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Dedication

This is for all seekers of the truth, regardless of consequence.

“In the twentieth century it has been understood that all knowledge is dependent upon the

question asked; and the relationship of mathematics to nature is one of the profound
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the positivist philosopher Wittgenstein who was once asked, in a classroom situation about

a certain proposition, ‘Is it the truth?’, and he said ‘Well, it’s certainly true enough!’; and

that is where we are with our modelling of the world and with our mathematics. It is the

truest truth we know. It is true enough.” – Terence McKenna
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by
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Abstract

An overview is given for the Dirichlet-to-Neumann map for outgoing solutions to the

“radial wave equation” in the context of nonreflecting radiation boundary conditions on

a spherical domain. We then consider the Macdonald function Kℓ+1/2(z) for ℓ ∈ Z≥0, a

solution to the half-integer order modified Bessel equation. This function can be expressed

as Kℓ+1/2(z) =
√

π
2z
e−zz−ℓpℓ(z), where pℓ(z) is a degree-ℓ monic polynomial with simple

roots in the left-half plane. By exploiting radiation boundary conditions for the “radial wave

equation”, we show that the root set of pℓ(z) also obeys ℓ additional polynomial constraints.

These constraints are in fact Newton’s identities which relate a polynomial’s coefficients to

the power sums of its roots. We follow this with numerical verification up to order ℓ = 20.
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Chapter 1

Introduction

The overall goal of this thesis is to explore a set of identities that arise in the context of out-

going waves and the half-integer order modified Bessel equation. We derive identities for the

roots of the Macdonald function, a solution to the modified Bessel equation. These identities

prove to be Newton’s identities which relate a polynomial’s coefficients to the power sums of

its roots. Our derivation of these identities exploits the concept of nonreflecting boundary

conditions for the wave equation in the presence of a spherical “computational” domain.

These identities are then verified numerically using Mathematica up to a specified order.

The actual code used, along with the tables of roots generated and numerical verification of

the identity for each root set are presented in the final chapter. Arguments [2] by Watson

concerning the location of the roots of Macdonald’s function are presented in the Appendix.

Both subscript style notation ∂r and ratio notation ∂
∂r

are used interchangeably in this

paper to represent the partial derivative with respect to the radial variable r (for example),

with the choice of notation based on readability and typesetting. Sometimes we also use, for

example, the notation Ψtt = ∂2tΨ to denote derivatives.
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Chapter 2

Radiation boundary conditions and

the radial wave equation

2.1 Overview

In mathematical physics, wave phenomena are typically modelled by hyperbolic partial dif-

ferential equations on an unbounded domain. Examples include acoustic, electromagnetic,

elastic, and gravitational phenomena. In numerical situations, this unbounded domain is

usually truncated to produce a computational domain, with “artificial” boundary conditions

(BCs) placed at the domain’s boundary, an artificial boundary. One approach for producing

BCs which achieve exact domain reduction (i.e. the solution on the computational domain

agrees with the restriction thereon of the solution on the unbounded domain) involves the

Dirichlet-to-Neumann (DtN) map [3].

Consider the case of the ordinary wave equation on R
3,

∆ψ − 1

c2
∂2ψ

∂t2
= 0. (2.1)

The initial value problem for the wave equation can be solved using spherical coordinates,

2



Chapter 2. Radiation boundary conditions and the radial wave equation

chosen for symmetry considerations. We will also assume unit speed c = 1 in the rest of this

paper for simplicity.

Let D =
{
x
∣∣∣|x| ≤ rB

}
contain the support of the initial data. Then BCs are constructed

on the boundary ∂D with the purpose of approximating the exact solution for the whole-

space problem restricted to D. We want BCs which are transparent (i.e. nonreflecting). An

otherwise approximate BC which does not behave in this manner will generate a spurious

reflection, leading to numerical error in the computational domainD. Such BC’s are specified

in the next chapter. Here we lay some groundwork for their formulation.

2.2 The radial wave equation

In spherical coordinates the Laplace operator has the form

∆ψ =
1

r2
∂

∂r
r2
∂

∂r
ψ +

1

r2
∆S2ψ, ∆S2 =

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
, (2.2)

where ∆S2 is the Laplace operator on the unit sphere.

The general solution to (2.1) can then be expanded in terms of the eigenfunctions

Yℓm(θ, φ) of ∆S2 :

ψ =

∞∑

ℓ=0

ℓ∑

m=−ℓ

ψℓm(t, r)Yℓm(θ, φ) =

∞∑

ℓ=0

ℓ∑

m=−ℓ

Ψℓm(t, r)

r
Yℓm(θ, φ). (2.3)

Here the Yℓm(θ, φ) are the standard spherical harmonics which obey

∆S2Yℓm(θ, φ) = −ℓ(ℓ + 1)Yℓm(θ, φ). (2.4)

Plugging (2.3) into the wave equation (2.1) we find, using orthogonality, that the multi-

pole coefficients ψℓm and Ψℓm satisfy

−∂
2ψℓ

∂t2
+
∂2ψℓ

∂r2
+

2

r

∂ψℓ

∂r
− ℓ(ℓ+ 1)

r2
ψℓ = 0, (2.5)

3



Chapter 2. Radiation boundary conditions and the radial wave equation

and

−∂
2Ψℓ

∂t2
+
∂2Ψℓ

∂r2
− ℓ(ℓ+ 1)

r2
Ψℓ = 0, (2.6)

where now we suppress the m indices. Note that (2.6) is similar to the simple 1 + 1 wave

equation −∂2tΨ+ ∂2rΨ = 0 except for the potential term V = ℓ(ℓ+ 1)/r2.

The 1+1 wave equation has solutions g(t+ r), f(t− r) for general profile functions g(v),

f(u). In fact, for the radial wave equation (2.6),

Ψℓ(t, r) =

ℓ∑

k=0

1

rk
cℓkf

(ℓ−k)(t− r), cℓk =
1

2kk!

(ℓ+ k)!

(ℓ− k)!
, (2.7)

is the analog of the outgoing solution f(t − r) to the 1 + 1 wave equation, which we now

formulate as a lemma with proof.

Lemma 2.2.1. Given a sufficiently smooth profile function f(u), the“multipole” Ψℓ(t, r)

given in (2.7) is a solution to the radial wave equation (2.6).

Proof. To prove the lemma, note that f(t − r) is clearly a solution to (2.6) for ℓ = 0, and

then proceed by induction on ℓ. First, appealing to the explicit formula (2.7) for cℓk, it can

be established that

Ψℓ = −
( ∂
∂r

− ℓ

r

)
Ψℓ−1, Ψℓ−1(t, r) =

ℓ−1∑

k=0

1

rk
cℓ−1,kf

(ℓ−1−k)(t− r). (2.8)

Next, assume that Ψℓ−1 in (2.8) obeys (2.7) with ℓ replaced by ℓ− 1 in the potential:

−∂
2Ψℓ−1

∂t2
+
∂2Ψℓ−1

∂r2
− ℓ(ℓ− 1)

r2
Ψℓ−1 = 0. (2.9)

Finally, apply the raising operator D+
ℓ = −∂r + ℓ/r to the last equation, thereby finding

−(D+
ℓ Ψℓ−1)tt + (D+

ℓ Ψℓ−1)rr −
ℓ(ℓ+ 1)

r2
D+

ℓ Ψℓ−1 = 0. (2.10)

These steps prove the lemma.

