Trees and structural induction

Margaret M. Fleck
25 October 2010

These notes cover trees, tree induction, and structural induction. (Sec-
tions 10.1, 4.3 of Rosen.)

1 Why trees?

Computer scientists are obsessed with trees, because trees of various sorts
show up in a wide range of contexts. Originally, of course, trees are a familiar
form of plant. Oddly, computer scientists normally draw ours upside down.
[smile] Trees in computer science show up as

e Organization of real-world data: family/geneaology trees, taxonomies
(e.g. animal subspecies, species, genera, families)

e Data structures for efficiently storing and retrieving data. The basic
idea is the same one we saw for binary search within an array: sort the
data, so that you can repeatedly cut your search area in half.

e Parse trees, which show the structure of a piece of (for example) com-
puter program, so that the compiler can correctly produce the corre-
sponding machine code.

e Decision trees, which classify data by asking a series of questions. Each
tree node contains a question, whose answer directs you to one of the
node’s children.

For example, here’s a parse tree for “((a * ¢) + b) * d)”



T

Here’s what a medical decision tree might look like. Decision trees are
also used for engineering classification problems, such as transcribing speech
waveforms into the basic sounds of a natural language.

Cough?

/ *‘

es

Headache? Y ever?
/ YO / Yo
yes yes

Panic Rest Rest Back to work

2 Defining trees

Because trees are used for such a wide range of different purposes, there are
several radically-different ways to define what a tree is. Fortunately, they
amount to the same thing even though they look very different.

A common feature of all definitions is that a tree is made up of a set of
nodes/vertices and a set of edges that join them together. For the purposes
of this class, both sets (and thus the tree) will be finite. These definitions
can be extended to infinite trees, but we won’t go there.



The most familiar definition of a tree involves giving directions to the
edges. That is, for each edge, we know which end is the “parent” and which
end is the “child.” In drawings, the direction is sometimes indicated by
arrows on the edges (e.g. on the child end) but more often it is indicated
implicitly by drawing parents higher on the page. This is how you think
about trees when you are designing data structures for computer programs.

Researchers in graph theory start with a general graph, i.e. a bunch
of nodes strewn all over space in no particular pattern, joined together by
edges with no specific direction to each edge. A “tree” is a graph with two
properties. First, it must be connected, i.e. there’s a way to get from any
node to any other node via the edges. Second, it contains no cycles (loops
where you go around in a circle and get back to the same node).

If you take one of these graph theory trees, choose any node to be the
root, pick up the tree by this node and shake it a bit so it hangs down nicely,
it will look like a normal tree. It doesn’t matter which node you pick to be
the root. A graph theory tree with a designated root is called a “rooted tree”
in graph theory, but it’s what we're just calling a “tree.”

Finally, we can define trees recursively. Recursive definitions will be im-
portant when we come to write proofs involving trees. A simple recursive
definition might look like:

Base: a single node with no edges is a tree

Induction: if A and B are two trees, then you can make a bigger tree
by taking a new root node r and attaching the roots of A and B onto
r as its children

Here’s a picture of the inductive case:

T

A Th
This definition only creates trees in which each node has either zero or

two children. If we wanted to allow nodes with a single child, we’d need
another inductive rule:

Induction: if A is a tree, then you can make a bigger tree by taking a
new root node r and attaching the root of A onto r as its child



A

This idea can be extended to allow 3 children, or 4 children, or n children
(where n is any finite integer).

3 Basic tree terminology

Much of the basic terminology for trees is based on either the plant analogy
or the geneaology analogy.

A tree has one special “root” node that has no parent. Every other node
is joined by an edge to exactly one parent node. If p is the parent of x, then
x is a child of p. The parent is always closer to the root than the child. If y
is also a child of p, then x and y are siblings.

A leaf node is a node that has no children. A node that does have children
is known as an internal node. The root is an internal node, except in the
special case of a tree that consists of just one node (and no edges).

If you can get from z to g by following one or more parent links, then
g is an ancestor of x and x is a descendent of g. We will treat z as an
ancestor/descendent of itself. ! The ancestors/descendents of x other than
x itself are its “proper” ancestors/descendents.

If you pick some random node a in a tree T, the subtree rooted at a
consists of a, all its descendents, and all the edges linking them.

The nodes of a tree can be organized into levels, based on how many
edges away from the root they are. The root is defined to be level 0. Its
children are level 1. Their children are level 2, and so forth. You can also
define the height of a node as the number of edges in a path from that node
up to the root.

The height of a tree is the maximum level of any of its nodes. Or, equiv-
alently, the maximum level of any of its leaves.

