ransomware/scratch/SOM_test.R

99 lines
3.9 KiB
R

# Install kohonen package if needed
if(!require(kohonen)) install.packages("kohonen")
# Load kohonen library
library(kohonen)
# Install kohonen package if needed
if(!require(parallel)) install.packages("parallel")
# Load parallel library
library(parallel)
# Keep only numeric columns, ignoring dates and looped for now (insert factor analysis impVar here?)
train_num <- train_set %>% select(year, day, length, weight, count, looped, neighbors, income)
# SOM function can only work on matrices
train_mat <- as.matrix(scale(train_num))
# Switching to supervised SOMs
test_num <- test_set %>% select(year, day, length, weight, count, looped, neighbors, income)
# Note that when we rescale our testing data we need to scale it according to how we scaled our training data.
test_mat <- as.matrix(scale(test_num, center = attr(train_mat,
"scaled:center"), scale = attr(train_mat, "scaled:scale")))
## Treat as binary first, then maybe switch to categorical?
# Binary outputs, black=ransomware, white=non-ransomware, train set
train_grey <- train_set$grey %>% classvec2classmat()
# Samem for test set
test_grey <- test_set$grey %>% classvec2classmat()
# Create Data list for supervised SOM
#
train_list <- list(independent = train_mat, dependent = train_grey)
# Calculate idea grid size according to:
# https://www.researchgate.net/post/How-many-nodes-for-self-organizing-maps
# Formulaic method 1
grid_size <- round(sqrt(5*sqrt(nrow(train_set))))
# Based on categorical number, method 2
#grid_size = ceiling(sqrt(length(unique(ransomware$grey))))
grid_size
# Create SOM grid
train_grid <- somgrid(xdim=grid_size, ydim=grid_size, topo="hexagonal", toroidal = TRUE)
# Set magic seed for reproducibility
set.seed(5)
## Now build the model.
som_model <- xyf(train_mat, train_grey,
grid = train_grid,
rlen = 100,
mode="pbatch", # or: alpha = c(0.05,0.01),
cores = detectCores(), # detectCores() - 1 if system locks during calculation
keep.data = TRUE
)
# Visualize clusters
plot(som_model, type = 'mapping', pch = 19, palette.name = topo.colors)
# Distance map
plot(som_model, type = 'quality', pch = 19, palette.name = topo.colors)
# Visualize counts
plot(som_model, type = 'counts', pch = 19, palette.name = topo.colors)
# Visualize fan diagram
plot(som_model, type = 'codes', pch = 19, palette.name = topo.colors)
# Visualize heatmap for variable 1
plot(som_model, type = 'property', property = som_model$codes[[1]][,1], main=colnames(train_num)[1], pch = 19, palette.name = topo.colors)
# Visualize heatmap for variable 2
plot(som_model, type = 'property', property = som_model$codes[[1]][,2], main=colnames(train_num)[2], pch = 19, palette.name = topo.colors)
# Visualize heatmap for variable 3
plot(som_model, type = 'property', property = som_model$codes[[1]][,3], main=colnames(train_num)[3], pch = 19, palette.name = topo.colors)
# Visualize heatmap for variable 4
plot(som_model, type = 'property', property = som_model$codes[[1]][,4], main=colnames(train_num)[4], pch = 19, palette.name = topo.colors)
# Visualize heatmap for variable 5
plot(som_model, type = 'property', property = som_model$codes[[1]][,5], main=colnames(train_num)[5], pch = 19, palette.name = topo.colors)
# Visualize heatmap for variable 6
plot(som_model, type = 'property', property = som_model$codes[[1]][,6], main=colnames(train_num)[6], pch = 19, palette.name = topo.colors)
# Visualize heatmap for variable 7
plot(som_model, type = 'property', property = som_model$codes[[1]][,7], main=colnames(train_num)[7], pch = 19, palette.name = topo.colors)
# Visualize heatmap for variable 8
plot(som_model, type = 'property', property = som_model$codes[[1]][,8], main=colnames(train_num)[8], pch = 19, palette.name = topo.colors)
##Different cluster methods branch off here...