イロト 不得 トイヨト イヨト 二日

1/45

Interacciones y conservaciones

Física Nuclear y subnuclear

13 de febrero de 2024

Conservaciones

Sistema cuántico descrito por \hat{H}

$$-i\hbar\frac{d\Psi}{dt} = \hat{H}\Psi \tag{1}$$

Relaciones de permutación para un operador \hat{A} con observable *A*:

$$[\mathbf{H},\mathbf{A}]=0
ightarrow rac{d}{dt}\langle A
angle =0$$

La carga

$$\mathbf{Q}\Psi=q\Psi.$$

Invariancia de norma

$$\Psi'=e^{i\epsilon Q}\Psi,$$

2/45

lsospín

Partícula	1	<i>I</i> ₃
p	1/2	1/2
n	1/2	-1/2
π^+	1	1
π^0	1	0
π^{-}	1	-1
<i>K</i> +	1/2	1/2
K^{0}	1/2	-1/2
Σ^+	1	1
Σ^0	1	0
Σ^{-}	1	-1

Cuadro: Valores del número leptónico por familia para los leptones

Relación Gell-Mann-Nishima¹

$$egin{aligned} Q &= I_3 + rac{Y}{2} = I_3 + rac{B-S}{2}, \ I_3 &= rac{1}{2}(N_u - N_d) \end{aligned}$$

¹Realmente se amplía a $Y = B - S - C - \hat{B} - T$, pero nos quedaremos con la extrañeza nada más.

Resonancia $\Delta(1234)$

Figura: Esquema de la sección eficaz de las colisiones $\pi - N$ a bajas energías. Imagen adaptada de: "case3b" por Samuel Foucher con licencia CC BY-SA 2.0

Vida media

$$au_{\Delta} \approx rac{\hbar}{\Gamma_{\Delta}c^2} pprox rac{6.6 imes 10^{-22} \textit{MeV} - \textit{sec}}{100 \textit{MeV}} pprox 10^{-23} \textit{segundos}$$

<ロト < 回 > < 直 > < 直 > < 亘 > < 亘 > < 亘 > < 亘 < つ < で 6/45 Resonancias en hadrones

$$\pi^- + \rho \to \pi^+ + \pi^- + n \tag{2}$$

$$\pi^- + \mathbf{p} \rightarrow \rho^0 + \mathbf{n}$$

después $\rho^0 \rightarrow \pi^+ + \pi^-$

¿Cómo harían el digrama de Feynmann? Los que estén desde video o en línea les toca dibujarlo en casa o imaginarse a partir de lo que escuchan.

Tiempo de vida media

$$\psi \propto e^{rac{ic^2}{\hbar}(M_0 - irac{\Gamma}{2})t}, t > 0.$$
 $au = rac{\hbar}{\Gamma c^2}.$

Interacciones electromagnéticas

- Una interacción muy estudiada
- Aproximaciones clásicas
- Teoría de perturbaciones
- Si las energías son relativistas y el tratamiento cuántico?
 - Electrodinámica cuántica
 - Radiación multipolar

Dispersión electromagnética de leptones

Dispersión de Møller

$$e^- + e^-
ightarrow e^- + e^-$$

Dispersión de Bhabha

$$e^- + e^+
ightarrow e^- + e^+$$

< □ > < @ > < 볼 > < 볼 > 볼 ~ 의 < 10/45

Dispersión electromagnética de leptones

Interacción fotón-hadrón y mesones mediadores

¿Un fotón puede decaer en un par hadrón anti-hadrón? $\blacksquare~\rho^{\rm 0},~\omega^{\rm 0}~{\rm y}~\phi^{\rm 0}$

Conservaciones y violaciones

Conserva

- Extrañeza
- Paridad
- Conjugación

Interacción débil

Electrodébil

- **R**adiación nuclear: α , β y γ
- $\blacksquare \ \beta = \mathbf{e}^{\pm}$
 - ¿Elctrones en el núcleo?
 - Espectro de energías continuo

El rincón poético de Vladimir

Neutrinos, they are very small. They have no charge and have no mass And do not interact at all. The earth is just a silly ball To them, through which they simply pass, Like dustmaids down a drafty hall Or photons through a sheet of glass. J. Updike²

²De *Telephone Poles and Other Poems*, André Deutch, Londres (1964)

Neutrinos

- Interacción débil
- Partículas neutras
- Recuerden

$$n
ightarrow p + e^{-} + \overline{
u_e},$$

 $p
ightarrow n + e^{+} +
u_e.$

$$u_e + n \rightarrow p + e^-,$$

 $\bar{\nu_e} + p \rightarrow n + e^+,$

Corrientes neutras

Mezcla de neutrinos

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} V_{e1} & V_{e2} & V_{e3} \\ V_{\mu 1} & V_{\mu 2} & V_{\mu 3} \\ V_{\tau 1} & V_{\tau 2} & V_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$
(3)

