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Abstract

Ransomware is a persisent and growing threat in the world of cybersecurity. A specific area of focus involves
detecting and tracking payments made to ransomware operators. While many attempts towards this goal have
not made use of sophisticated machine learning methods, even those that have often result in models with poor
precision or other performance issues. A two-step method is developed to address the issue of false positives.
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Introduction

Ransomware attacks are of interest to security professionals, law enforcement, and financial regulatory officials.[1]

The pseudo-anonymous Bitcoin network provides a convenient method for ransomware attackers to accept payments
without revealing their identity or location. The victims (usually hospitals or other large organizations) come to
learn that much if not all of their important organizational data have been encrypted with a secret key by an
unknown attacker. They are instructed to make a payment to a specific Bitcoin address by a certain deadline to
have the data decrypted or else it will be deleted automatically.

The deeper legal and financial implications of ransomware attacks are inconsequential to the work in this report, as
we are merely interested in being able to classify Bitcoin addresses by their connection to ransomware transactions.
Many researchers are already tracking illicit activity (such as ransomware payments) around the Bitcoin blockchain
as soon as possible to minimize financial losses. Daniel Goldsmith explains some of the reasons and methods of
blockchain analysis at Chainalysis.com.[2] For example, consider a ransomware attack conducted towards an illegal
darknet market site. The news of such an attack might not be announced at all to prevent loss of trust among its
users. By analyzing the transaction record with a blockchain explorer such as BTC.com, suspicious activity could
be flagged in real time given a sufficiently robust model. It may, in fact, be the first public notice of such an event.
Any suspicious addresses could then be blacklisted or banned from using other services, if so desired.

Lists of known ransomware payment addresses have been compiled and analyzed using various methods. One
well known paper entitled “BitcoinHeist: Topological Data Analysis for Ransomware Detection on the Bitcoin
Blockchain”[3] will be the source of our data set and the baseline to which we will compare our results. In that
paper, Akcora, et al. use Topological Data Analysis (TDA) to classify addresses on the Bitcoin blockchain into
one of 28 known ransomware address groups. Addresses with no known ransomware associations are classified as
white. The blockchain is then considered as a heterogeneous Directed Acyclic Graph (DAG) with two types of nodes
describing addresses and transactions. Edges are formed between the nodes when a transaction can be associated
with a particular address.

Any given address on the Bitcoin network may appear many times, with different inputs and outputs each time.
The Bitcoin network data has been divided into 24-hour time intervals with the UTC-6 timezone as a reference,
allowing for variables to be defined in a specific and meaningful way. For example, speed can be defined as the
number of blocks the coin appears in during a 24-hour period, and provides information on how quickly a coin
moves through the network. Speed may be an indicator of money laundering or coin mixing, as normal payments
only involve a limited number of addresses in a given 24 hour period, and thus have lower speeds when compared to
“mixed” coins. The temporal data can also help distinguish transactions by geolocation, as criminal transactions
tend to cluster in time.

With the graph specified as such, the following six numerical features[2] are associated with a given address:

1) Income - the total amount of bitcoins sent to an address

2) Neighbors - the number of transactions that have this address as one of its output addresses

3) Weight - the sum of fraction of bitcoins that reach this address from address that do not have any other inputs
within the 24-hour window, which are referred to as “starter transactions”

4) Length - the number of non-starter transactions on its longest chain, where a chain is defined as an acyclic
directed path originating from any starter transaction and ending at the address in question

5) Count - the number of starter addresses connected to this address through a chain

6) Looped - the number of starter addresses connected to this address by more than one path

These variables are defined somewhat conceptually, viewing the blockchain as a topological graph with nodes and
edges. The rationale behind this approach is to facilitate quantification of specific transaction patterns. Akcora, et
al.[3] give a thorough explanation in the original paper of how and why these features were chosen. We shall treat the
features as general numerical variables and will not seek to justify their definitions beyond that. Machine learning
methods will be applied to the original data set from the same paper[3], and the new results will be compared to
the original ones.
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Data

This data set was found while exploring the UCI Machine Learning Repository[4] as suggested in the project
instructions. The author of this report, interested in Bitcoin and other cryptocurrencies since (unsuccessfully)
mining for them on an ASUS netbook in rural Peru in late 2010, used cryptocurrency as a preliminary search
term. This brought up a single data set entitled “BitcoinHeist: Ransomware Address Data Set”. The data set was
downloaded and the exploration began.

A summary of the data set shows the range of values and size of the sample.

Table 1: Summary of data set

address year day length weight count looped neighbors income label

Length:2916697 Min.
:2011

Min. :
1.0

Min. : 0.00 Min. : 0.0000 Min. : 1.0 Min. : 0.0 Min. : 1.000 Min.
:3.000e+07

Length:2916697

Class
:character

1st
Qu.:2013

1st Qu.:
92.0

1st Qu.:
2.00

1st Qu.:
0.0215

1st Qu.: 1.0 1st Qu.: 0.0 1st Qu.:
1.000

1st
Qu.:7.429e+07

Class
:character

Mode
:character

Median
:2014

Median
:181.0

Median :
8.00

Median :
0.2500

Median : 1.0 Median : 0.0 Median :
2.000

Median
:2.000e+08

Mode
:character

NA Mean
:2014

Mean
:181.5

Mean :
45.01

Mean :
0.5455

Mean :
721.6

Mean :
238.5

Mean : 2.207 Mean
:4.465e+09

NA

NA 3rd
Qu.:2016

3rd
Qu.:271.0

3rd
Qu.:108.00

3rd Qu.:
0.8819

3rd Qu.:
56.0

3rd Qu.: 0.0 3rd Qu.:
2.000

3rd
Qu.:9.940e+08

NA

NA Max.
:2018

Max.
:365.0

Max.
:144.00

Max.
:1943.7488

Max.
:14497.0

Max.
:14496.0

Max.
:12920.000

Max.
:4.996e+13

NA

A listing of the first ten rows provides a sample of the features associated with each observation.

