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Abstract

Ransomware is a persisent and growing threat in the world of cybersecurity. A specific area of focus involves
detecting and tracking payments made to ransomware operators. While many attempts towards this goal have
not made use of sophisticated machine learning methods, even those that have often result in models with poor
specificity or other performance issues. A two-step method is developed to address the issue of false positives
and improve on previous results.
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Introduction

Ransomware attacks have gained the attention of security professionals, law enforcement, and financial regulatory
officials.[1] The pseudo-anonymous Bitcoin network provides a convenient method for ransomware attackers to accept
payments without revealing their identity or location. The victims (usually hospitals or other large organizations)
come to find that much if not all of their important organizational data have been encrypted with a secret key by
an unknown attacker. They are instructed to make a payment to a specific Bitcoin address before a certain deadline
to have their data decrypted, otherwise the data will be deleted.

The legal and financial implications of ransomware attacks are not of concern for the purpose of this analysis. Many
parties are interested in tracking illicit activity (such as ransomware payments) around the Bitcoin blockchain as
soon as possible to minimize financial losses. Daniel Goldsmith explains some of the reasons and methods of
blockchain analysis at Chainalysis.com.[2] A ransomware attack could be perpetrated on an illegal darknet market
site, for example. The news of such an attack might not be published at all, let alone in popular media. By
analyzing the transaction record with a blockchain explorer such as BTC.com, suspicious activity could be flagged
in real time given a sufficiently robust model. It may, in fact, be the first public notice of such an event. Any
suspicious addresses could then be blacklisted or banned from using other services.

Lists of known ransomware payment addresses have been compiled and analyzed using various methods. One
well known paper entitled “BitcoinHeist: Topological Data Analysis for Ransomware Detection on the Bitcoin
Blockchain”[3] will be the source of our data set and the baseline to which we will compare our results. In that
paper, Akcora, et al. use Topological Data Analysis (TDA) to classify addresses on the Bitcoin blockchain into
one of 29 known ransomware address groups. Addresses with no known ransomware associations are classified as
“white”. The blockchain is then considered as a heterogeneous Directed Acyclic Graph (DAG) with two types
of nodes describing addresses and transactions. Edges are formed between the nodes when a transaction can be
associated with a particular address.

Addresses on the Bitcoin network may appear many times, with different inputs and outputs each time. The Bitcoin
network data has been divided into 24-hour time intervals with the UTC-6 timezone as a reference. Speed is defined
as the number of blocks the coin appears in during a 24-hour period and provides information on how quickly a coin
moves through the network. Speed can be an indicator of money laundering or coin mixing, as normal payments
only involve a limited number of addresses in a 24 hour period, and thus have lower speeds when compared to
“mixed” coins. The temporal data can also help distinguish transactions by geolocation, as criminal transactions
tend to cluster in time.

With the graph defined as such, the following six numerical features[2] are associated with a given address:

1) Income - the total amount of coins sent to an address (decimal value with 8 decimal places)

2) Neighbors - the number of transactions that have this address as one of its output addresses (integer)

3) Weight - the sum of fraction of coins that reach this address from address that do not have any other inputs
within the 24-hour window, which are referred to as “starter transactions” (decimal value)

4) Length - the number of non-starter transactions on its longest chain, where a chain is defined as an acyclic
directed path originating from any starter transaction and ending at the address in question (integer)

5) Count - The number of starter addresses connected to this address through a chain (integer)

6) Loop - The number of starter addresses connected to this address by more than one path (integer)

These variables are defined rather abstractly, viewing the blockchain as a topological graph with nodes and edges.
The rationale behind this approach is to quantify specific transaction patterns. Akcora[3] gives a thorough expla-
nation in the original paper of how and why these features were chosen. We shall treat the features as general
numerical variables and will not seek to justify their definitions. Several machine learning methods will be applied
to the original data set from the paper by Akcora[3], and the results will be compared.
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Data

This data set was discovered while exploring the UCI Machine Learning Repository[4] as suggested in the project
instructions. The author of this report, interested in Bitcoin and other cryptocurrencies since (unsuccessfully)
mining them on an ASUS netbook in rural Peru in late 2010, used cryptocurrency as a preliminary search term.
This brought up a single data set entitled “BitcoinHeist: Ransomware Address Data Set”. The data set was
downloaded and the exploration began.

