
MovieLens Recommendation System

Kaylee Robert Tejeda

9/13/2021

Introduction and Overview
One common application of machine learning is the creation of recommendation systems. These are
mathematical models that take as input the parameters associated with a particular observation to give
as output the value of an unknown parameter associated with the observation as a prediction. The more
accurate this prediction is, the more useful and valuable it is to specific industries. These industries use these
predictions to make recommendations to users based on past behavior and the behavior of other similar users
under similar circumstances. For example, video distribution systems might use such a recommendation
algorithm to create lists of suggested movies based on what is currently being watched by a particular user.

Goal Summary

Our goal is to create such a recommendation algorithm. Our data set containing movie ratings is provided
by GroupLens known as the “10M version of the MovieLens dataset”, which contains 5 base variables per
observation. We will measure the accuracy of our model by comparing the ratings predicted for a subset of
our data to the actual ratings for those observations, and calculate the root mean square error (RMSE) for
the final set of predictions. An RMSE less than 0.86490 will indicate a successful model for the purposes of
this report.

Data

The MovieLens data set contains 10000054 rows, 10677 movies, 797 genres and 69878 users. Each observation
in the data set has the following variables associated with it:

• userId: Unique user identification number.
• movieId: Unique movielens movie identification number.
• rating: User-provided ratings on a 5-star scale with half-star increments starting at 0.5
• timestamp: Time of user-submitted review in epoch time,
• title: Movie titles including year of release as identified in IMDB
• genres: A pipe-separated list of film genres

Preparation

The main data set is split into a working set called “edx” and a second set representing 10% of the original
set, called “validation”, which will be only used for checking the model once it has been created, and will not
be used at all during the model formation process.

The resulting working set “edx” is further split into a training set and a test set which will be used to evaluate
various methods. The test set comprises of 20% of the edx working set. No attempt was made to ensure that
all the users and movies in the test set are also in the training set. This leads to a fortunate discovery later.

Analysis

1

https://grouplens.org/datasets/movielens/10m/
http://www.imdb.com

Outline of Steps Taken

1) Baseline Naive-RMSE

2) Movie Effect Model

3) Notice NA’s in predictions, need to adjust somehow (leads to insight that is worth mentioning)

4) Movie and User Effects Model with manual outlier pruning.

5) Penalized User and Movie effect with Lambda to the hundredth’s place (overkill, but interesting).

6) Simplified Penalized Effect method with integer Lambda and statistical outlier pruning.

7) RMSE is now in range, test against validation set.

Exploration

Baseline Naive-RMSE Just to get a baseline, a first attempt is made by calculating the arithmetical
mean of all movie ratings in the test set, and that is used as a prediction for all movie ratings. This is not a
very good approach, but it will give us a worst-case error, of sorts.

A tibble: 1 x 2
method RMSE
<chr> <dbl>
1 Naive method using average rating of 3.51257353601916 1.06

Movie Effect Model The next approach was to account for a movie bias effect, since some movies naturally
get higher ratings than others. This is when “NA” values started showing up in the predicted ratings. To get
past this error for now, the option “na.rm=TRUE” was added to the mean part of the loss function. This
effectively throws out any observation that does not have a matching user ID or movie title in the training
set. This was only a temporary fix and merited a closer look.

[1] "There are 45 NA values in our predictions, which need to be removed."

2

0

1000

2000

3000

4000

10 100 1000
Number of reviews (log scale)

C
ou

nt
 o

f u
se

rs
Number of reviews per user

0

100

200

300

400

1 10 100 1000 10000
Number of reviews (log scale)

C
ou

nt
 o

f m
ov

ie
s

Number of reviews per movie

3

Not very many NA values are being generated. The assumption is that movies with only a few ratings affect
the mean and therefore the error without contribution much to the overall effect. The same could be said for
users who have only rated a few movies. Removing these NA values allowed the RMSEs to be calculated,
however a more rigorous approach needs to be formulated as this is only a temporary workaround.

Move and User Effect Model Similar to the Movie Effect model, user bias can also be accounted for.

Penalized Movie Effect model. Now that we have developed a model that performs better than the
Naive RMSE approach that we began with, we can start to regularize the effects by penalizing with a
parameter we will call lambda. We start by penalizing both the Movie and User effects with the penalization
factor lambda arbitrarily fixed at 3.

Step-Wise Cross-Validation with Lambda optimized to two decimal places. Iterated cross-
validation can be used to quickly optimize the penalization factor lambda to two decimal places of precision.
First, lambda is optimized to the nearest integer, then it is optiized again to the nearest tenth, and then
again to the nearest hundredth.