Matriz Pontecorvo-Maki-Nakagawa-Sakata

Oscilaciones de neutrinos

$$\nu_e = \cos\theta_{12}\nu_1 + \sin\theta_{12}\nu_2$$
$$\nu_\mu = -\sin\theta_{12}\nu_1 + \cos\theta_{12}\nu_2$$

$$|\nu_{e}(t)\rangle = e^{-iE_{1}t/\hbar}\cos\theta_{12}\nu_{1} + e^{-iE_{2}t/\hbar}sen\theta_{12}\nu_{2}$$
(4)

$$\mathbb{P}_{\nu_{\mu}}(t) = |\langle \nu_{\mu} | | \nu_{e} \rangle(t)|^{2} = sen^{2}\theta_{12}sen^{2} \left[\frac{1}{2}\frac{(E_{1} - E_{2})t}{\hbar}\right] \quad (5)$$

Procesos leptónicos

$$\mu^+ \rightarrow \bar{\nu_{\mu}} + e^+ + \nu_e$$

$$u_{ au} + e^-
ightarrow
u_{ au} + e^-$$

<ロ><回><一><一><一><一><一><一><一</td>20/45

Procesos semileptónicos

Procesos semileptónicos

$$u_{\mu} + \underset{udd}{n} \rightarrow \mu^{-} + \underset{uud}{p}$$

$$u_{\mu} + p \rightarrow \nu_{\mu} + p$$

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0 22/45

Procesos hadrónicos

$$\begin{split} \mathcal{K}^+ &\to \pi^+ + \pi^0 \\ &\to \pi^+ + \pi^+ + \pi^- \\ &\to \pi^+ + \pi^0 + \pi^0. \end{split}$$

En ninguno cambia la extrañeza.

<ロト < 部 ト < 言 ト く 言 ト 言 の Q () 23 / 45

(日) (四) (注) (注) (正)

24 / 45

Mamá yo quiero saber de dónde son los muones

Fuente de muones

$$\pi^+ \to \mu^+ + \nu_\mu \tag{6}$$

- Conservación momento
- conservación momento angular

Paridad

1956 Lee y Yang: en interacciones débiles no hay evidencia de que se conserve la paridad Vectores polares

$$\mathbf{P}(\overrightarrow{r}) = -\overrightarrow{r}$$
$$\mathbf{P}(\overrightarrow{p}) = -\overrightarrow{p}$$

Vectores axiales

$$\mathsf{P}(\vec{u}\times\vec{v})=\vec{u}\times\vec{v}.$$

$$\mathbf{P}(\overrightarrow{L}) = \mathbf{P}(\overrightarrow{r}) \times \mathbf{P}(\overrightarrow{p}) = (-\overrightarrow{r}) \times (-\overrightarrow{p}) = (\overrightarrow{r}) \times (\overrightarrow{p}) = \overrightarrow{L}$$

$\mathbf{P} \square = + \square$ paridad positiva o par $\mathbf{P} \square = - \square$ paridad negativa o impar

$$\mathbf{P}\Psi(x)=\Psi(-x)$$

Paridad invariante, $[\hat{H}, \hat{P}] = 0$

De ser distintas funciones de onda $\Psi(x)$ y $\hat{P}\Psi(x)$ el estado estaría degenreado, la opción:

$$(\mathbf{x}) = \eta_P \Psi(x), \ \eta_p = \pm 1$$

 ${f P} \left| {
m estado inicial}
ight
angle = {f P}(\left| a
ight
angle) {f P}(\left| {
m movimiento relativo}
ight
angle)$

 $\eta_p(\text{estado incial}) = \eta_p(a)\eta_p(b)\eta_p(\text{movimieno relative})$ función de onda $\eta_p(\text{estado incial}) = \eta_p(a)\eta_p(b)(-1)^\ell$

Determinando paridades

Fijamos $\eta(p) = +1$

$$d + \pi^- \rightarrow n + n$$

Usamos

$$\eta_{
ho}(d)\eta_{
ho}(\pi^{-})(-1)^{\ell}=\eta_{
ho}(n)\eta_{
ho}(n)(-1)^{\ell'}$$