A summary of the data set tells the range of values and size of the sample.

address year day length weight count looped neighbors income label

Length:2916697 Min.
:2011

Min. :
1.0

Min. : 0.00 Min. : 0.0000 Min. : 1.0 Min. : 0.0 Min. : 1.000 Min.
:3.000e+07

Length:2916697

Class
:character

1st
Qu.:2013

1st Qu.:
92.0

1st Qu.:
2.00

1st Qu.:
0.0215

1st Qu.: 1.0 1st Qu.: 0.0 1st Qu.:
1.000

1st
Qu.:7.429e+07

Class
:character

Mode
:character

Median
:2014

Median
:181.0

Median :
8.00

Median :
0.2500

Median : 1.0 Median : 0.0 Median :
2.000

Median
:2.000e+08

Mode
:character

NA Mean
:2014

Mean
:181.5

Mean :
45.01

Mean :
0.5455

Mean :
721.6

Mean :
238.5

Mean : 2.207 Mean
:4.465e+09

NA

NA 3rd
Qu.:2016

3rd
Qu.:271.0

3rd
Qu.:108.00

3rd Qu.:
0.8819

3rd Qu.:
56.0

3rd Qu.: 0.0 3rd Qu.:
2.000

3rd
Qu.:9.940e+08

NA

NA Max.
:2018

Max.
:365.0

Max.
:144.00

Max.
:1943.7488

Max.
:14497.0

Max.
:14496.0

Max.
:12920.000

Max.
:4.996e+13

NA

A listing of the first ten rows provides a sample of the features associated with each observation.

address year day length weight count looped neighbors income label

111K8kZAEnJg245r2cM6y9zgJGHZtJPy6 2017 11 18 0.0083333 1 0 2 100050000 princetonCerber
1123pJv8jzeFQaCV4w644pzQJzVWay2zcA 2016 132 44 0.0002441 1 0 1 100000000 princetonLocky
112536im7hy6wtKbpH1qYDWtTyMRAcA2p7 2016 246 0 1.0000000 1 0 2 200000000 princetonCerber
1126eDRw2wqSkWosjTCre8cjjQW8sSeWH7 2016 322 72 0.0039063 1 0 2 71200000 princetonCerber
1129TSjKtx65E35GiUo4AYVeyo48twbrGX 2016 238 144 0.0728484 456 0 1 200000000 princetonLocky
112AmFATxzhuSpvtz1hfpa3Zrw3BG276pc 2016 96 144 0.0846140 2821 0 1 50000000 princetonLocky

This data set has 2,916,697 observations of ten features associated with a sample of transactions from the Bitcoin
blockchain. The ten features include address as a unique identifier, the six features defined previously (income,
neighbors, weight, length, count, loop), two temporal features in the form of year and day (of the year as 1-365),
and a categorical feature called label that categorizes each address as either “white” (meaning not connected to
any ransomware activity), or one of 29 known ransomware groups as identified by three independent ransomware
analysis teams (Montreal, Princeton, and Padua)[3] .

The original research team downloaded and parsed the entire Bitcoin transaction graph from 2009 January to 2018
December. Based on a 24 hour time interval, daily transactions on the network were extracted and the Bitcoin
graph was formed. Network edges that transfered less than B0.3 were filtered out since ransom amounts are rarely
below this threshold. Ransomware addresses are taken from three widely adopted studies: Montreal, Princeton and
Padua. “White” Bitcoin addresses were capped at one thousand per day while the entire network has up to 800,000
addresses daily.[5]

Goal

The goal of this project is to apply different machine learning algorithms to the same data set used in the original
paper to produce an acceptable predictive model for categorizing ransomware addresses correctly. Improving on
the results of the original paper in some way, while not strictly necessary for the purposes of the project, would be
a notable sign of success.

Outline of Steps Taken (refine this as steps are written up. . . )

1) Analyze data set numerically and visually. Notice any pattern, look for insights.

2) Binary classification using Random Forests.

3) Binary classification using Self Organizing Maps.

4) Categorical classification using Self Organizing Maps.
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5) Two step method using Random Forests and Self Organizing Maps.

6) Visualize clustering to analyze results further.

7) Generate Confusion Matrix to quantify results.

Data Analysis

Hardware Specification

All of the analysis in this report was conducted on a single laptop computer, a Lenovo Yoga S1 from late 2013 with
the following specs:

• CPU: Intel i7-4600U @ 3.300GHz (4th Gen quad-core i7)
• RAM: 8217MB DDR3L @ 1600 MHz (8 GB)
• OS: Slackware64-current (15.0 RC1) x86_64-slackware-linux-gnu (64-bit GNU/Linux)
• R version 4.0.0 (2020-04-24) – “Arbor Day” (built from source using scripts from slackbuilds.org)
• RStudio Version 1.4.1106 “Tiger Daylily” (2389bc24, 2021-02-11) for CentOS 8 (converted using rpm2tgz)

Data Preparation

It is immediately apparent that this is a rather large data set. The usual practice of partitioning out eighty to ninety
percent of the data for a training set results in a data set that is too large to process given the hardware available.
For reasons that no longer apply, the original data set was first split in half with 50% reserved as “validation set”
and the other 50% used as the “working set”. This working set was again split in half, to give a “training set” that
was of a reasonable size to deal with. At this point the partitions were small enough to work with, so the sample
partitions were not further refined. This is a potential area for later optimization. Careful sampling was carried
out to ensure that the ransomware groups were represented in each sample.