Table 2: First ten entries of data set

address year day length weight count looped neighbors income label

111K8kZAEnJg245r2cM6y9zgJGHZtJPy6 2017 11 18 0.0083333 1 0 2 100050000 princetonCerber
1123pJv8jzeFQaCV4w644pzQJzVWay2zcA 2016 132 44 0.0002441 1 0 1 100000000 princetonLocky
112536im7hy6wtKbpH1qYDWtTyMRAcA2p7 2016 246 0 1.0000000 1 0 2 200000000 princetonCerber
1126eDRw2wqSkWosjTCre8cjjQW8sSeWH7 2016 322 72 0.0039063 1 0 2 71200000 princetonCerber
1129TSjKtx65E35GiUo4AYVeyo48twbrGX 2016 238 144 0.0728484 456 0 1 200000000 princetonLocky
112AmFATxzhuSpvtz1hfpa3Zrw3BG276pc 2016 96 144 0.0846140 2821 0 1 50000000 princetonLocky

This data set has 2,916,697 observations of ten features associated with a sample of transactions from the Bitcoin
blockchain. The ten features include address as a unique identifier, the six features defined previously (income,
neighbors, weight, length, count, loop), two temporal features in the form of year and day (day of the year as an
integer from 1 to 365), and a categorical feature called label that categorizes each address as either white (i.e. not
connected to any ransomware activity), or one of 28 known ransomware groups as identified by three independent
ransomware analysis teams (Montreal, Princeton, and Padua)[3].

The original research team downloaded and parsed the entire Bitcoin transaction graph from January 2009 to
December 2018. Based on a 24 hour time interval, daily transactions on the network were extracted and the Bitcoin
graph was formed. Network edges that transferred less than B0.3 were filtered out since ransom amounts are rarely
below this threshold. Ransomware addresses are taken from three widely adopted studies: Montreal, Princeton
and Padua. White Bitcoin addresses were capped at one thousand per day, whereas the entire network sees up to
800,000 addresses daily.[5]

Goal

The goal of this project is to apply different machine learning algorithms to the same data set used in the original
paper, producing an acceptable predictive model for categorizing ransomware addresses with an acceptable degree
of accuracy. Improving on the results of the original paper in some way, while not strictly necessary for the purposes
of the project, would be a notable sign of success.

Outline of Steps Taken

1. Analyze data set numerically and visually, look for insights in any patterns.
2. Binary separation using Self Organizing Maps.
3. Fast binary separation using Random Forest.
4. Categorical classification using Self Organizing Maps.

4

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/datasets/BitcoinHeistRansomwareAddressDataset


5. Visualize clustering to analyze results further.
6. Generate confusion matrix to quantify results.

Data Analysis

Hardware Specification

All of the analysis in this report was conducted on a single laptop computer, a Lenovo Yoga S1 from late 2013
with the following specifications.

• CPU: Intel i7-4600U @ 3.300GHz (4th Gen quad-core i7 x86_64)
• RAM: 8217MB DDR3L @ 1600 MHz (8 GB)
• OS: Slackware64-current (15.0 RC1) x86_64-slackware-linux-gnu (64-bit GNU/Linux)
• R version 4.0.0 (2020-04-24) – “Arbor Day” (built from source using scripts from slackbuilds.org)
• RStudio Version 1.4.1106 “Tiger Daylily” (2389bc24, 2021-02-11) for CentOS 8 (converted using rpm2tgz)

Data Preparation

It is immediately apparent that this is a rather large data set. The usual practice of partitioning out 80% to 90%
of the data for training results in a training set that is too large to process given the hardware limitations. For
reasons that no longer apply, the original data set was first split in half with 50% reserved as validation set and
the other 50% used as the working set. This working set was again split in half, to give a training set that was of
a reasonable size to deal with. This produced partitions that were small enough to work with, so the partition size
ratio was not further refined. This is a potential area for later optimization. Careful sampling was carried out to
ensure that the ransomware groups were represented in each sample.

Exploration and Visualization

By graphing a values, we can get an idea of how the data is distributed across the various features.

The proportion of ransomware addresses in the original data set is 0.0141986. The total number of NA or missing
values in the original data set is 0.

The ransomware addresses make up less than 2% of the overall data set. This presents a challenge as the target
observations are sparse within the data set, especially when we consider that this is then divided into 28 subsets.
In fact, some of the ransomware groups have only a single member, making categorization a dubious task. At least
there are no missing values to worry about.

Let’s take a look at the distribution of the different features. Note how skewed the non-temporal features are, some
of them being bimodal. Looks better on a log scale x-axis.
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Table 3: Ransomware group labels and frequency counts for full data set

x
montrealAPT 11
montrealComradeCircle 1
montrealCryptConsole 7
montrealCryptXXX 2419
montrealCryptoLocker 9315
montrealCryptoTorLocker2015 55
montrealDMALocker 251
montrealDMALockerv3 354
montrealEDA2 6
montrealFlyper 9

x
montrealGlobe 32
montrealGlobeImposter 55
montrealGlobev3 34
montrealJigSaw 4
montrealNoobCrypt 483
montrealRazy 13
montrealSam 1
montrealSamSam 62
montrealVenusLocker 7
montrealWannaCry 28

x
montrealXLocker 1
montrealXLockerv5.0 7
montrealXTPLocker 8
paduaCryptoWall 12390
paduaJigsaw 2
paduaKeRanger 10
princetonCerber 9223
princetonLocky 6625
white 2875284

Table 4: Coefficients of Variation for each feature

x
income 36
neighbors 8

x
weight 6
length 1

x
count 2
looped 4

looped neighbors weight

count income length

4 64
1024

16384 4 32 256

2.088097e−53

9.403955e−38

4.235165e−22

1.907349e−06

4 64
1024

16384

268435456

8589934592

274877906944 4 16 64

0.00

0.25

0.50

0.75

1.00

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.2

0.4

0.6

0.8

0.00

0.05

0.10

0.15

0.20

value

de
ns

ity

Now let us compare the relative spread of each feature by calculating the coefficient of variation for each column.
Larger coefficients of variation indicate larger relative spread compared to other columns.

