{\lambda^2 - \lambda\tanh\lambda}\pm \mathrm{i}\sqrt{\lambda\coth\lambda-\lambda^2} $$ for $\color{eqncolor}\lambda \in [0,\lambda_0]$, where $\color{eqncolor}\lambda_0 \simeq 1.19967864025773$ solves $\color{eqncolor}\tanh\lambda_0 = 1/\lambda_0$. \end{itemize} \end{block} \end{frame} \begin{frame} \frametitle{Radial Wave Equation} \small \begin{columns}[c] \column{0.1in} \column{3.1in} Scaled zeros $\displaystyle \color{eqncolor}\frac{b_{\ell j}}{(\ell+1/2)}$ of $\color{eqncolor}K_{\ell+1/2}(z)$ and $\color{eqncolor}W_\ell(z)$: \\[2mm] ${\color{red}+}$ $\displaystyle \color{eqncolor} K_{3/2}(z) = \sqrt{\frac{\pi}{2 z}} e^{-z}\left(1+\frac{1}{z}\right)$ \\[2mm] $\color{blue}\diamond$ $\displaystyle \color{eqncolor} K_{5/2}(z) = \sqrt{\frac{\pi}{2 z}}e^{-z}\left(1+\frac{3}{z}+\frac{3}{z^2}\right)$ \\[2mm] $\color{black}\circ$ $\displaystyle \color{eqncolor} K_{7/2}(z) = \sqrt{\frac{\pi}{2 z}} e^{-z}\left( 1+\frac{6}{z} + \frac{15}{z^2} + \frac{15}{z^3}\right)$ \\[2mm] $\color{magenta}*$ $\displaystyle \color{eqncolor} K_{9/2}(z) = \sqrt{\frac{\pi}{2 z}} e^{-z}\left( 1+\frac{10}{z} + \frac{45}{z^2} + \frac{105}{z^3} + \frac{105}{z^4}\right)$ \column{1.4in} \begin{picture}(-1.0,-2.0) \put(-0.3,-0.65){\includegraphics[width=11cm]{PDFfigs/zerosofK.pdf}} \end{picture} \end{columns} \end{frame}