4



Chapter 2. Radiation boundary conditions and the radial wave equation

2.3 Macdonald function as an outgoing solution

The Macdonald function (see p. 374 in [1], also [2]) Kν(z) is a solution to the modified Bessel

equation

z2w′′ + zw′ − (z2 + ν2)w = 0, (2.11)

and it plays a prominent role in the representation of outgoing solutions to the ordinary

wave equation. As an example, Ψℓ,s(t, r) = estr1/2Kℓ+1/2(sr) obeys (2.6) and this solution

is the one in (2.7) with f(t− r) = es(t−r) for the underlying profile function. Of course this

does not have compact support and is not used in the following.

For half-integer order, we have [1]

Kℓ+1/2(z) =

√
π

2z
e−zWℓ(z), Wℓ(z) =

ℓ∑

k=0

cℓk
zk
, cℓk =

1

2kk!

(ℓ+ k)!

(ℓ− k)!
, (2.12)

and the first few Macdonald functions are (see 10.2.15-17 in [1])

+K3/2(z) =

√
π

2z
e−z

(
1 +

1

z

)

⋄K5/2(z) =

√
π

2z
e−z

(
1 +

3

z
+

3

z2

)

◦K7/2(z) =

√
π

2z
e−z

(
1 +

6

z
+

15

z2
+

15

z3

)

∗K9/2(z) =

√
π

2z
e−z

(
1 +

10

z
+

45

z2
+

105

z3
+

105

z4

)
.

(2.13)

The Kℓ+1/2(z) can also be expressed as

Kℓ+1/2(z) =

√
π

2z

e−z

zℓ
pℓ(z), pℓ(z) =

ℓ∑

k=0

cℓkz
ℓ−k, (2.14)

where here we refer to the polynomial pℓ(z) as the Bessel polynomial.

Let the roots of pℓ(z) be denoted by {bℓj : j = 1, . . . , ℓ}. Watson [2] shows that each

bℓj lies in the left-half plane and is simple. Watson’s analysis is presented in the Appendix.
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Chapter 2. Radiation boundary conditions and the radial wave equation

−0.5 0
−1

−0.5

0

0.5

1

Rez

I
m

z

Figure 2.1: Scaled roots of Kℓ+1/2(z).

The set {bℓj/(ℓ + 1/2) : j = 1, . . . , ℓ} is the collection of roots scaled by the Bessel order

ν = ℓ + 1/2. For ℓ = 1, 2, 3, 4 the scaled roots are depicted in Fig. 2.1 using the symbols

+, ⋄, ◦, ∗ respectively. Olver [4] showed that for large ℓ the scaled roots tend to lie on the

curve given by

z(λ) = −
√
λ2 − λ tanhλ± i

√
λ cothλ− λ2

for λ ∈ [0, λ0], where λ0 ≃ 1.19967864025773 solves tanhλ0 = 1/λ0. Note that z(0) = ±i,
giving the two points at the end of the arc. To the eye the roots are on this curve for even

small ℓ, which also illustrates that often asymptotics are good when the parameter is not

large.
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Chapter 3

Nonreflecting Boundary Conditions

Our goal in this section is to specify an exact transparent BC for the wave equation in the

presence of a spherical boundary. Again, we will work “multipole by multipole” and specify a

condition obeyed by (2.7). Technically, the analysis will be easier if we work with a spherical

annulus centered at r = 0, thereby avoiding issues at the origin r = 0 which are not relevant

for the outer BCs we are considering here. Therefore, we introduce inner r0 and outer rB

radii (B for “boundary”).

In this chapter we prove the following.

Theorem 3.0.1. Consider 1 ≤ r0 < rB and the associated interval D = [−rB + δ,−r0 − δ],

where 0 < δ < (rB − r0)/2. Suppose that f ∈ C∞
0 (D), and consider the “wave field”

Ψℓ(t, r) =

ℓ∑

k=0

1

rk
cℓkf

(ℓ−k)(t− r). (3.1)

Then at r = rB the wave field obeys

Ψt(t, rB) + Ψr(t, rB) =
1

rB

∫ t

0

Ωℓ(t− t′, rB)Ψℓ(t
′, rB)dt

′, (3.2)

where the kernel

Ωℓ(t, r) =

ℓ∑

n=1

(bℓn/r) exp(bℓnt/r) = ∂t

ℓ∑

n=1

exp(bℓnt/r). (3.3)

7



Chapter 3. Nonreflecting Boundary Conditions

r0 ∆+ r0 rB -∆ rB

r

Figure 3.1: Radial axis with support of Ψℓ(0, r) and point at rB − ǫδ (the dashed line).

-rB -rB +∆ -r0 -∆
u

Figure 3.2: Retarded time axis and support of profile function f .

We care only about (3.2) at rB but in fact it holds for r ≥ rB.

3.1 Proof of Theorem 3.0.1

Our first proof of the theorem relies on the following lemma.

Lemma 3.1.1. For r ∈ (rB − ǫδ,∞) with ǫ ≤ 1 the Laplace transform Ψ̂ℓ(s, r) of the

expression Ψℓ(t, r) given in (3.1) with f ∈ C∞
0 (D) has form [cf. Eq. (2.12)]

Ψ̂ℓ(s, r) = a(s)sℓe−srWℓ(sr), a(s) =

∫ −r0−δ

−rB+δ

e−suf(u)du. (3.4)

Notice that a(s) is independent of r, and that this holds for any complex number s.

Proof. To obtain (3.4), we proceed as follows. First consider the Laplace transform of

f (ℓ−k)(t − r) which appears in (3.1). Repeated integration by parts generates t = 0 bound-

ary terms of the form f (ℓ−k−p)(−r) for 1 ≤ p ≤ ℓ − k; all such terms vanish. Indeed, for

r ∈ (rB − ǫδ,∞), we have −r < −rB + δ and so −r /∈ D. Moreover, the profile function f

and all of its derivatives vanish on R\D. The repeated integration by parts also generates

t = ∞ boundary terms which are similarly shown to vanish.

The previous argument establishes that
∫ ∞

0

e−stf (ℓ−k)(t− r)dt = sℓ−ke−sr

∫ ∞

−r

e−suf(u)du. (3.5)

8



Chapter 3. Nonreflecting Boundary Conditions

The lower limit −r of integration can now be replaced with −rB + δ, because f(u) = 0 for

u ∈ [−r,−rB + δ) which implies u /∈ D, and similarly the upper limit by −r0 − δ.

The proof of Theorem 3.0.1 follows from Lemma 3.1.1.

Proof. The explicit expression (3.4) for Ψ̂ℓ(s, r) determines an exact frequency-domain

boundary condition (the Dirichlet-to-Neumann map)

sΨ̂ℓ(s, r) + ∂rΨ̂ℓ(s, r) =
1

r
Ω̂ℓ(s, r)Ψ̂ℓ(s, r), (3.6)

where the frequency-domain radiation kernel Ω̂ℓ(s, r) defines the Sommerfeld residual. In-

deed, the operator on the left hand of (3.6) corresponds to the Sommerfeld operator ∂t + ∂r

in the time-domain. If ℓ = 0, then sΨ̂ℓ(s, r) + ∂rΨ̂ℓ(s, r) = 0. In (3.6) Ω̂ℓ(s, r) is essentially

the logarithmic derivative of Wℓ(sr),

Ω̂ℓ(s, r) ≡ sr
W ′

ℓ(sr)

Wℓ(sr)
=

ℓ∑

k=1

bℓk/r

s− bℓk/r
. (3.7)

The last equality arises from the following consideration. We recognize Wℓ(z) as the

expression given in (2.12). With this result and (3.6), we get (3.2) - (3.3) upon inverse

Laplace transformation.