From this, it appears that income has the widest range of variability, followed by neighbors. These are also the
features that are most strongly skewed to the right, meaning that a few addresses have really high values for each
of these features while the bulk of the data set has very low values for these numbers.

Taking the feature with the highest variation income, let us take a look at the distribution for individual ransomware
families. Perhaps there is a similarity across families.
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It appears that, although the income distribution (as an example feature to consider) for ransomware groups does
differ from the distribution pattern for white addresses, it also varies from group to group. For this reason, this
makes a good feature to use in the training of the models.

The percentage of wallets with less than one hundred bitcoins as their balance is 0.0147151. I have no idea why
this is meaningful, but I can calculate it at least.

Insights gained from exploration

After visually and statistically exploring the data, it becomes clear what the challenge is. Ransomware-related
addresses are very sparse in the data set, making up less than 2% of all addresses. This small percentage is also
further classified into 28 groups. Perhaps the original paper was a overly ambitious in trying to categorize all
the addresses into 29 categories, including the vastly prevalent white addresses. To simplify our approach, we
will categorize the addresses in a binary way: as either white or black, where black signifies an association with
ransomware transactions. Asking this as a “ransomware or not-ransomware” question allows for application of
methods that have been shown to be impractical otherwise.

Modelling approach

Akcora, et al. applied a Random Forest approach to the data, however “Despite improving data scarcity, [. . . ]
tree based methods (i.e., Random Forest and XGBoost) fail to predict any ransomware family”.[3] Considering all
ransomware addresses as belonging to a single group may improve the predictive power of such methods, making
Random Forest worth another try.

The topological description of the data set inspired a search for topological machine learning methods, although
one does not necessitate the other. Searching for topo in the documentation for the caret package [6] resulted in
the entry for Self Organizing Maps (SOMs), supplied by the kohonen package.[11] The description at CRAN [7]
was intriguing enough to merit further investigation.

Initially, the categorization of ransomware into the 29 different families (including white) was attempted using
SOMs. This proved to be very resource intensive, requiring more time and RAM than was available. Although it
did help to illuminate how SOMs are configured, the resource requirements of the algorithm became a deterrent.
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It was at this point that the SOMs were applied in a binary way, classifying all ransomware addresses as merely
black, initially in an attempt to simply get the algorithm to run to completion without error. This reduced RAM
usage to the point of being feasible on the available hardware.

Self Organizing Maps were not covered in the coursework at any point, therefore a familiar method was sought out
to compare the results to. Random Forest was chosen and applied to the data set in a binary way, classifying every
address as either white or black, ignoring the ransomware families. Surprisingly, not only did the Random Forest
approach result in an acceptable model, it did so much quicker than expected, taking only a few minutes to produce
results.

It was very tempting to leave it there and write up a comparison of the two approaches to the binary problem by
classifying all ransomware related addresses as black. However, a nagging feeling that more could be done eventually
inspired a second look at the categorical problem of grouping the ransomware addresses into the 28 known families.
Given the high accuracy and precision of the binary Random Forest approach, the sparseness of the ransomware in
the larger set has been eliminated completely, along with any chances of false positives. There are a few cases of
false negatives, depending on how the randomization is done during the sampling process. However, the Random
Forest method does not seem to produce many false positive (if any), meaning it never seems to predict a truly
white address as being black. Hence, by applying the Random Forest method first, we have effectively filtered out
any possibility of false positives by correctly identifying a very large set of purely white addresses, which are then
removed from the set. The best model used in the original paper by Akcora, et al. resulted in more false positives
than true positives. This low precision rate is what made it impractical for real-world usage.[3]

All of these factors combined to inspire a two-part method: first to separate the addresses into black and white
groups, and then to further classify the black addresses into ransomware families. We shall explore each of these
steps separately.

Method Part 0: Binary SOMs

The first working model that ran to completion without exhausting computer resources ignored the ransomware
family labels and instead used the two categories of black and white. The kohonen package provides algorithms for
both supervised and unsupervised model building, using both Self Organizing Maps and Super Organizing Maps
respectively.[11] A supervised approach was used since the data set includes information about the membership of
ransomware families that can be used to train the model.

After training the model, we obtain the confusion matrices for the test set and the validation set, separately. As
you can see, the results are very good in both cases.

Table 5: test set confusion matrix
black white

black 10353 0
white 0 718803

Table 6: validation set confusion matrix
black white

black 20706 0
white 1 1437603

This is a very intensive method compared to what follows. It was left out of the final version of the script and has
been included here only for model comparison and to track developmental evolution.

Method Part 1: Binary Random Forest

A Random Forest model is trained using ten-fold cross validation and a tuning grid with the number of variables
randomly sampled as candidates at each split (mtry) set to the values = 2, 4, 6, 8, 10, 12, each one being checked for
optimization.

The confusion matrix for the test set shows very good results, specifically in the areas of accuracy and precision.
Although not as good as the SOM model used previously, the results are good enough to justify the time saved.

Here are the confusion matrices for the test set and the full set resulting from the Random Forest model, respectively.
Note the high values of accuracy and precision.

The confusion matrix for the full ransomware set is very similar to that of the test set.
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Table 7: test set confusion matrix
black white

black 102 0
white 2 7188

Table 8: full set confusion matrix
black white

black 40251 0
white 1162 2875284

Overall results for test and full sets show very good results.

Table 9: test set overall results
x

Accuracy 0.9997257
Kappa 0.9901522
AccuracyLower 0.9990096
AccuracyUpper 0.9999668
AccuracyNull 0.9857378
AccuracyPValue 0.0000000
McnemarPValue 0.4795001

Table 10: full set overall results
x

Accuracy 0.9996016
Kappa 0.9855690
AccuracyLower 0.9995780
AccuracyUpper 0.9996242
AccuracyNull 0.9858014
AccuracyPValue 0.0000000
McnemarPValue 0.0000000

Results by class for the test and full sets. What can you say about these, specifically?