1Some reputable authors don’t. This is a place where you always double-check what
convention the author is using.



4 m-ary trees

Many applications restrict how many children each node can have. A binary
tree (very common!) allows each node to have at most two children. An m-
ary tree allows each node to have up to m children. Trees with “fat” nodes
with a large bound on the number of children (e.g. 16) occur in some storage
applications.

Important special cases involve trees that are nicely filled out in some
sense. Here, there is considerable variation in terminology as you move from
author to author, because the most useful definitions depend on the applica-
tion. So always check which definitions your author is using.

In a “full” m-ary tree, each node has either zero or m children. Never an
intermediate number. So in a full 3-ary tree, nodes can have zero or three
children, but not one child or two children.

In a “complete” m-ary tree, all leaves are at the same height. Normally,
we’d be interested only in “full complete” m-ary trees, where this means that
the whole bottom level is fully populated with leaves.

For restricted types of trees like this, there are strong relationships be-
tween the numbers of different types of notes. for example:

Claim 1 A full m-ary tree with i internal nodes has mi + 1 nodes total.

To see why this is true, notice that there are two types of nodes: nodes
with a parent and nodes without a parent. A tree has exactly one node with
no parent. We can count the nodes with a parent by taking the number of
parents in the tree (i) and multiplying by the branching factor m.

Therefore, the number of leaves in a full m-ary tree with ¢ internal nodes
is(mi+1)—i=(m-—1)i+ 1

5 Height vs number of nodes

Recall that the level of a node is the number of edges in the path from it to
the root. That is, the root has level 0. The height of a tree is the maximum
level of any (leaf) node.

Now, suppose that we have a binary tree of height h. How many nodes
and how many leaves does it contain? This clearly can’t be an exact formula,
since some trees are more bushy than others and some are more balanced



than others (all leaves at approximately the same level). But we can give
useful upper and lower bounds.

To minimize the node counts, consider a tree that has just one leaf. It
contains h + 1 nodes connected into a straight line by h edges. So the
minimum number of leaves is 1 (regardless of h) and the minimum number
of nodes is h + 1.

The node counts are maximized by a tree which is full (see above) and
complete (all leaves are at the same level). In that case, the number of leaves
is 2" and the number of nodes is )"_ 25 = 2" — 1.

So for a full, complete binary tree, the total number of nodes n is ©(2").
So then h is O(log, n). If the tree might not be full and complete, this is a
lower bound on the height, so h is Q(log, n). There are similar relationship
between the number of leaves and the height.

In a “balanced” m-ary tree of height h, all leaves are either at height h
or at height h — 1. Balanced trees are useful when you want to store n items
(where n is some random natural number that might not be a power of 2)
while keeping all the leaves at approximately the same height. Balanced trees
aren’t as rigid as full binary trees, but they also have ©(log, n) height. This
means that all the leaves are fairly close to the root, which leads to good
behavior from algorithms trying to store and find things in the tree.

6 Tree induction

We claimed that

Claim 2 Let T be a binary tree, with height h and n nodes. Then n <
2h+1 —1.

We can prove this claim by induction. Our induction variable needs to
be some measure of the size of the tree, e.g. its height or the number of
nodes in it. Whichever variable we choose, it’s important that the inductive
step divide up the tree at the top, into a root plus (for a binary tree) two
subtrees.

Proof by induction on h, where h is the height of the tree.

Base: The base case is a tree consisting of a single node with
no edges. It has h = 0 and n = 1. Then we work out that
Ml 1 =21 -1=1=n.



Induction: Suppose that the claim is true for all binary trees of
height < h, where h > 0. Let T be a binary tree of height h.

Case 1: T consists of a root plus one subtree X. X has height
h—1. So X contains at most 2" — 1 nodes. And then X contains
at most 2" nodes, which is less than 2"+ — 1.

Case 2: T consists of a root plus two subtrees X and Y. X and
Y have heights p and ¢, both of which have to be less than h, i.e.
< h —1. X contains at most 2°t! — 1 nodes and Y contains at
most 2771 —1 nodes, by the inductive hypothesis. But this means
that X and Y each contain < 2" — 1 nodes.

So the total number of nodes in 7" is the number of nodes in X
plus the number of nodes in Y plus one (the new root node). This
s <14+ (2P—1)+(279—1) < 1+2(2"—1) = 1421 -2 =21 1

So the total number of nodes in 7" is < 2"*! — 1, which is what
we needed to show. [

7 Structural induction

Inductive proofs on trees can also be written using “structural induction.”
In structural induction, there is no explicit induction variable. Rather, the
outline of the proof follows the structure of a recursive definition. This is
sometimes simpler than trying to find an explicit integer induction variable.