Remark: The proof of Lemma 3.1.1 shows that Theorem 3.0.1 actually holds for

any Ψℓ(t, r) of the form (3.1). That is the cℓk need not be the special expressions in (2.12).

Of course for general cℓk the bℓk in Theorem 3.0.1 must be the corresponding roots of

pℓ(z) =
∑ℓ

k=1 cℓkz
ℓ−k. Moreover, if the cℓk are not those given in (2.12), then Ψℓ(t, r) will

not generally solve the radial wave equation (2.6).

Let us now consider what the boundary kernels for a spherical boundary look like for the

cases ℓ = 1 and ℓ = 2. For the case ℓ = 1, we refer to the general radial wave equation (2.6)

to get (suppressing the ℓ = 1 subscript)

−s2Ψ̂ + Ψ̂rr −
2

r2
Ψ̂ = 0 (3.8)

9



Chapter 3. Nonreflecting Boundary Conditions

for the Laplace-transformed equation. In order to peel off the exponential dependence of the

outgoing solution, we let Ψ̂ = e−srΦ̂ to obtain

Φ̂rr − 2sΦ̂r −
2

r2
Φ̂ = 0. (3.9)

Letting z = sr gives us

Φ̂zz − 2Φ̂z −
2

z2
Φ̂ = 0. (3.10)

Linearly independent solutions to this equation are

W1(z) = 1 +
1

z
Z1(z) = e2z

(
1− 1

z

)
. (3.11)

The product Ω1(s, r) of z and the logarithmic derivative of W1 for z = sr then takes the

form

Ω1(s, r) =
zW ′

1(z)

W1(z)
=
z(− 1

z2
)

1 + 1
z

= − 1

z + 1
. (3.12)

Now, for the case ℓ = 2, we again refer to the general radial wave equation (2.6) to get

(suppressing the ℓ = 2 subscript)

Φ̂rr − 2sΦ̂r −
6

r2
Φ̂ = 0 (3.13)

for the Laplace-transformed equation. Letting z = sr gives us

Φ̂zz − 2Φ̂z −
6

z2
Φ̂ = 0. (3.14)

The linearly independent solutions to this equation are then

W2(z) = 1 +
3

z
+

3

z2
Z2(z) = e2z

(
1− 3

z
+

3

z2

)
, (3.15)

and the product Ω2(s, r) of z and the logarithmic derivative of W2 for z = sr then takes the

form

Ω2(s, r) =
zW ′

2(z)

W2(z)
=
z(− 3

z2
− 6

z3
)

1 + 3
z
+ 3

z2

=
−3z − 6

z2 + 3z + 3
. (3.16)

10



Chapter 3. Nonreflecting Boundary Conditions

3.2 Alternative proof.

This subsection sketches an outline of a different formal proof of the convolution result (3.2)

in Theorem 3.0.1 by solving (2.6) on (r0,∞) as an initial value problem assuming (i)

Ψ(t, r0) = 0 and (ii) data of compact support on [r0+δ, rB−δ], 0 < δ < (rB−r0)/2. Unlike
the previous proof, this one relies on the wave equation and so assumes ultimately that the

cℓk are those given in (2.12). However, this proof allows for different initial data than that

associated with (3.1). In the proof we continue to suppress the ℓ on Ψ.

Proof. The Laplace transform of (2.6) is
[ d2
dr2

− ℓ(ℓ+ 1)

r2
− s2

]
Ψ̂(s, r) = −Ψ̇(0, r)− sΨ(0, r). (3.17)

Since Ψ(t, r0) = 0, we have Ψ̂(s, r0) = 0. Furthermore, we require Ψ̂(s, r) ∼ e−sr as r → ∞
(the latter “boundary condition at ∞” is the outgoing assumption).

We solve (3.17) subject to the specified boundary conditions via the method of Green’s

functions. The following are solutions to the homogeneous equation [i.e. (3.17) with the

right-hand side set to zero]:

√
2πsrIℓ+1/2(sr),

√
2sr

π
Kℓ+1/2(sr), (3.18)

where Iν(z) is the other modified Bessel function. Choosing linearly independent solutions

u, v (for Re(s) > 0) such that u(r0) = 0 and v(r) ∼ e−sr we obtain

u(r) = Iℓ+1/2(r0s)

√
πr

2s
Kℓ+1/2(sr)−Kℓ+1/2(r0s)

√
πr

2s
Iℓ+1/2(sr), (3.19)

v(r) =

√
2sr

π
Kℓ+1/2(sr), (3.20)

where of course these solutions also depend on s. Clearly, u(r0) = 0 and v(r) ∼ e−sr as

r → ∞. The Wronskian W(r) = u(r)v′(r)− v(r)u′(r) is then

W(r) = −srKℓ+1/2(sr0)
[
Iℓ+1/2(sr)K

′
ℓ+1/2(sr)−Kℓ+1/2(sr)I

′
ℓ+1/2(sr)

]

= −srKℓ+1/2(sr0)

(
− 1

sr

)
= Kℓ+1/2(sr0),

(3.21)

11



Chapter 3. Nonreflecting Boundary Conditions

where the prime denotes differentiation in the argument. The boundary value problem could

be solved using variation of parameters, however we take a Green’s function approach.

The Green’s function G(r, ξ; s) obeys

[
d2

dr2
− ℓ(ℓ+ 1)

r2
− s2

]
G(r, ξ; s) = −δ(r − ξ), (3.22)

as well as the boundary conditions G(r0, ξ; s) = 0 and G(r, ξ; s) ∼ e−sr as r → ∞. The

Green’s function is then [5]

G(r, ξ; s) =





− u(r)v(ξ)

Kℓ+1/2(sr0)
for r0 < r ≤ ξ

− u(ξ)v(r)

Kℓ+1/2(sr0)
for ξ ≤ r <∞.

(3.23)

The solution Ψ̂(s, r) to the boundary problem (3.17) is then the spatial convolution

Ψ̂(s, r) =

∫ rB−δ

r0+δ

G(r, ξ, s)
[
Ψ̇(0, ξ) + sΨ(0, ξ)

]
dξ. (3.24)

For r > rB − δ, we have

Ψ̂(s, r) = −
∫ rB−δ

r0+δ

u(ξ)v(r)

Kℓ+1/2(sr0)

[
Ψ̇(0, ξ) + sΨ(0, ξ)

]
dξ

= − v(r)

Kℓ+1/2(sr0)

∫ rB−δ

r0+δ

u(ξ)
[
Ψ̇(0, ξ) + sΨ(0, ξ)

]
dξ

= − v(r)

Kℓ+1/2(sr0)
A(s).

(3.25)

Using (2.12) and (3.20) then gives

Ψ̂(s, r) = −A(s)
√

2sr

π

Kℓ+1/2(sr)

Kℓ+1/2(sr0)

= −A(s)
√

2sr

π

1

Kℓ+1/2(sr0)

√
π

2sr
e−srWℓ(sr)

= b(s)e−srWℓ(sr).