Table 11: test set results by class
x

Sensitivity 0.9807692
Specificity 1.0000000
Pos Pred Value 1.0000000
Neg Pred Value 0.9997218
Precision 1.0000000
Recall 0.9807692
F1 0.9902913
Prevalence 0.0142622
Detection Rate 0.0139879
Detection Prevalence 0.0139879
Balanced Accuracy 0.9903846

Table 12: full set results by class
x

Sensitivity 0.9719412
Specificity 1.0000000
Pos Pred Value 1.0000000
Neg Pred Value 0.9995960
Precision 1.0000000
Recall 0.9719412
F1 0.9857710
Prevalence 0.0141986
Detection Rate 0.0138002
Detection Prevalence 0.0138002
Balanced Accuracy 0.9859706

This is a much quicker way of removing most of the white addresses, and will be used in the final composite model
to save time.

Method Part 2: Categorical SOMs

Now we train a new model after throwing away all white addresses. The predictions from the Random Forest model
are used to isolate all black addresses for further classification into ransomware addresses using SOMs. The reduced
set is then categorized using a supervised SOM method with the 28 ransomware families as the target classification
groups.

When selecting the grid size for a Self Organizing Map, there are at least two different schools of thought. The two
that were tried here are explained (with supporting documentation) on a Researchgate forum.[8] The first method
is based on the size of the training set, and in this case results in a larger, more accurate map. The second method
is based on the number of known categories to classify the data into, and in this case results in a smaller, less
accurate map. For this script, a grid size of 27 has been selected.

A summary of the results for the categorization of black addresses into ransomware families follows. For the full
table of predictions and statistics, see the Appendix.

10



Here are the overall results of the final categorization.

Table 13: overall categorization results

x
Accuracy 0.9993537
Kappa 0.9991582
AccuracyLower 0.9988950
AccuracyUpper 0.9996558
AccuracyNull 0.3082430
AccuracyPValue 0.0000000
McnemarPValue NaN

Here are the final results by class.

Table 14: categorization results by class

Sensitivity Specificity Pos Pred
Value

Neg Pred
Value

Precision Recall F1 Prevalence Detection
Rate

Detection
Prevalence

Balanced
Accuracy

Class: montrealAPT NA 1.0000000 NA NA NA NA NA 0.0000000 0.0000000 0.0000000 NA
Class: montrealCom-
radeCircle

NA 1.0000000 NA NA NA NA NA 0.0000000 0.0000000 0.0000000 NA

Class:
montrealCryptConsole

NA 1.0000000 NA NA NA NA NA 0.0000000 0.0000000 0.0000000 NA

Class:
montrealCryptXXX

0.9975021 1.0000000 1.0000000 0.9998414 1.0000000 0.9975021 0.9987495 0.0597097 0.0595605 0.0595605 0.9987510

Class:
montrealCryptoLocker

0.9995761 0.9996752 0.9989409 0.9998701 0.9989409 0.9995761 0.9992584 0.2345630 0.2344636 0.2347121 0.9996257

Class: montrealCryp-
toTorLocker2015

NA 1.0000000 NA NA NA NA NA 0.0000000 0.0000000 0.0000000 NA

Class:
montrealDMALocker

0.9909091 1.0000000 1.0000000 0.9999500 1.0000000 0.9909091 0.9954338 0.0054688 0.0054191 0.0054191 0.9954545

Class:
montrealDMALockerv3

NA 1.0000000 NA NA NA NA NA 0.0000000 0.0000000 0.0000000 NA

Class: montrealEDA2 NA 1.0000000 NA NA NA NA NA 0.0000000 0.0000000 0.0000000 NA
Class: montrealFlyper NA 1.0000000 NA NA NA NA NA 0.0000000 0.0000000 0.0000000 NA
Class: montrealGlobe NA 1.0000000 NA NA NA NA NA 0.0000000 0.0000000 0.0000000 NA
Class: montreal-
GlobeImposter

NA 1.0000000 NA NA NA NA NA 0.0000000 0.0000000 0.0000000 NA

Class:
montrealGlobev3

NA 1.0000000 NA NA NA NA NA 0.0000000 0.0000000 0.0000000 NA

Class: montrealJigSaw NA 1.0000000 NA NA NA NA NA 0.0000000 0.0000000 0.0000000 NA
Class:
montrealNoobCrypt

NA 1.0000000 NA NA NA NA NA 0.0000000 0.0000000 0.0000000 NA

Class: montrealRazy NA 1.0000000 NA NA NA NA NA 0.0000000 0.0000000 0.0000000 NA
Class: montrealSam NA 1.0000000 NA NA NA NA NA 0.0000000 0.0000000 0.0000000 NA
Class:
montrealSamSam

NA 1.0000000 NA NA NA NA NA 0.0000000 0.0000000 0.0000000 NA

Class:
montrealVenusLocker

NA 1.0000000 NA NA NA NA NA 0.0000000 0.0000000 0.0000000 NA

Class:
montrealWannaCry

0.9166667 1.0000000 1.0000000 0.9999503 1.0000000 0.9166667 0.9565217 0.0005966 0.0005469 0.0005469 0.9583333

Class:
montrealXLocker

NA 1.0000000 NA NA NA NA NA 0.0000000 0.0000000 0.0000000 NA

Class:
montrealXLockerv5.0

NA 1.0000000 NA NA NA NA NA 0.0000000 0.0000000 0.0000000 NA

Class:
montrealXTPLocker

NA 1.0000000 NA NA NA NA NA 0.0000000 0.0000000 0.0000000 NA

Class:
paduaCryptoWall

0.9995161 0.9998563 0.9996774 0.9997844 0.9996774 0.9995161 0.9995967 0.3082430 0.3080939 0.3081933 0.9996862

Class: paduaJigsaw NA 1.0000000 NA NA NA NA NA 0.0000000 0.0000000 0.0000000 NA
Class: paduaKeRanger NA 1.0000000 NA NA NA NA NA 0.0000000 0.0000000 0.0000000 NA
Class: princetonCerber 0.9993440 0.9999357 0.9997812 0.9998070 0.9997812 0.9993440 0.9995626 0.2273541 0.2272049 0.2272546 0.9996398
Class: princetonLocky 1.0000000 0.9997026 0.9984871 1.0000000 0.9984871 1.0000000 0.9992430 0.1640648 0.1640648 0.1643134 0.9998513
Class: white NA 1.0000000 NA NA NA NA NA 0.0000000 0.0000000 0.0000000 NA
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Clustering Visualizations

Heatmaps and K-means clustering

Toroidal neural node maps are used to generate the models, and can be visualized n a number of ways.