Exploration and Visualization (do this part last. . . .)

The ransomware addresses make up less than 2% of the overall data set. This presents a challenge as the target
observations are sparse within the data set, especially when we consider that this is then divided into 29 subsets.
In fact, some of the ransomware groups have only a single member, making categorization a dubious task. At least
there are no missing values to worry about.

## The proportion of ransomware addresses in the original data set is 0.0141985951917529.

## The total number of NA or missing values in the original data set is 0.

Let’s take a look at the distribution of the different features. Note how skewed the non-temporal features are, some
of them being bimodal:
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Table 3: Ransomware group labels and frequency counts for full data set

x
montrealAPT 11
montrealComradeCircle 1
montrealCryptConsole 7
montrealCryptXXX 2419
montrealCryptoLocker 9315
montrealCryptoTorLocker2015 55
montrealDMALocker 251
montrealDMALockerv3 354
montrealEDA2 6
montrealFlyper 9
montrealGlobe 32
montrealGlobeImposter 55
montrealGlobev3 34
montrealJigSaw 4
montrealNoobCrypt 483

x
montrealRazy 13
montrealSam 1
montrealSamSam 62
montrealVenusLocker 7
montrealWannaCry 28
montrealXLocker 1
montrealXLockerv5.0 7
montrealXTPLocker 8
paduaCryptoWall 12390
paduaJigsaw 2
paduaKeRanger 10
princetonCerber 9223
princetonLocky 6625
white 2875284

weight year

length looped neighbors

count day income

0 20 40 60 2012 2014 2016 2018

0 50 100 150 0 5000 10000 0 200 400 600

0 5000 10000 15000 0 100 200 300 0e+00 1e+12 2e+12
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0.0010
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0.0025

0.0

0.1

0.2

0.3

0.00
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0.03

0.00
0.01
0.02
0.03
0.04
0.05

0.0

0.5

1.0

1.5

value
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## Warning: Transformation introduced infinite values in continuous x-axis

## Warning: Transformation introduced infinite values in continuous x-axis

## Warning: Removed 8033 rows containing non-finite values (stat_bin).

## Warning: Removed 8033 rows containing non-finite values (stat_density).
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weight year

length looped neighbors

count day income

4.379058e−473.081488e−332.168404e−191.525879e−05
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Now we can compare the relative spread of each feature by calculating the coefficient of variation for each column.
Larger coefficients of variation indicate larger relative spread compared to other columns.

x
year 0
day 0
length 1
weight 3
count 2
looped 4
neighbors 4
income 12

1 2 3 4 5 6 7 8

0
2

4
6

8
10

12

Index

co
ef

f_
va

rs
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From this, it appears that income has the widest range of variability, followed by neighbors. These are also the
features that are most strongly skewed to the right, meaning that a few addresses have really high values for each
of these features while the bulk of the data set has very low values for these numbers.

Now do the following (after filling in methods, results, and conclusions, since those are done already:

6) Break into groups somehow. Graph variables per group? Show how the variables are distributed for each
ransomware group? Percent ransomware per each day of the week, for example. Is ransomware more prevalent
on a particular day of the week? Break other numerical values into bins, and graph percentage per bin. Look
for trends and correlations between groups/variables, and display them here. MORE OF THIS. . . .

## [1] 0.01539101

7) Principle Component Analysis can go here. See “Interlinkages of Malaysian Banking Systems” for an example
of detailed PCA. Is it exploratory analysis, or is it a predictive method? I was under the assumption that it
is a form of analysis, but the paper mentioned extends it to a form of predictive modeling. How to do this
right (?!?!)

Insights Gained from Exploration

From the previous visual and statistical exploration of the data, it becomes clear what the challenge is. Ransomware
addresses are very sparse in the data set, making up less than 2% of the addresses. That small percentage is also
further classified into 28 groups. Perhaps the original paper was a bit too ambitious in trying to categorize all
the addresses into 29 categories, including the “white” addresses. To simplify our approach, we will categorize
the addresses in a binary way, either “white” or “black”, where “black” signifies an association with ransomware
transactions. Asking this as a “ransomware or not-ransomware” question allows for application of methods that are
impractical otherwise.