(3.26)
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Chapter 3. Nonreflecting Boundary Conditions

Here

b(s) = − 1

Kℓ+1/2(sr0)

∫ rB−δ

r0+δ

u(ξ)
[
Ψ̇(0, ξ) + sΨ(0, ξ)

]
dξ. (3.27)

For general compact initial data b(s) cannot be expressed as sℓa(s) as in (3.4). From this

point the proof follows exactly the steps of the first proof after Lemma 3.1.1.
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Chapter 4

Newton’s Identities

4.1 Main result

Our goal is to prove the following result.

Theorem 4.1.1. The roots bℓj : j = 1, ..., ℓ of the ℓth degree polynomial

pℓ(z) =
ℓ∑

k=0

cℓkz
ℓ−k (4.1)

also obey the following set of ℓ algebraic equations

−kcℓk =
ℓ∑

n=1

bℓn

k∑

q=1

cℓ,q−1(bℓn)
k−q, k = 1, ..., ℓ, (4.2)

where here we assume ℓ ≥ 1.

Remark: All of the factors in this system (roots bℓj and coefficients cℓj) carry a lead

“name” index ℓ. We now suppress this index, and reorganize the last expressions using

cℓ0 ≡ c0 = 1 and the re-indexing p = q − 1 to reach

−kck =

ℓ∑

n=1

(bn)
k +

k−1∑

p=1

cp

ℓ∑

n=1

(bn)
k−p, k = 1, ..., ℓ. (4.3)

14



Chapter 4. Newton’s Identities

These formulas involve the power sums sk =
∑ℓ

n=1(bn)
k of the roots. In terms of the sk and

aℓ−k ≡ ck, we then have

−kaℓ−k = sk +
k−1∑

p=1

aℓ−psk−p, k = 1, ..., ℓ, (4.4)

which we recognize as a subset of Newton’s identities [6].

In what remains of this section, we prove Theorem 4.1.1 assuming Theorem 3.0.1

which was established in the previous chapter. The idea of the proof is fairly straightforward;

using the expressions (3.1) and (3.2), we find the identity

−
ℓ∑

k=1

k

rk+1
B

cℓkf
(ℓ−k)(t−rB) =

1

rB

∫ t

0

Ωℓ(t− t′, rB)
[

ℓ∑

k=0

1

rk
cℓkf

(ℓ−k)(t′−rB)
]
dt′, t > 0.

(4.5)

The proof amounts to a careful comparison of both sides in the last equation.

Lemma 4.1.2. Let r = rB and f ∈ C∞
0 (D) as in Theorem 3.0.1, and define

I(p)[b, r, f ] =

∫ t

0

eb(t−t′)/rf (p)(t′ − r)dt′. (4.6)

Then, we have

I(p)[b, r, f ] = (b/r)pI(0)[b, r, f ] +

p∑

j=1

(b/r)p−jf (j−1)(t− r). (4.7)

Proof. We prove the lemma by induction, showing that

I(p)[b, r, f ] = (b/r)pI(0)[b, r, f ] +

p∑

j=1

(b/r)p−j
[
f (j−1)(t− r)− ebt/rf (j−1)(−r)

]
, (4.8)

where the second term within the square brackets vanishes since r = rB /∈ D. Integration

by parts establishes the last formula for p = 1. Similarly, integration by parts yields

I(p)[b, r, f ] = (b/r)I(p−1)[b, r, f ] + f (p−1)(t− r)− ebt/rf (p−1)(−r). (4.9)

15



Chapter 4. Newton’s Identities

Assuming now that (4.8) holds with p replaced by p− 1, we insert the p− 1 result into the

last equation, thereby recovering (4.8) and verifying the induction step.

We now use Theorem 3.0.1 to prove Theorem 4.1.1.

4.2 Proof of Theorem 4.1.1

Proof. First, taking r = rB and t > 0 and then appealing to the formulas (3.1) and (3.3),

we get

1

r

∫ t

0

Ωℓ(t− t′, r)Ψℓ(t
′, r)dt′ =

ℓ∑

n=1

(bℓn/r
2)

∫ t

0

exp(bℓn(t− t′)/r)Ψℓ(t
′, r)dt′ (4.10)

=

ℓ∑

n=1

(bℓn/r
2)

ℓ∑

k=0

r−kcℓkI
(ℓ−k)[bℓn, r, f ].

We will now focus on reducing this last expression to a desirable form. Lemma 4.1.2 gives

I(ℓ−k)[bℓn, r, f ] = (bℓn/r)
ℓ−kI(0)[bℓn, r, f ] +

ℓ−k∑

j=1

(bℓn/r)
ℓ−k−jf (j−1)(t− r). (4.11)

Combination of the last two equations yields

1

r

∫ t

0

Ωℓ(t− t′, r)Ψℓ(t
′, r)dt′ = r−(ℓ+2)

ℓ∑

n=1

bℓnI
(0)[bℓn, r, f ]

ℓ∑

k=0

cℓk(bℓn)
ℓ−k (4.12)

+

ℓ∑

n=1

(bℓn/r
2)

ℓ∑

k=0

r−kcℓk

ℓ−k∑

j=1

(bℓn/r)
ℓ−k−jf (j−1)(t− r).

Since
∑ℓ

k=0 cℓk(bℓn)
ℓ−k = pℓ(bℓn) is the Bessel polynomial evaluated at one of its roots, the

first term on the right-hand side of the last expression vanishes. Whence, up to now

1

r

∫ t

0

Ωℓ(t− t′, r)Ψℓ(t
′, r)dt′ =

ℓ∑

n=1

(bℓn/r
2)

ℓ∑

k=0

r−kcℓk

ℓ−k∑

j=1

(bℓn/r)
ℓ−k−jf (j−1)(t− r). (4.13)
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Chapter 4. Newton’s Identities

Within the sum over k, the sum over j is empty when k = ℓ (no boundary term is

generated by the term in (3.1) corresponding to the undifferentiated profile function f).

Therefore, here we may replace
∑ℓ

k=0 by
∑ℓ−1

k=0. This replacement, followed by the re-

indexing q = k + 1, yields

1

r

∫ t

0

Ωℓ(t− t′, r)Ψℓ(t
′, r)dt′ =

ℓ∑

n=1

(bℓn/r
2)

ℓ∑

q=1

r−(q−1)cℓ,q−1

ℓ−q+1∑

j=1

(bℓn/r)
ℓ−q−j+1f (j−1)(t−r).

(4.14)

Now, the double sum
∑ℓ

q=1

∑ℓ−q+1
j=1 (terms)jq is equivalent to

∑ℓ
j=1

∑ℓ−j+1
q=1 (terms)jq. As a

result, we may group the two inner sums and make this exchange, thereby reaching

1

r

∫ t

0

Ωℓ(t−t′, r)Ψℓ(t
′, r)dt′ =

ℓ∑

n=1

bℓn

ℓ∑

j=1

rj−(ℓ+2)

ℓ−j+1∑

q=1

cℓ,q−1(bℓn)
ℓ−q−j+1f (j−1)(t−r). (4.15)

Finally, re-indexing by k = ℓ− j + 1 leads to

1

r

∫ t

0

Ωℓ(t− t′, r)Ψℓ(t
′, r)dt′ =

ℓ∑

n=1

bℓn

ℓ∑

k=1

r−(k+1)
k∑

q=1

cℓ,q−1(bℓn)
k−qf (ℓ−k)(t− r), (4.16)

which is the aforementioned desirable form.