Describe these separately?
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K-means clustering offers a nice way of visualizing the final SOM grid and the categorical boundaries that were
formed by the model.

Say a bit more about it here. . . .

K-means clustering categorizes the SOM grid by adding boundaries to the classification groups. This is the author’s
favorite graph in the entire report.

K−Means Clustering
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10

15

20
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Results & Performance

Results

The first attempt to isolate ransomware using SOMs resulted in a model with an accuracy of 0.999999314274743
and precision 1.

The the second attempt to isolate ransomware using Random forest resulted in a model with an accuracy of
0.999601604143317 and precision 1.

Classifying the ransomware predicted by the second attempt into 28 ransomware families resulted in a model with
an overall accuracy of 0.999353684001193 and minimum nonzero precision of 0.998487140695915.
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Performance

The script runs on the aforementioned hardware in less than five minutes and uses less than 4GB of RAM. Given
that the Bitcoin network produces one new block every ten minutes on average, then real-time analysis could
theoretically be conducted on each block as they are announced using even moderate computing resources. Just for
comparison, the final script was also run on lower powered machines with the following specifications:

ASUS Eee PC 1025C

• CPU: Intel Atom N2600 @ 1.6GHz (64-bit Intel Atom quad-core x86)
• RAM: 3911MB DDR3 @ 800 MT/s (4 GB)

This is a computer known for being slow and clunky. Even on this device, which runs the same operating system
and software as the hardware listed previously, the total run time for the script is around 1665 seconds. At nearly
28 minutes, this is not fast enough to analyze the Bitcoin blockchain in real time, but it does show that the script
can be run on very modest hardware to completion.

Pine64 Quartz64 Model A

• CPU: Rockchip RK3566 SoC aarch64 @1.8GHz (64-bit quad-core ARM)
• RAM: DDR4 8080MB (8 GB)

This is a single board computer / development board, which runs the same software as the others (ported to
aarch64), except for Rstudio. It is nice to be able to benchmark a modern 64-bit ARM processor. The script runs
in about 860 minutes on this platform, nearly half of that for the Atom processor above. Still not fast enough to
analyze each block in real time, but a significant improvement given the low power usage of such processors.

Summary

Comparison to results from original paper

In the original paper by Akcora et al., they tested several different sets of parameters on their TDA model. According
to them, “In the best TDA models for each ransomware family, we predict 16.59 false positives for each true
positive. In turn, this number is 27.44 for the best non-TDA models.”[3] In fact, the highest Precision (a.k.a.
Positive Predictive Value, defined as TP/(TP+FP)) they achieved was only 0.1610. By comparison, although several
of our predicted classes had zero or NA precision values, the lowest non-zero precision value is 0.998487140695915,
with many well above that, approaching one in a few cases.

One might say that we are comparing apples to oranges in a sense, because their method was one single method
model, while these results are from a two-method stack. Still, given the run time of the final script, the two-model
approach is superior in this case, especially when measured in terms of precision and avoiding false positives.

Limitations

SOMs seem like they are easy to misconfigure, and require significantly more computing resources than less sophis-
ticated algorithms. Perhaps a dual Random Forest approach would be better. This has not been attempted yet, as
the two method approach presented here was satisfactory enough to present in a report.
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Future Work

I only scratched he surface of the SOM algorithm which seems to have many implementations and parameters that
could be investigated further and possibly optimized via cross-validation. For example, the grid size used to train
the SOM was calculated using an algorithm based on the size of the training set, and while this performed better
than a grid size based on the number of categories, this may not be ideal. Optimization around grid size could still
be carried out.

A dual Random Forest approach could be used to first isolate the ransomware addresses as well as classify them
might be quick enough to run in under ten minutes on all the hardware listed. Conversely, a dual-SOM method
could be created for maximum precision if the necessary computing resources were available.

The script itself has a few areas that could be further optimization. The sampling method does what it needs to
do, but the ratios taken for each set could possibly be optimized.

Conclusion

This report presents a reliable method for classifying Bitcoin addresses into known ransomware families, while at the
same time avoiding false positives by filtering them out using a binary method before classifying them further. It
leaves the author of the paper wondering how much harder it would be to perform the same task for ransomware that
uses privacy-centric coins. Certain cryptocurrency networks utilize privacy coins, such as Monero, that obfuscate
transactions from being analyzed in the same way that the Bitcoin network has been analyzed here. Some progress
has been made towards analyzing such networks[9], but the developers of such networks continually evolve the code
to complicate transaction tracking. This could be another good area for future research.
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Appendix:

Categorical SOM prediction table and confusion matrix

Here are the full prediction results for the categorization of black addresses into ransomware families. It is assumed
that all white address have already been removed.

## Confusion Matrix and Statistics
##
## Reference
## Prediction montrealAPT montrealComradeCircle
## montrealAPT 0 0
## montrealComradeCircle 0 0
## montrealCryptConsole 0 0
## montrealCryptXXX 0 0
## montrealCryptoLocker 0 0
## montrealCryptoTorLocker2015 0 0
## montrealDMALocker 0 0
## montrealDMALockerv3 0 0
## montrealEDA2 0 0
## montrealFlyper 0 0
## montrealGlobe 0 0
## montrealGlobeImposter 0 0
## montrealGlobev3 0 0
## montrealJigSaw 0 0
## montrealNoobCrypt 0 0
## montrealRazy 0 0
## montrealSam 0 0
## montrealSamSam 0 0
## montrealVenusLocker 0 0
## montrealWannaCry 0 0
## montrealXLocker 0 0
## montrealXLockerv5.0 0 0
## montrealXTPLocker 0 0
## paduaCryptoWall 0 0
## paduaJigsaw 0 0
## paduaKeRanger 0 0
## princetonCerber 0 0
## princetonLocky 0 0
## white 0 0
## Reference
## Prediction montrealCryptConsole montrealCryptXXX
## montrealAPT 0 0
## montrealComradeCircle 0 0
## montrealCryptConsole 0 0
## montrealCryptXXX 0 1198
## montrealCryptoLocker 0 2
## montrealCryptoTorLocker2015 0 0
## montrealDMALocker 0 0
## montrealDMALockerv3 0 0
## montrealEDA2 0 0
## montrealFlyper 0 0
## montrealGlobe 0 0
## montrealGlobeImposter 0 0
## montrealGlobev3 0 0
## montrealJigSaw 0 0