Deuterón en el estado base, $\ell=0$, al atrapar al pión, $\ell=0$

$$\eta_p(p)\eta_p(n)\eta_p(\pi^-)=-1$$

・ロ ・ ・ 一 ・ ・ 言 ・ ・ 言 ・ う へ や
28/45

イロト 不得 トイヨト イヨト 二日

29 / 45

Violaciones de conservación de la paridad

- 1924 Laporte propone que hay dos diferentes clases de niveles para los átomos
- Wigner asocio estas clases son producto de la invariancia respecto a la reflexión espacial
- Se volvió un dogma, que en 1956 Lee y Yang derribaron
- \blacksquare Wu descubre la violación de la paridad en decaimientos β

$$\vec{r} \stackrel{\hat{P}}{\to} - \vec{r}$$

 $\vec{J} \stackrel{\hat{P}}{\to} \vec{J}$

Los neutrinos zurdos

Combinación de estados

$$|\alpha\rangle = c |par\rangle + d |impar\rangle, \ |c|^2 + |d|^2 = 1$$

 $\hat{P} |\alpha\rangle = c\hat{P} |par\rangle + d\hat{P} |impar\rangle \neq \eta_p |\alpha\rangle$

Conjugación de carga

Pareciera que sólo en partículas neutras, pero tampoco en neutrinos no.

Resonancias en hadrones

Inversión del tiempo

 $t \xrightarrow{\mathsf{T}} - t$ $\vec{x} \xrightarrow{\mathsf{T}} \vec{x}$ $\vec{p} \xrightarrow{\mathsf{T}} - \vec{p}$ $\vec{J} \xrightarrow{\mathsf{T}} - \vec{J}$

<ロ><回><一><一><一><一><一><一</td>33/45

Interacción fuerte

- Similar a la QED, ahora tenemos QCD
- Tres carga: r, g y b
- Gluón carga bicolor $r\bar{g}$, QCD es no abeliana

Resonancias en hadrones

Bariones pesados

Δ⁺⁺
 Ω⁻

Invariancia de norma

- Todas las fuerzas pueden expresarse como teorías de norma
- Son invariantes ante la transformación de norma
- La conservación de carga (conservación aditiva) es invariante ante una transformación global
- AL agregar la dependencia para una carga no estática se mantiene la invariancia incluso en transformación local.

Invariancia de norma - Grados de libertad

- Libertad parcial de elegir el potencial electromagnético
- Parecía una teoría con cabos sueltos, o sólo una peculiaridad matemática
- La invariancia de norma dicta la forma d ela interacción y los campos vectoriales sin masa.

38 / 45

Potenciales vectoriales y normas covariantes

 (A_0, A)

$$D_{\mu} = (D_0, \mathbf{D})$$
(7)

$$D_0 = \frac{1}{c} \frac{\partial}{\partial t} + \frac{iqA_0}{\hbar c}$$
(8)

$$\mathbf{D} = \nabla - \frac{iq\mathbf{A}}{\hbar c}$$
(9)

Movimiento de los campos vectoriales

$$\frac{1}{c^2} \frac{\partial^2 A_0}{\partial t^2} - \nabla A_0 = \rho = \psi^* q \psi$$
$$\frac{1}{c^2} \frac{\partial^2 A_i}{\partial t^2} - \nabla A_i = \frac{j_i}{c} = \psi^* \frac{q \vec{v}_i}{c} \psi$$

Con la condición para su invariancia de norma:

$$\frac{1}{c^2} \frac{\partial^2 \epsilon(\vec{x}, t)}{\partial t^2} - \nabla^2 \epsilon(\vec{x}, t) = 0$$
 (10)

Bosones sin masa

- Aparece la necesidad de que los bosones de norma no tengan masa
- La invariancia local se extiende a la global
- La fase en una función de onda es arbitraria
- Pero siempre debe ser la misma fase en todos los puntos del espacio tiempo.

Sentido físico de los potenciales vectoriales

- Aparece en la teoría cuántica
- En ausencia de campo electromagnético, la ecuación estacionaria de Schrödinger:

$$-\frac{\hbar^2}{2m}\nabla^2\psi_0 = E\psi_0,\tag{11}$$

Ecuación de Schrödinger con campo vectorial electromagnético estático

$$-\frac{\hbar^2}{2m}\mathbf{D}^2\psi = -\frac{\hbar^2}{2m}\left(\nabla + \frac{ie\mathbf{A}(\vec{x})}{\hbar c}\right)^2\psi \qquad (12)$$

Invariancia de norma y teorías no abelianas

- La invariancia pide campos vectoriales sin masa
- Bosones de interacción débil con masa y cargados
- Bosones de interacción fuerte sin masa, pero cargados
- Problemas por ejemplo en teoría de perturbaciones

Mecanismo de Higgs

- Rompimiento de simetría aproximada
- Rompimiento de simetría espontáneo
- Simetrías escondidas por ejemplo en los ferromagnetos

Bosón de Higgs

- \blacksquare Campo escalar complejo invariante de norma, ϕ y ϕ^*
- \blacksquare Representan mesones escalares H^+ y H^-

$$\phi = \frac{1}{\sqrt{2}}(\phi_1 + i\phi_2)$$

Obedecen a la ecuación de Klein-Gordon