Equation (4.16) can now be used to finish the proof. Recalling that we have set r = rB,

with (4.16) the identity (4.5) becomes

−
ℓ∑

k=1

kr−(k+1)cℓkf
(ℓ−k)(t− r) =

ℓ∑

k=1

r−(k+1)

ℓ∑

n=1

bℓn

k∑

q=1

cℓ,q−1(bℓn)
k−qf (ℓ−k)(t− r), (4.17)

and we may express that last equation as

0 =

ℓ∑

k=1

r−(k+1)Ekf
(ℓ−k)(u), Ek = kcℓk +

ℓ∑

n=1

bℓn

k∑

q=1

cℓ,q−1(bℓn)
k−q. (4.18)

Here u = t− r is retarded time.

Introducing the operator Q ≡ (∂t + ∂r)r
2, we then use induction to show that

Qp

ℓ∑

k=1

r−(k+1)Ekf
(ℓ−k)(u) =

ℓ∑

k=p+1

(−1)p
(k − 1)!

(k − p− 1)!
r−(k−p+1)Ekf

(ℓ−k)(u). (4.19)
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Chapter 4. Newton’s Identities

For p = ℓ− 1, this identity implies Eℓ = 0. Then assuming Ep+2 = · · · = Eℓ = 0, we find

Qp
ℓ∑

k=1

r−(k+1)Ekf
(ℓ−k)(u) = (−1)p

p!

r2
Ep+1f

(ℓ−p−1)(u), (4.20)

yielding Ep+1 = 0. Therefore, backwards iteration p = ℓ − 1, ℓ − 2, . . . , 0 establishes that

Ek = 0 for k = 1, . . . , ℓ.
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Chapter 5

Numerical root evaluation and

identity check for several values of ℓ

As a means of verifying the result from the previous chapter, we now proceed to check these

identities numerically. One might ask why there is need to check Newton’s identities, classical

formulas known for centuries. The point is that by checking them for the particular case of

the Bessel polynomial we may (i) understand their conditioning in this setting and (ii) further

confirm the accuracy of our numerically generated Macdonald roots. Using Mathematica,

we first generate the roots of the polynomial pℓ(z) in (2.14) to as much precision as needed

for several values of ℓ. These root sets for each value of ℓ are then input into the set of ℓ

identities (4.2), specifically by evaluating the expression

kcℓk +
ℓ∑

n=1

bℓn

k∑

q=1

cℓ,q−1(bℓn)
k−q, k = 1, ..., ℓ (5.1)

to the desired precision. The accuracy with which this expression (5.1) evaluates to zero

can be seen as a verification of the identity (4.5). For each ℓ value, this generates a set of ℓ

errors for each value of k in (4.2). The maximum absolute error of the identity in this set of

ℓ errors is then found as |Errmax| = max{|Errk|}, where Errk is the error in the kth identity

for a particular value of ℓ. The accuracy to which this error is known is then output. One
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Chapter 5. Numerical root evaluation and identity check for several values of ℓ

observes that the accuracy of the errors reduces as ℓ grows. The concluding section discusses

this observation.

5.1 Root finding and identity verification for ℓ = 20 to

27 digits of precision

The Mathematica code and associated output follow, showing that the identity is indeed

verified for these ℓ values at this level of precision. This code can be altered to increase

both with satisfying results. Since complex roots appear as conjugate pairs, only the upper

conjugate is listed for the sake of brevity.

(* set precision of calculations and highest l value *)(* set precision of calculations and highest l value *)(* set precision of calculations and highest l value *)

numdigits:=28numdigits:=28numdigits:=28

lmax:=20lmax:=20lmax:=20

$MaxExtraPrecision:=∞$MaxExtraPrecision:=∞$MaxExtraPrecision:=∞

(*define c {l, k}*)(*define c {l, k}*)(*define c {l, k}*)
cee[l , k ]:=(1/(2∧k ∗ k!)) ∗ (l + k)!/(l − k)!cee[l , k ]:=(1/(2∧k ∗ k!)) ∗ (l + k)!/(l − k)!cee[l , k ]:=(1/(2∧k ∗ k!)) ∗ (l + k)!/(l − k)!

(* define polynomial to find roots of *)(* define polynomial to find roots of *)(* define polynomial to find roots of *)

polyroots:=NSolve[Sum[cee[l, k] ∗ z∧(l − k), {k, 0, l}] == 0, z, numdigits]polyroots:=NSolve[Sum[cee[l, k] ∗ z∧(l − k), {k, 0, l}] == 0, z, numdigits]polyroots:=NSolve[Sum[cee[l, k] ∗ z∧(l − k), {k, 0, l}] == 0, z, numdigits]

(* define identity from main theorem *)(* define identity from main theorem *)(* define identity from main theorem *)

identity:=k ∗ cee[l, k] + SetPrecision[identity:=k ∗ cee[l, k] + SetPrecision[identity:=k ∗ cee[l, k] + SetPrecision[

Sum[Part[{z}/.polyroots, n] ∗ Sum[cee[l, q − 1] ∗ Part[{z}/.polyroots, n]∧(k − q), {q, 1, k}],Sum[Part[{z}/.polyroots, n] ∗ Sum[cee[l, q − 1] ∗ Part[{z}/.polyroots, n]∧(k − q), {q, 1, k}],Sum[Part[{z}/.polyroots, n] ∗ Sum[cee[l, q − 1] ∗ Part[{z}/.polyroots, n]∧(k − q), {q, 1, k}],
{n, 1, l}], numdigits]{n, 1, l}], numdigits]{n, 1, l}], numdigits]
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Chapter 5. Numerical root evaluation and identity check for several values of ℓ

(* loop through each value of l *)(* loop through each value of l *)(* loop through each value of l *)

For[l = 1, l < lmax + 1, l++,For[l = 1, l < lmax + 1, l++,For[l = 1, l < lmax + 1, l++,

Print[]Print[]Print[]

Print[“real and imaginary parts of roots for l=”, l]Print[“real and imaginary parts of roots for l=”, l]Print[“real and imaginary parts of roots for l=”, l]

Print[]Print[]Print[]

(* print out formatted tables of polynomial roots *)(* print out formatted tables of polynomial roots *)(* print out formatted tables of polynomial roots *)

For[j = 1, j < l + 1, j++For[j = 1, j < l + 1, j++For[j = 1, j < l + 1, j++

If[Im[Part[Part[{z}/.polyroots, j − 1], 1]] < 0, ,If[Im[Part[Part[{z}/.polyroots, j − 1], 1]] < 0, ,If[Im[Part[Part[{z}/.polyroots, j − 1], 1]] < 0, ,

Print[ScientificForm[Re[Part[Part[{z}/.polyroots, j − 1], 1]], numdigits− 1,Print[ScientificForm[Re[Part[Part[{z}/.polyroots, j − 1], 1]], numdigits− 1,Print[ScientificForm[Re[Part[Part[{z}/.polyroots, j − 1], 1]], numdigits− 1,

NumberFormat →NumberFormat →NumberFormat →
(Row[{#1,E, If[#3 == “”, “+000”, If[Part[Characters[#3], 1] == “-”,(Row[{#1,E, If[#3 == “”, “+000”, If[Part[Characters[#3], 1] == “-”,(Row[{#1,E, If[#3 == “”, “+000”, If[Part[Characters[#3], 1] == “-”,

StringJoin[“-00”, StringDrop[#3, 1]], StringJoin[“+00”,#3]]]}]&)],StringJoin[“-00”, StringDrop[#3, 1]], StringJoin[“+00”,#3]]]}]&)],StringJoin[“-00”, StringDrop[#3, 1]], StringJoin[“+00”,#3]]]}]&)],