16



## montrealNoobCrypt 0 0
## montrealRazy 0 0
## montrealSam 0 0
## montrealSamSam 0 0
## montrealVenusLocker 0 0
## montrealWannaCry 0 0
## montrealXLocker 0 0
## montrealXLockerv5.0 0 0
## montrealXTPLocker 0 0
## paduaCryptoWall 0 0
## paduaJigsaw 0 0
## paduaKeRanger 0 0
## princetonCerber 0 0
## princetonLocky 0 1
## white 0 0
## Reference
## Prediction montrealCryptoLocker montrealCryptoTorLocker2015
## montrealAPT 0 0
## montrealComradeCircle 0 0
## montrealCryptConsole 0 0
## montrealCryptXXX 0 0
## montrealCryptoLocker 4716 0
## montrealCryptoTorLocker2015 0 0
## montrealDMALocker 0 0
## montrealDMALockerv3 0 0
## montrealEDA2 0 0
## montrealFlyper 0 0
## montrealGlobe 0 0
## montrealGlobeImposter 0 0
## montrealGlobev3 0 0
## montrealJigSaw 0 0
## montrealNoobCrypt 0 0
## montrealRazy 0 0
## montrealSam 0 0
## montrealSamSam 0 0
## montrealVenusLocker 0 0
## montrealWannaCry 0 0
## montrealXLocker 0 0
## montrealXLockerv5.0 0 0
## montrealXTPLocker 0 0
## paduaCryptoWall 2 0
## paduaJigsaw 0 0
## paduaKeRanger 0 0
## princetonCerber 0 0
## princetonLocky 0 0
## white 0 0
## Reference
## Prediction montrealDMALocker montrealDMALockerv3
## montrealAPT 0 0
## montrealComradeCircle 0 0
## montrealCryptConsole 0 0
## montrealCryptXXX 0 0
## montrealCryptoLocker 1 0
## montrealCryptoTorLocker2015 0 0
## montrealDMALocker 109 0
## montrealDMALockerv3 0 0
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## montrealEDA2 0 0
## montrealFlyper 0 0
## montrealGlobe 0 0
## montrealGlobeImposter 0 0
## montrealGlobev3 0 0
## montrealJigSaw 0 0
## montrealNoobCrypt 0 0
## montrealRazy 0 0
## montrealSam 0 0
## montrealSamSam 0 0
## montrealVenusLocker 0 0
## montrealWannaCry 0 0
## montrealXLocker 0 0
## montrealXLockerv5.0 0 0
## montrealXTPLocker 0 0
## paduaCryptoWall 0 0
## paduaJigsaw 0 0
## paduaKeRanger 0 0
## princetonCerber 0 0
## princetonLocky 0 0
## white 0 0
## Reference
## Prediction montrealEDA2 montrealFlyper montrealGlobe
## montrealAPT 0 0 0
## montrealComradeCircle 0 0 0
## montrealCryptConsole 0 0 0
## montrealCryptXXX 0 0 0
## montrealCryptoLocker 0 0 0
## montrealCryptoTorLocker2015 0 0 0
## montrealDMALocker 0 0 0
## montrealDMALockerv3 0 0 0
## montrealEDA2 0 0 0
## montrealFlyper 0 0 0
## montrealGlobe 0 0 0
## montrealGlobeImposter 0 0 0
## montrealGlobev3 0 0 0
## montrealJigSaw 0 0 0
## montrealNoobCrypt 0 0 0
## montrealRazy 0 0 0
## montrealSam 0 0 0
## montrealSamSam 0 0 0
## montrealVenusLocker 0 0 0
## montrealWannaCry 0 0 0
## montrealXLocker 0 0 0
## montrealXLockerv5.0 0 0 0
## montrealXTPLocker 0 0 0
## paduaCryptoWall 0 0 0
## paduaJigsaw 0 0 0
## paduaKeRanger 0 0 0
## princetonCerber 0 0 0
## princetonLocky 0 0 0
## white 0 0 0
## Reference
## Prediction montrealGlobeImposter montrealGlobev3
## montrealAPT 0 0
## montrealComradeCircle 0 0
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## montrealCryptConsole 0 0
## montrealCryptXXX 0 0
## montrealCryptoLocker 0 0
## montrealCryptoTorLocker2015 0 0
## montrealDMALocker 0 0
## montrealDMALockerv3 0 0
## montrealEDA2 0 0
## montrealFlyper 0 0
## montrealGlobe 0 0
## montrealGlobeImposter 0 0
## montrealGlobev3 0 0
## montrealJigSaw 0 0
## montrealNoobCrypt 0 0
## montrealRazy 0 0
## montrealSam 0 0
## montrealSamSam 0 0
## montrealVenusLocker 0 0
## montrealWannaCry 0 0
## montrealXLocker 0 0
## montrealXLockerv5.0 0 0
## montrealXTPLocker 0 0
## paduaCryptoWall 0 0
## paduaJigsaw 0 0
## paduaKeRanger 0 0
## princetonCerber 0 0
## princetonLocky 0 0
## white 0 0
## Reference
## Prediction montrealJigSaw montrealNoobCrypt montrealRazy
## montrealAPT 0 0 0
## montrealComradeCircle 0 0 0
## montrealCryptConsole 0 0 0
## montrealCryptXXX 0 0 0
## montrealCryptoLocker 0 0 0
## montrealCryptoTorLocker2015 0 0 0
## montrealDMALocker 0 0 0
## montrealDMALockerv3 0 0 0
## montrealEDA2 0 0 0
## montrealFlyper 0 0 0
## montrealGlobe 0 0 0
## montrealGlobeImposter 0 0 0
## montrealGlobev3 0 0 0
## montrealJigSaw 0 0 0
## montrealNoobCrypt 0 0 0
## montrealRazy 0 0 0
## montrealSam 0 0 0
## montrealSamSam 0 0 0
## montrealVenusLocker 0 0 0
## montrealWannaCry 0 0 0
## montrealXLocker 0 0 0
## montrealXLockerv5.0 0 0 0
## montrealXTPLocker 0 0 0
## paduaCryptoWall 0 0 0
## paduaJigsaw 0 0 0
## paduaKeRanger 0 0 0
## princetonCerber 0 0 0
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## princetonLocky 0 0 0
