%-------------------------------------------------------------- \begin{frame} \begin{center} \Huge Non-reflecting Boundary Conditions \end{center} \end{frame} \begin{frame} \scriptsize \frametitle{Lemma [needed to compute LT of $\Psi_\ell(t,r)$]} \begin{figure} \includegraphics[width=10cm]{PDFfigs/rline.pdf} \caption{ $\color{ec} D$ and open region $\color{ec}r>r_B-\delta$} \end{figure} Assume $\color{ec} f(u)$ supported on $ \color{ec} [-r_B+\delta, -r_0-\delta]=D$, $\color{ec} f\in C_0^\infty (D)$. \begin{block}{} For $\color{eqncolor}r > r_B - \delta$, Fourier-Laplace transform of $\color{eqncolor}f^{(\ell - k)}(t-r)$ is $$\color{eqncolor} s^{\ell-k}e^{-sr}a(s), \hspace{2em} a(s) = \int_{-r_B+ \delta}^{-r_0-\delta} e^{-su} f(u) du. $$ \end{block} \begin{block}{proof} $$\color{eqncolor} \int_0^\infty e^{-st} f^{(\ell-k)}(t-r)dt = e^{-sr} \int_{-r}^\infty e^{-su}f^{(\ell-k)}(u) du $$ $$\color{eqncolor} = e^{-sr} \int_{-r_B+\delta}^{-r_0-\delta} e^{-su}f^{(\ell-k)}(u) du, \hspace{2em} -r<-r_B+\delta $$ \end{block} \end{frame}