Structural induction is used to prove a claim about a set T' of objects
which is defined recursively. Instead of having an explicit induction variable
n, our proof follows the structure of the recursive definition.

e Show the claim holds for the base case(s) of the definition of T

e For the recursive cases of T’s definition, show that if the claim holds for
the smaller /input objects, then it holds for the larger/output objects.

In Section 2, we saw a recursive definition for binary trees. To do struc-
tural induction on trees using this definition, we show that

e The claim holds for trees consisting of a single node.

e If the claim holds for trees A and B, it also holds for a new tree con-
sisting of a root with A and B attached as its children.

7



e If the claim holds for tree A, it also holds for a new tree consisting of
a root with A attached as its child.

8 Heap example

To have a nice claim to prove by structural induction, suppose we store
numbers in the nodes of a full binary tree. The numbers obey the heap
property if, for every node X in the tree, the value in X is at least as big as
the value in each of X’s children. For example:

32

/\

VANEERWAN

Notice that the values at one level aren’t uniformly bigger than the values
at the next lower level. For example, 18 in the bottom level is larger than
12 on the middle level. But values never decrease as you move along a path
from a leaf up to the root.

Trees with the heap property are convenient for applications where you
have to maintain a list of people or tasks with associated priorities. It’s easy
to retrieve the person or task with top priority: it lives in the root. And it’s
easy to restore the heap property if you add or remove a person or task.

I claim that:

Claim 3 If a tree has the heap property, then the value in the root of the
tree 1s at least as large as the value in any node of the tree.

To keep the proof simple, let’s restrict our attention to full binary trees:

Claim 4 If a full binary tree has the heap property, then the value in the
root of the tree is at least as large as the value in any node of the tree.



Let’s let v(a) be the value at node a and let’s use the recursive structure
of trees to do our proof.

Proof by structural induction.

Base: If a tree contains only one node, obviously the largest value
in the tree lives in the root!

Induction: Suppose that the claim is true for trees X and Y.
We need to show that the claim is also true for the tree T' that
consists of a root node plus subtrees X and Y.

Let r be the root of the whole tree T". Suppose p and ¢ are the
children of r, i.e. the root nodes of X and Y. Since T" has the
heap property, v(r) > v(p) and v(r) > v(q).

Suppose that = is any node of 7. We need to show that v(r) >
v(x). There are three cases:

Case 1: x = r. This is obvious.

Case 2: x is any node in the subtree X. By the inductive hypoth-
esis v(p) > v(z). But we know that v(r) > v(p). So v(p) > v(x).

Case 3: x is any node in the subtree Y. Similar to case 2.
So, for any node z in T', v(r) > v(z).O]
In the inductive step, notice that we split up the big tree (7') at its
root, producing two smaller subtrees (X) and (Y). Some students try to
do induction on trees by grafting stuff onto the bottom of the tree. This

frequently does not work, especially as you get to examples in more advanced
courses. Therefore, we will take off points if you do it on homework or tests.

9 Structural induction with 2D points

Structural induction is not limited to trees. It can be used on any class
of objects with a recursive definition. For example, consider the following
recursive definition of a set S of 2D points:

1. (3,5) €S

2. If (z,y) € S, then (x +2,y) € S



3. If (x,y) € S, then (—z,y) € S
4. If (z,y) € S, then (y,x) € S

What’s in S?7 Starting with the pair specified in the base case (3,5), we
use rule 3 to add (—3,5). Rule 2 then allows us to add (—1,5) and then
(1,5). If we apply rule 2 repeatedly, we see that S contains all pairs of the
form (2n 4 1,5) where x is a natural number. By rule 4, (5,2n + 1) must
also be in S for every natural number n.

We then apply rules 2 and 3 in the same way, to show that (2m+1,2n+1)
is in S for every natural numbers m and n.

We’ve now shown, albeit somewhat informally, that every pair with odd
coordinates is a member of S. But does every member of S have odd coor-
dinates?

To show that all members of S have odd coordinates, we use structural
induction.

Proof by structural induction that all elements of S have both
coordinates odd.

Base: Both coordinates of (3,5) are odd.

Induction: Suppose that both coordinates of (z,y) are odd. We
need to show that both coordinates of (z + 2,y), (—x,y), and
(y,x) are odd. But this is (even in the context of this course),
obvious.

This proof would be complicated to write with standard induction. It’s
possible to find a standard induction variable n, but it’s done in a somewhat
obscure way: the “size” of an element x in S is the number of times you have
to apply the recursive rules in S’s definition in order to show that z is in S.

10