## white 0 0 0
## Reference
## Prediction montrealSam montrealSamSam montrealVenusLocker
## montrealAPT 0 0 0
## montrealComradeCircle 0 0 0
## montrealCryptConsole 0 0 0
## montrealCryptXXX 0 0 0
## montrealCryptoLocker 0 0 0
## montrealCryptoTorLocker2015 0 0 0
## montrealDMALocker 0 0 0
## montrealDMALockerv3 0 0 0
## montrealEDA2 0 0 0
## montrealFlyper 0 0 0
## montrealGlobe 0 0 0
## montrealGlobeImposter 0 0 0
## montrealGlobev3 0 0 0
## montrealJigSaw 0 0 0
## montrealNoobCrypt 0 0 0
## montrealRazy 0 0 0
## montrealSam 0 0 0
## montrealSamSam 0 0 0
## montrealVenusLocker 0 0 0
## montrealWannaCry 0 0 0
## montrealXLocker 0 0 0
## montrealXLockerv5.0 0 0 0
## montrealXTPLocker 0 0 0
## paduaCryptoWall 0 0 0
## paduaJigsaw 0 0 0
## paduaKeRanger 0 0 0
## princetonCerber 0 0 0
## princetonLocky 0 0 0
## white 0 0 0
## Reference
## Prediction montrealWannaCry montrealXLocker
## montrealAPT 0 0
## montrealComradeCircle 0 0
## montrealCryptConsole 0 0
## montrealCryptXXX 0 0
## montrealCryptoLocker 0 0
## montrealCryptoTorLocker2015 0 0
## montrealDMALocker 0 0
## montrealDMALockerv3 0 0
## montrealEDA2 0 0
## montrealFlyper 0 0
## montrealGlobe 0 0
## montrealGlobeImposter 0 0
## montrealGlobev3 0 0
## montrealJigSaw 0 0
## montrealNoobCrypt 0 0
## montrealRazy 0 0
## montrealSam 0 0
## montrealSamSam 0 0
## montrealVenusLocker 0 0
## montrealWannaCry 11 0
## montrealXLocker 0 0
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## montrealXLockerv5.0 0 0
## montrealXTPLocker 0 0
## paduaCryptoWall 0 0
## paduaJigsaw 0 0
## paduaKeRanger 0 0
## princetonCerber 0 0
## princetonLocky 1 0
## white 0 0
## Reference
## Prediction montrealXLockerv5.0 montrealXTPLocker
## montrealAPT 0 0
## montrealComradeCircle 0 0
## montrealCryptConsole 0 0
## montrealCryptXXX 0 0
## montrealCryptoLocker 0 0
## montrealCryptoTorLocker2015 0 0
## montrealDMALocker 0 0
## montrealDMALockerv3 0 0
## montrealEDA2 0 0
## montrealFlyper 0 0
## montrealGlobe 0 0
## montrealGlobeImposter 0 0
## montrealGlobev3 0 0
## montrealJigSaw 0 0
## montrealNoobCrypt 0 0
## montrealRazy 0 0
## montrealSam 0 0
## montrealSamSam 0 0
## montrealVenusLocker 0 0
## montrealWannaCry 0 0
## montrealXLocker 0 0
## montrealXLockerv5.0 0 0
## montrealXTPLocker 0 0
## paduaCryptoWall 0 0
## paduaJigsaw 0 0
## paduaKeRanger 0 0
## princetonCerber 0 0
## princetonLocky 0 0
## white 0 0
## Reference
## Prediction paduaCryptoWall paduaJigsaw paduaKeRanger
## montrealAPT 0 0 0
## montrealComradeCircle 0 0 0
## montrealCryptConsole 0 0 0
## montrealCryptXXX 0 0 0
## montrealCryptoLocker 2 0 0
## montrealCryptoTorLocker2015 0 0 0
## montrealDMALocker 0 0 0
## montrealDMALockerv3 0 0 0
## montrealEDA2 0 0 0
## montrealFlyper 0 0 0
## montrealGlobe 0 0 0
## montrealGlobeImposter 0 0 0
## montrealGlobev3 0 0 0
## montrealJigSaw 0 0 0
## montrealNoobCrypt 0 0 0
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## montrealRazy 0 0 0
## montrealSam 0 0 0
## montrealSamSam 0 0 0
## montrealVenusLocker 0 0 0
## montrealWannaCry 0 0 0
## montrealXLocker 0 0 0
## montrealXLockerv5.0 0 0 0
## montrealXTPLocker 0 0 0
## paduaCryptoWall 6197 0 0
## paduaJigsaw 0 0 0
## paduaKeRanger 0 0 0
## princetonCerber 1 0 0
## princetonLocky 0 0 0
## white 0 0 0
## Reference
## Prediction princetonCerber princetonLocky white
## montrealAPT 0 0 0
## montrealComradeCircle 0 0 0
## montrealCryptConsole 0 0 0
## montrealCryptXXX 0 0 0
## montrealCryptoLocker 0 0 0
## montrealCryptoTorLocker2015 0 0 0
## montrealDMALocker 0 0 0
## montrealDMALockerv3 0 0 0
## montrealEDA2 0 0 0
## montrealFlyper 0 0 0
## montrealGlobe 0 0 0
## montrealGlobeImposter 0 0 0
## montrealGlobev3 0 0 0
## montrealJigSaw 0 0 0
## montrealNoobCrypt 0 0 0
## montrealRazy 0 0 0
## montrealSam 0 0 0
## montrealSamSam 0 0 0
## montrealVenusLocker 0 0 0
## montrealWannaCry 0 0 0
## montrealXLocker 0 0 0
## montrealXLockerv5.0 0 0 0
## montrealXTPLocker 0 0 0
## paduaCryptoWall 0 0 0
## paduaJigsaw 0 0 0
## paduaKeRanger 0 0 0
## princetonCerber 4570 0 0
## princetonLocky 3 3300 0
## white 0 0 0
##
## Overall Statistics
##
## Accuracy : 0.9994
## 95% CI : (0.9989, 0.9997)
## No Information Rate : 0.3082
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.9992