The final RMSE does not seem to depend greatly on lambda to a high degree of precision. Optimizing lambda
to the integer level seems sufficient.

method RMSE
1 Naive method using average rating of 3.51257353601916 1.0607079
2 Movie Effect Model NA
3 Movie Effect Model, na.rm=TRUE 0.9437144
4 Movie and User Effects Model 0.8661625
5 Penalized Movie Effect Model, lambda=3 0.8656010
6 Optimized Penalized Movie & User Effect Model, lambda = 4.68 0.8655424
7 OPM&UE Model, integer lambda = 5 0.8655443

Insights

• NAs in predicted_ratings: I was getting NAs in the predicted_ratings output. This lead to an
investigation of outliers that helped reduce the overall RMSE.

• Lambda can be refined step-wise: Lambda can be optimized to two decimal places using 30 tests
instead of 100. This ultimately proved to be worthless, but interesting.

Final Modeling Approach

Ultimately, what helped more than fine-tuning lambda was to throw away the outliers that were adding more
noise than was worth in the overall weighted model. I experimented with a few hard-coded values, starting
by removing any movie with three or fewer ratings submitted, and removing any user that has reviewed
nineteen or fewer movies.

method RMSE
1 Naive method using average rating of 3.51257353601916 1.0607079
2 Movie Effect Model NA
3 Movie Effect Model, na.rm=TRUE 0.9437144
4 Movie and User Effects Model 0.8661625
5 Penalized Movie Effect Model, lambda=3 0.8656010
6 Optimized Penalized Movie & User Effect Model, lambda = 4.68 0.8655424
7 OPM&UE Model, integer lambda = 5 0.8655443
8 Hard-Coded Pruned OPM&UE Model, lambda = 5 0.8646404

The slight reduction in RMSE was a surprise. The reason for pruning out the lowest number of ratings per
movie and per user was to no longer need to remove NA values from the predictions, since that arose from
either movies or users with a low count winding up in the training set but not the test set. It was assumed

4

that if every movie has been rated more than three times, and if every user had rated at least nineteen
movies, then the possibility of either not being represented in the test set was much lower. It was realized
after the fact that this can be controlled during the partition creation by using semi_join, as was done with
the original data set. Nonetheless, this attempt at removing the NA values resulted in a reduction of the
RMSE value that was unexpected, and merited further investigation.

Rather than hard-code arbitrary values, a statistical approach based on ignoring the lowest 10th percentile of
both movies and users (in terms of numbers of ratings associated with each unique value) was developed.

10% seemed like a good number to start with, although this could be refined more in the future, and is itself
an arbitrary cutoff point not based on any deeper investigation.

Results
The fine tuning of lambda beyond the integer level does not seem to provide enough reduction in error to
justify the increased cost in execution time. Instead, the statistical approach to pruning lower outliers seems
to provide the needed optimization. A simple cutoff of the 10th percentile and integer lambda yields the
following:

[1] "Movies below the 10th percentile with fewer than 10 ratings will be ignored."

[1] "Users below the 10th percentile with fewer than 22 ratings will be ignored."

[1] "Penalized User & Movie Effect method using a mean rating of 3.51181194815616 ."

[1] "Optimized lambda = 5 gives an RMSE of 0.864238188095698 on the test set."

Performance

We can measure the performance of this final algorithm against the validation set (for the first time):

[1] "Now testing this optimized lambda against the vaildation set."

[1] "Optimized lambda = 5 gives an RMSE of 0.863741988998773 on the validation set."

Conclusion
Our penalized movie and user effect model gives an error in the desired range when lower outlier pruning is
applied at the 10th percentile of ratings for both users and movie titles.

Summary

We began a linear estimate accounting for both movie and user effect as well as a penalized term for both
effects. This got us close to our goal, and further exploration was warranted. The original mistake of not
using semi_join when generating the training and test sets lead to an investigation of low-value outliers.

These add noise without contributing to predictability. Our model is based on the mean rating for each movie
across userId, which is NOT resistant to outliers. Hence, the users and movies with low frequency add noise
to the mean without adding much weight to the predictions. an attempt to remove these (to eliminate NAs in
the final predictions) inadvertently lead to a reduction in RMSE, which is what makes this method powerful.

Limitations

This seems to depend on large data sets. Eliminating below a certain percentile might work against you with
a smaller data set. This needs to be explored.

5

Future Work

Optimizing the percentile removed from each predictor (movieId and userId) would be interesting, as it is
unlikely that the 10th percentile is always the ideal cutoff. It would be nice to keep as much of the original
data set as possible while still training a good solid model.

Many predictors were not considered, such as timestamps or genres. No factor analysis was done of any kind.
These could be included in the model to decrease the overall error if desired.

6

	Introduction and Overview
	Goal Summary
	Data
	Preparation

	Analysis
	Outline of Steps Taken
	Exploration
	Insights
	Final Modeling Approach

	Results
	Performance

	Conclusion
	Summary
	Limitations
	Future Work