Modeling approach

Akcora et al. mention that they tried to model the data using a Random Forests method, but that the complexity
of the data set lead to problems with that approach.[3] Switching to a binary perspective on the problem might
alleviate some of that complexity, and is worth another look. The topological nature of the way the data set has
been described numerically lead me to search for topological machine learning methods. Searching for topo in the
documentation for the caret package [6] resulted in the entry for Self Organizing Maps, supplied by the kohonen
package. The description at CRAN [7] was intriguing enough for me to investigate further.

Method 1: Binary Random Forests

Using the randomForest library, we train a model on our training set and test against the “black/white” catego-
rization on our test set.

We can see that the results are quite good against the smaller test set and the larger validation set.
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## Confusion Matrix for test set:

## Confusion Matrix and Statistics
##
## Reference
## Prediction black white
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## black 104 0
## white 0 7188
##
## Accuracy : 1
## 95% CI : (0.9995, 1)
## No Information Rate : 0.9857
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 1
##
## Mcnemar’s Test P-Value : NA
##
## Sensitivity : 1.00000
## Specificity : 1.00000
## Pos Pred Value : 1.00000
## Neg Pred Value : 1.00000
## Prevalence : 0.01426
## Detection Rate : 0.01426
## Detection Prevalence : 0.01426
## Balanced Accuracy : 1.00000
##
## ’Positive’ Class : black
##

## Confusion Matrix for validation set:

## Confusion Matrix and Statistics
##
## Reference
## Prediction black white
## black 20441 0
## white 266 1437642
##
## Accuracy : 0.9998
## 95% CI : (0.9998, 0.9998)
## No Information Rate : 0.9858
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.9934
##
## Mcnemar’s Test P-Value : < 2.2e-16
##
## Sensitivity : 0.98715
## Specificity : 1.00000
## Pos Pred Value : 1.00000
## Neg Pred Value : 0.99982
## Prevalence : 0.01420
## Detection Rate : 0.01402
## Detection Prevalence : 0.01402
## Balanced Accuracy : 0.99358
##
## ’Positive’ Class : black
##
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Method 2: Binary SOMs

If we ask the same question to a more sophisticated and topological approach, how good is the model? Mention
how the original paper was topological in nature, an how this lead to the investigation of SOMs. Repeat the binary
“b/w” approach using SOMs. This accuracy is still pretty good, but not as good as the random forest method.
Point out how SOMs are really used for classification into many groups. This leads to an Insight! (see above) What
if we first isolate the “black” addresses using Random Forest, and then categorize the black only subset (< 2%)
using categorical SOMs. This leads to a 2-part system. . .

Note to self: I don’t even use this part in the final script. Should I leave it out of the paper too?

Method 3: Categorical SOMs

Describe categorical SOM work here, show results. This is where the pretty colored hex-graphs show up.

## Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull
## 0.9942040 0.9925795 0.9925456 0.9955742 0.2989760
## AccuracyPValue McnemarPValue
## 0.0000000 NaN

## Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull
## 0.9938662 0.9921468 0.9927062 0.9948841 0.2990099
## AccuracyPValue McnemarPValue
## 0.0000000 NaN

## [1] 28

K−Means Clustering
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Final Method: Combined Methods 1 and 3

Using the results from Random Forest, isolate the black addresses first, and then run that subset through an SOM
algorithm. Compare final results to original paper. These go in a “results” section. (below)
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Results & Performance

Results

In the original paper by Akcora et al, they tested several different sets of parameters on their TDA model. According
to them, “In the best TDA models for each ransomware family, we predict 16.59 false positives for each true
positive. In turn, this number is 27.44 for the best non-TDA models.”[3] In fact, the highest Precision (a.k.a.
Positive Predictive Value, defined as TP/(TP+FP)) they achieved was only 0.1610. Compare this to our final
Precision value of 1.000? It is almost embarassing. . . did I do something wrong here?

Performance

The overall script takes X hours and X minutes to run on the aforementioned hardware. This could be optimized,
but given that it is an eight year old laptop, this is not too unreasonable. It takes me longer to compile LibreOffice.

Summary

Comparison to original paper and impact of findings

They suck, I rule, ’nuff said.

Limitations

SOMs seem like they are easy to misconfigure. Perhaps a dual Random Forest approach would be better?

Future Work

I only scratched he surface of the SOM algorithm which seems to have many implementations and parameters that
could be investigated further and possibly optimized via cross-validation, somehow.

Conclusions

#### Get Monero!
This paper/report presents a reliable method for classifying bitcoin addresses into know ransomware families, while
at the same time avoiding false positives by filtering them out using a binary method before classifying them further.
It leaves the author of the paper wondering how long before we see ransomware using privacy coins such as Monero.
Find and cite a recent paper on the untracability of the Monero blockchain.
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