##
## Mcnemar’s Test P-Value : NA
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##
## Statistics by Class:
##
## Class: montrealAPT Class: montrealComradeCircle
## Sensitivity NA NA
## Specificity 1 1
## Pos Pred Value NA NA
## Neg Pred Value NA NA
## Prevalence 0 0
## Detection Rate 0 0
## Detection Prevalence 0 0
## Balanced Accuracy NA NA
## Class: montrealCryptConsole Class: montrealCryptXXX
## Sensitivity NA 0.99750
## Specificity 1 1.00000
## Pos Pred Value NA 1.00000
## Neg Pred Value NA 0.99984
## Prevalence 0 0.05971
## Detection Rate 0 0.05956
## Detection Prevalence 0 0.05956
## Balanced Accuracy NA 0.99875
## Class: montrealCryptoLocker
## Sensitivity 0.9996
## Specificity 0.9997
## Pos Pred Value 0.9989
## Neg Pred Value 0.9999
## Prevalence 0.2346
## Detection Rate 0.2345
## Detection Prevalence 0.2347
## Balanced Accuracy 0.9996
## Class: montrealCryptoTorLocker2015
## Sensitivity NA
## Specificity 1
## Pos Pred Value NA
## Neg Pred Value NA
## Prevalence 0
## Detection Rate 0
## Detection Prevalence 0
## Balanced Accuracy NA
## Class: montrealDMALocker Class: montrealDMALockerv3
## Sensitivity 0.990909 NA
## Specificity 1.000000 1
## Pos Pred Value 1.000000 NA
## Neg Pred Value 0.999950 NA
## Prevalence 0.005469 0
## Detection Rate 0.005419 0
## Detection Prevalence 0.005419 0
## Balanced Accuracy 0.995455 NA
## Class: montrealEDA2 Class: montrealFlyper
## Sensitivity NA NA
## Specificity 1 1
## Pos Pred Value NA NA
## Neg Pred Value NA NA
## Prevalence 0 0
## Detection Rate 0 0
## Detection Prevalence 0 0
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## Balanced Accuracy NA NA
## Class: montrealGlobe Class: montrealGlobeImposter
## Sensitivity NA NA
## Specificity 1 1
## Pos Pred Value NA NA
## Neg Pred Value NA NA
## Prevalence 0 0
## Detection Rate 0 0
## Detection Prevalence 0 0
## Balanced Accuracy NA NA
## Class: montrealGlobev3 Class: montrealJigSaw
## Sensitivity NA NA
## Specificity 1 1
## Pos Pred Value NA NA
## Neg Pred Value NA NA
## Prevalence 0 0
## Detection Rate 0 0
## Detection Prevalence 0 0
## Balanced Accuracy NA NA
## Class: montrealNoobCrypt Class: montrealRazy
## Sensitivity NA NA
## Specificity 1 1
## Pos Pred Value NA NA
## Neg Pred Value NA NA
## Prevalence 0 0
## Detection Rate 0 0
## Detection Prevalence 0 0
## Balanced Accuracy NA NA
## Class: montrealSam Class: montrealSamSam
## Sensitivity NA NA
## Specificity 1 1
## Pos Pred Value NA NA
## Neg Pred Value NA NA
## Prevalence 0 0
## Detection Rate 0 0
## Detection Prevalence 0 0
## Balanced Accuracy NA NA
## Class: montrealVenusLocker Class: montrealWannaCry
## Sensitivity NA 0.9166667
## Specificity 1 1.0000000
## Pos Pred Value NA 1.0000000
## Neg Pred Value NA 0.9999503
## Prevalence 0 0.0005966
## Detection Rate 0 0.0005469
## Detection Prevalence 0 0.0005469
## Balanced Accuracy NA 0.9583333
## Class: montrealXLocker Class: montrealXLockerv5.0
## Sensitivity NA NA
## Specificity 1 1
## Pos Pred Value NA NA
## Neg Pred Value NA NA
## Prevalence 0 0
## Detection Rate 0 0
## Detection Prevalence 0 0
## Balanced Accuracy NA NA
## Class: montrealXTPLocker Class: paduaCryptoWall
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## Sensitivity NA 0.9995
## Specificity 1 0.9999
## Pos Pred Value NA 0.9997
## Neg Pred Value NA 0.9998
## Prevalence 0 0.3082
## Detection Rate 0 0.3081
## Detection Prevalence 0 0.3082
## Balanced Accuracy NA 0.9997
## Class: paduaJigsaw Class: paduaKeRanger
## Sensitivity NA NA
## Specificity 1 1
## Pos Pred Value NA NA
## Neg Pred Value NA NA
## Prevalence 0 0
## Detection Rate 0 0
## Detection Prevalence 0 0
## Balanced Accuracy NA NA
## Class: princetonCerber Class: princetonLocky Class: white
## Sensitivity 0.9993 1.0000 NA
## Specificity 0.9999 0.9997 1
## Pos Pred Value 0.9998 0.9985 NA
## Neg Pred Value 0.9998 1.0000 NA
## Prevalence 0.2274 0.1641 0
## Detection Rate 0.2272 0.1641 0
## Detection Prevalence 0.2273 0.1643 0
## Balanced Accuracy 0.9996 0.9999 NA
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