%-------------------------------------------------------------- \begin{frame} \scriptsize \frametitle{Laplace Transform of $\Psi_\ell(t,r)$} \begin{block}{} Therefore, for $\color{eqncolor}r=r_B$, $$\color{eqncolor} \widehat{\Psi}_{\ell}(s,r) = \sum_{k=0}^\ell \frac{c_{\ell k}}{r^k}\big(s^{\ell-k}e^{-sr}a(s)\big) $$ $$\color{eqncolor} = a(s)s^{\ell}e^{-sr}W_\ell (sr), \hspace{2em} W_\ell (sr)=\sum_{k=0}^\ell \frac{c_{\ell k}}{z^k} $$ $$\color{eqncolor} s\widehat{\Psi}_\ell(s,r) + \partial_r \widehat{\Psi}_\ell(s,r) = \frac{1}{r}(sr)\frac{W'_\ell(s,r)}{W_\ell(s,r)}\widehat{\Psi}_\ell=\frac{1}{r}\sum_{j=1}^\ell \frac{b_{\ell j}/r}{s-b_{\ell j}/r}\widehat{\Psi}_\ell, $$ Laplace Convolution Theorem: $$\color{eqncolor} \partial_t \Psi_\ell(t,r) + \partial_r \Psi_\ell(t,r) = \frac{1}{r} \int_0^t \Omega_\ell(t-t',r)\Psi_\ell(t',r)dt', \hspace{2em} \Omega_\ell(t,r) = \sum_{k=1}^\ell \frac{b_{\ell k}}{r}e^{\frac{b_{\ell k}}{r}t} $$ \end{block} \end{frame}