“ ”, ScientificForm[Im[Part[Part[{z}/.polyroots, j − 1], 1]], numdigits− 1,“ ”, ScientificForm[Im[Part[Part[{z}/.polyroots, j − 1], 1]], numdigits− 1,“ ”, ScientificForm[Im[Part[Part[{z}/.polyroots, j − 1], 1]], numdigits− 1,

NumberFormat →NumberFormat →NumberFormat →
(Row[{#1,E, If[#3 == “”, “+000”, If[Part[Characters[#3], 1] == “-”,(Row[{#1,E, If[#3 == “”, “+000”, If[Part[Characters[#3], 1] == “-”,(Row[{#1,E, If[#3 == “”, “+000”, If[Part[Characters[#3], 1] == “-”,

StringJoin[“-00”, StringDrop[#3, 1]], StringJoin[“+00”,#3]]]}]&)]]StringJoin[“-00”, StringDrop[#3, 1]], StringJoin[“+00”,#3]]]}]&)]]StringJoin[“-00”, StringDrop[#3, 1]], StringJoin[“+00”,#3]]]}]&)]]

]]]]]]

(* print error norm of all roots for a given value of l *)(* print error norm of all roots for a given value of l *)(* print error norm of all roots for a given value of l *)

Print[]Print[]Print[]

Print[“identity error accuracy ∼ ”,Print[“identity error accuracy ∼ ”,Print[“identity error accuracy ∼ ”,

ScientificForm[Max[Abs[Part[Part[Delete[Reap[For[k = 1, k < l + 1, k++, Sow[identity]];ScientificForm[Max[Abs[Part[Part[Delete[Reap[For[k = 1, k < l + 1, k++, Sow[identity]];ScientificForm[Max[Abs[Part[Part[Delete[Reap[For[k = 1, k < l + 1, k++, Sow[identity]];

], 1], 1], 1]]], numdigits,], 1], 1], 1]]], numdigits,], 1], 1], 1]]], numdigits,

NumberFormat →NumberFormat →NumberFormat →
(Row[{“1.”,E, If[#3 == “”, “+000”, If[Part[Characters[#3], 1] == “-”,(Row[{“1.”,E, If[#3 == “”, “+000”, If[Part[Characters[#3], 1] == “-”,(Row[{“1.”,E, If[#3 == “”, “+000”, If[Part[Characters[#3], 1] == “-”,

StringJoin[“-0”, StringDrop[#3, 1]], StringJoin[“+0”,#3]]]}]&)]]]StringJoin[“-0”, StringDrop[#3, 1]], StringJoin[“+0”,#3]]]}]&)]]]StringJoin[“-0”, StringDrop[#3, 1]], StringJoin[“+0”,#3]]]}]&)]]]
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Chapter 5. Numerical root evaluation and identity check for several values of ℓ

Table 5.1: Roots of Kℓ+1/2(z) for ℓ = 1, ..., 20

real and imaginary parts of roots for l=1

-1.00000000000000000000000000E+000 0E+000

identity error accuracy ~ 1.E-028

real and imaginary parts of roots for l=2

-1.50000000000000000000000000E+000 8.66025403784438646763723171E-001

identity error accuracy ~ 1.E-027

real and imaginary parts of roots for l=3

-2.32218535462608559291147071E+000 0E+000

-1.83890732268695720354426464E+000 1.75438095978372166095183060E+000

identity error accuracy ~ 1.E-026
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real and imaginary parts of roots for l=4

-2.89621060282037216839439393E+000 8.67234128934503751818973215E-001

-2.10378939717962783160560607E+000 2.65741804185675271685832210E+000

identity error accuracy ~ 1.E-025

real and imaginary parts of roots for l=5

-3.64673859532964325973516964E+000 0E+000

-3.35195639915353314301641425E+000 1.74266141618319772272632347E+000

-2.32467430318164522711600093E+000 3.57102292033797640038610261E+000

identity error accuracy ~ 1.E-024

real and imaginary parts of roots for l=6

-4.24835939586336394493607975E+000 8.67509673231365606386441571E-001

-3.73570835632581466794136197E+000 2.62627231144712564049355159E+000

-2.51593224781082138712255828E+000 4.49267295365394253591824392E+000

identity error accuracy ~ 1.E-023

real and imaginary parts of roots for l=7

-4.97178685852793567786117785E+000 0E+000

-4.75829052815462894523746281E+000 1.73928606113053654289381190E+000

-4.07013916363813747170592771E+000 3.51717404770975316581518078E+000

-2.68567687894326574412602056E+000 5.42069413071674889584849422E+000

identity error accuracy ~ 1.E-022
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real and imaginary parts of roots for l=8

-5.58788604326308519899909296E+000 8.67614445352786459816302823E-001

-5.20484079063688191825036523E+000 2.61617515264252742873877731E+000

-4.36828921720240240703092253E+000 4.41444250047153908355026146E+000

-2.83898394889763047571961928E+000 6.35391129860487682208469639E+000

identity error accuracy ~ 1.E-020

real and imaginary parts of roots for l=9

-6.29701918171496853775919603E+000 0E+000

-6.12936790427427278778116357E+000 1.73784838348086250370031346E+000

-5.60442181950778141621337163E+000 3.49815691788609357601465626E+000

-4.63843988718039029665812495E+000 5.31727167543565114230342731E+000

-2.97926079818007123046774183E+000 7.29146368834218209076005832E+000

identity error accuracy ~ 1.E-019

real and imaginary parts of roots for l=10

-6.92204490542724611542320812E+000 8.67665195451221438446134323E-001

-6.61529096547687025894515467E+000 2.61156792080008987349400899E+000

-5.96752832858778584036140538E+000 4.38494718894193206818405874E+000

-4.88621956685899957989604215E+000 6.22498548247156710752681539E+000

-3.10891623364909820537418967E+000 8.23269945907358745046141002E+000

identity error accuracy ~ 1.E-018
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real and imaginary parts of roots for l=11

-7.62233984579642949207664512E+000 0E+000

-7.48422986073193879164098577E+000 1.73710282075340382415004181E+000

-7.05789238766995313732999335E+000 3.48901450355582971973580520E+000

-6.30133745487130838170915958E+000 5.27619174369676828439756131E+000

-5.11564828390827892036268160E+000 7.13702075889336672017633185E+000

-3.22972208992030602291885715E+000 9.17711156870857844433181315E+000

identity error accuracy ~ 1.E-016

real and imaginary parts of roots for l=12

-8.25342201141208096388242751E+000 8.67693572009768815999260468E-001

-7.99727059960143416395771680E+000 2.60906653694579815898358031E+000

-7.46557124035177041635434551E+000 4.37016959335456516328553217E+000

-6.61100424995635186370036445E+000 6.17153499303722969677556413E+000

-5.32970859087582917461993816E+000 8.05290686425703263930869928E+000

-3.34302330780253341748520757E+000 1.01242968072408198876735301E+001

identity error accuracy ~ 1.E-015

real and imaginary parts of roots for l=13

-8.94770967439179101800795175E+000 0E+000

-8.83025208414490416096754110E+000 1.73666640030763054334032015E+000

-8.47059177147718456305833984E+000 3.48386845066099304960125471E+000

-7.84438027706259622338290970E+000 5.25490340661196188422886280E+000

-6.90037282614665984409350267E+000 7.07064431215294895763843768E+000

-5.53068098334403653612614328E+000 8.97224777515578769951113656E+000

-3.44986722062872316336758754E+000 1.10739285522161970404484911E+001

identity error accuracy ~ 1.E-013
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real and imaginary parts of roots for l=14

-9.58317139364696666545939559E+000 8.67711028864253165359599786E-001

-9.36314585160955222518717854E+000 2.60755332438166661179716945E+000

-8.91100055537504426431713428E+000 4.36160417830244736590463016E+000

-8.19884696998847462160089744E+000 6.14304107147079673955607766E+000

-7.17239596217181731547627714E+000 7.97321735418496849451244718E+000

-5.72035238382751889004599461E+000 9.89470759748915927072561405E+000

-3.55108688338062601791312240E+000 1.20257380322545244924387964E+001

identity error accuracy ~ 1.E-012

real and imaginary parts of roots for l=15

-1.02731096663224778078893516E+001 0E+000

-1.01709139964400681778642607E+001 1.73638891945045594842184913E+000

-9.85956722839627922331631815E+000 3.48067121143276632621161317E+000

-9.32359932060896942898832732E+000 5.24225889523761694360563458E+000

-8.53245905229834060184246438E+000 7.03439362551704559270114646E+000

-7.42939699294215379659889775E+000 8.87898262112151570044737878E+000

-5.90015171366464763005831176E+000 1.08199991377535732063444092E+001

-3.64735686248830223738674416E+000 1.29795010707604194609117519E+001

identity error accuracy ~ 1.E-011
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real and imaginary parts of roots for l=16

-1.09118860786775030650439450E+001 8.67722527435720452392272192E-001

-1.07189858189780134799231120E+001 2.60656700725828947911621149E+000

-1.03251196023414622533772726E+001 4.35616338060960859540158749E+000

-9.71232633256350378195566778E+000 6.12576089102176697237096423E+000

-8.84796819650278498065891895E+000 7.92877285588937164588993504E+000

-7.67324079086715998439086145E+000 9.78769743836906830811183539E+000

-6.07124138290869981857329635E+000 1.17478749384808882640804452E+001

-3.73923179716087263607692588E+000 1.39350284758133825846001679E+001

identity error accuracy ~ 1.E-09

real and imaginary parts of roots for l=17

-1.15985294923395501618999203E+001 0E+000

-1.15080767771397596143175561E+001 1.73620153790806340947249102E+000

-1.12334368172695439283853762E+001 3.47854389076469685688536076E+000

-1.07641341775628432905926096E+001 5.23407490203687631572176595E+000

-1.00802944448577807095976715E+001 7.01200998269376838973610942E+000

-9.14758867760315452597282895E+000 8.82599830149333386118061796E+000

-7.90544959593734230266452814E+000 1.06991450754651671694245213E+001

-6.23458097836041372958967294E+000 1.26781202290665046041369318E+001

-3.82717378509938681792979640E+000 1.48921589246642892796739770E+001

identity error accuracy ~ 1.E-07
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real and imaginary parts of roots for l=18

-1.22399021368250294751608712E+001 8.67730500530609374492680708E-001

-1.20681358449367730276078721E+001 2.60588788173345421215154585E+000

-1.17189487956552908233983590E+001 4.35247975429983523855180469E+000

-1.11800390165370403880516547E+001 6.11439409303699536109075213E+000

-1.04300129653021452464250164E+001 7.90089310331303521101324559E+000

-9.43313222080871295101261560E+000 9.72590031412845700845172164E+000

-8.12728394509562492375307106E+000 1.16131317511959929859269619E+001

-6.39097278368397486896633901E+000 1.36105473490914326733665756E+001

-3.91157229115540829562420106E+000 1.58507535969377336782227290E+001

identity error accuracy ~ 1.E-06

real and imaginary parts of roots for l=19

-1.29239630554237278712291506E+001 0E+000

-1.28428277968952223042629424E+001 1.73606905090273320111409963E+000

-1.25970628096647620973052159E+001 3.47705490010667713280513635E+000

-1.21792312603829384923664555E+001 5.22845054839089777949190898E+000

-1.15756010654031831963984511E+001 6.99707637470125717969882230E+000

-1.07635384400032784129991877E+001 8.79229302167302653136215767E+000

-9.70610240075824858168220378E+000 1.06283211002462878627136475E+001

-8.33980071913673608260638162E+000 1.25294838239446239254763941E+001

-6.54109506216141403075300463E+000 1.45449913030212108164540177E+001

-3.99275891788235286601158213E+000 1.68106920601116228524404469E+001

identity error accuracy ~ 1.E-04

28



Chapter 5. Numerical root evaluation and identity check for several values of ℓ

real and imaginary parts of roots for l=20

-1.35674242831533132904409805E+001 8.67736254955798277563901221E-001

-1.34125971436066018984302504E+001 2.60540014717949754240528038E+000

-1.30988224745771632490213023E+001 4.34986491179146240148265878E+000

-1.26172813166098517250117887E+001 6.10647987005239646124623649E+000

-1.19530908024999872535298649E+001 7.88205843424744989157438123E+000

-1.10825803337311520272082869E+001 9.68609324182857851119637990E+000

-9.96776247886039112461620511E+000 1.15331147285162466386412696E+001

-8.54389572685003190873213213E+000 1.34480452734196997247112442E+001

-6.68552687829519020092395369E+000 1.54813061879236185543330417E+001

-4.07101856181631732208523537E+000 1.77718690688854561225973949E+001

identity error accuracy ~ 1.E-03
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Chapter 6

Conclusion

We conclude with some comments on the significance of the analysis done here as it relates to

the larger context. The main result can be viewed from two perspectives regarding Newton’s

identities (4.2) and their relation to the convolution result (3.2).

Recall that the first proof of Theorem 3.0.1 does not rely on the particular form of the

coefficients cℓk in (2.12). See Lemma 3.1.1 and the following remark. Thus, Chapter 4

may be viewed as a derivation of general Newton’s identities (or at least a subset thereof,

see [6]), with the derivation assuming the convolution result provided earlier in Theorem

3.0.1. Alternatively, by first assuming Newton’s identities, the analysis in Chapter 4 can

also be viewed as a time-domain proof of the convolution result in Theorem 3.0.1 without

the need for the Laplace transform.

Newton’s identities for the particular case of the roots and coefficients of the Macdonald

function appear ill-conditioned. In other words, they seem difficult to verify accurately for

large values of ℓ. This is most likely due to the coefficients cℓk which for a fixed large ℓ

(ℓ = 20 for example) vary over a large range, being factorially defined as they are in (2.12).

This combined with the relative proximity of the roots to the origin (see Fig 2.1) leads to a

necessity of many digits of precision for accurate numerical verification.

30



Appendix A

Location and count of Macdonald

roots

For any positive ν ≥ 0 Watson [2] has shewn that the roots of Kν(z) are simple and lie in the

left-half z plane. This appendix presents some of his analysis, often tailoring it to our specific

case ν = ℓ+ 1/2, that is half-integer order. In what follows we often follow [2] quite closely.

Since Kν(z) obeys the differential equation (2.11), any root b 6= 0 must be simple. Indeed,

were b 6= 0 a root of multiplicity, then we could conclude that K ′′
ν (b) = K ′

ν(b) = Kν(b) = 0,

and by repeated differentiation of (2.11) that K
(p)
ν (b) = 0 for all p. Since all nonzero points

of the Bessel equation are regular points, this would imply Kν(z) = 0 in a neighborhood of

b. Additionally, the small z asymptotic expansion for Kν(z) (see [1]) shows that z = 0 is a

singular point of Kν(z) and not a root.

We begin by noting that the generalization of Bessel’s integral (see 9.6.24 [1])

Kν(z) =

∫ ∞

0

e−z cosh(t) cosh(νt)dt, |arg z| < π
2
, (A.1)

makes it clear that Kν(z) has no positive real roots. Watson has extended this result to

show that Kν(z) has no roots such that |arg z| ≤ π
2
.
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In order to demonstrate this, we must first consider a result of Macdonald (and proven

in [2]) which represents the product Kν(Z)Kν(z) as an integral involving a single function

of type Kν :

Kν(Z)Kν(z) =
1

2

∫ ∞

0

exp

[
− v

2
− Z2 + z2

2v

]
Kν

(
Zz

v

)
dv

v
, (A.2)

which is valid for all values of ν ≥ 0 when |arg Z| ≤ π, |arg z| ≤ π, and |arg (Z + z)| ≤ π
4
.

Now, if z = re−iα were such a root (r > 0,−π
2
< α < π

2
), then Z = reiα would be another

root by (A.1). However, the integral shows us that

Kν(re
iα)Kν(re

−iα) =
1

2

∫ ∞

0

exp

[
− v

2
− r2 cos(2α)

v

]
Kν

(
r2

v

)
dv

v

> 0, (A.3)

which is contrary to the hypothesis that these are roots of Kν(z). If α = ±π
2
, then we have

(again, see [2])

|Kν(re
±π

2
i)| = π

2

√
J2
ν (r) + Y 2

ν (r), (A.4)

and so Kν(z) has no purely imaginary roots, because Jν(r) and Yν(r) cannot both vanish

simultaneously.

A.1 Root count for Kℓ+1/2(z)

For ν = ℓ + 1/2 (half-integer order) we have formula (2.13). Since pℓ(0) = cℓℓ 6= 0 and
√
π/2e−zz−(ℓ+2) is singular at z = 0, then the origin is clearly not a root. This is an explicit

check of the general result stated above. Moreover, from (2.14) we conclude that Kℓ+1/2(z)

has ℓ roots, since pℓ(z) is degree ℓ. Notice that pℓ(z) may have a root on the negative real

axis, which is technically not in the domain of analyticity of Kℓ+1/2(z) due to the branch

associated with z−(ℓ+2) in the prefactor
√
π/2e−zz−(ℓ+2). Nevertheless, we shall consider

such a root of pℓ(z) also as a root of Kℓ+1/2(z). With the above analysis, we conclude that

Kℓ+1/2(z) has ℓ simple roots, each lying in the left-half z plane.
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A.2 Root count for Kν(z)

Now we turn our attention to general ν > 0 and the roots for which Re(z) < 0 and with

π
2
< |arg z| < π. We show that the number of roots in these two quadrants is the even

integer nearest to ν − 1
2
, unless ν − 1

2
itself is an integer, in which case (as seen above) it is

also the number of roots.

If ν − 1
2
is not an integer, then there are no roots on the negative real axis, where

arg z = ±π. This follows from

Kν(re
±πi) = e∓νπiKν(r)∓ πiIν(r), (A.5)

and for both the real and imaginary parts to vanish, then we must have

cos(νπ)Kν(r) = 0, sin(νπ)Kν(r) + πIν(r) = 0. (A.6)

The Wronskian of the functions on the left of the equations is π
r
cos(νπ). Therefore, Kν(r)

and Iν(r) cannot vanish simultaneously unless cos(νπ) = 0. We now use the Argument

principle to count the roots in the second and third quadrants.

Now we consider the change in phase of zνKν(z) as z describes a contour consisting of

small and large circles terminated by the lines arg z = ±π, together with the parts of these

lines terminated by the circular arcs [cf. Fig. A.1]. Let us refer to the circles as Γ and γ, the

equations of which are |z| = R and |z| = δ, respectively. It is clear then that the number

of roots of Kν(z) in the pair of quadrants under consideration is equal to the number of

roots of zνKν(z) inside the contour, and therefore is equal to 1
2π

times the change in phase

of zνKν(z) as z traverses the contour. The change in phase is now

[
arg
(
zνKν(z)

)]
Γ
−
[
arg
(
zνKν(z)

)]
γ
+
[
arg(zνKν(z))

]δ exp(πi)
R exp(πi)

+
[
arg(zνKν(z))

]R exp(−πi)

δ exp(−πi)
.

(A.7)

As R → ∞ and δ → 0, the first two terms tend respectively towards 2π(ν − 1
2
) and zero.

This is evident from the consideration that the following asymptotic expansions are valid
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Γ

γ

Figure A.1: Keyhole contour with arcs Γ : |z| = R and γ : |z| = δ

when |arg z| < π [2]. Respectively, when |z| is large or small on the contour,

zνKν(z) ∼ zν−
1

2 e−z

√
π

2
, zνKν(z) ∼ 2ν−1Γ(ν). (A.8)

The second expansion requires modification when ν = 0.

Introduce the phase (angle) function ph(u, v) which is defined as ph(u, v) = arg(w),

where w = u + iv and arg is the argument function in (A.6). (In this appendix u, v clearly

have a different meaning than in the main text.) The phase function ph(u, v) = arctan(v/u)

if u > 0, but otherwise gives the correct values in the second and third quadrants. Moreover,

−π < ph(u, v) < π and the expression is undefined for v = 0, u ≤ 0. Now, above and below

the negative real z-axis zνKν(z) can be expressed as

(re+πi)νK(re+πi) = rν
[
Kν(r) + π sin(νπ)Iν(r)

]
− irνπ cos(νπ)Iν(r) (A.9)

(re−πi)νK(re−πi) = rν
[
Kν(r) + π sin(νπ)Iν(r)

]
+ irνπ cos(νπ)Iν(r). (A.10)

Therefore, the combination of the last two terms in (A.6) is

lim
δ→0+
R→∞

2
[
ph
(
Kν(r) + π sin(νπ)Iν(r), π cos(νπ)Iν(r)

)]R
δ
. (A.11)
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Now, Kν(r) is a positive decreasing function of r that vanishes at infinity, while Iν(r) is a

positive increasing function of r that vanishes at r = 0. Therefore, Kν(r) + π sin(νπ)Iν(r)

has one root if sin(νπ) is negative, and no root if sin(νπ) is non-negative. In the latter case

the last expression is

lim
δ→0+
R→∞

2

[
arctan

π cos(νπ)Iν(r)

Kν(r) + π sin(νπ)Iν(r)

]R

δ

. (A.12)

Taking the δ → 0+, R→ ∞ limits in (A.11), we then find the phase

2 ph
(
sin(νπ), cos(νπ)

)
(A.13)

for the combination of the last two terms in (A.6). The phase ph
(
sin(νπ), cos(νπ)

)
has the

same sign as cos(νπ), and, moreover, is less than π in absolute value.

Therefore, by the Argument Principle, the total number of roots of Kν(z) in the pair of

quadrants for which Re(z) < 0 and |argz| < π is

# of roots of Kν(z) = ν − 1

2
+

1

π
ph
(
sin(νπ), cos(νπ)

)

= ν − 1

2
+

1

π
ph
(
cos(

π

2
− νπ), sin(

π

2
− νπ)

)

= ν − 1

2
+

1

π

(π
2
− νπ + 2πk

)

= 2k,

(A.14)

where k is chosen so that 2k is closest to ν − 1
2
.
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