semestre_2/Cálculo II/Atividade 9/Atividade 9.md

6.8 KiB

Atividade 9

Resolução dos exercícios obrigatórios, feita por Guilherme de Abreu Barreto1.

Capítulo 14.4

Exercício 24

O índice de sensação térmica W é a temperatura sentida quando a temperatura real é T e a velocidade do vento, v. Portanto, podemos escrever W = f (T, v). A tabela de valores a seguir foi extraída da Tabela 1 da Seção 14.1. Use essa tabela para determinara aproximação linear da função de sensação térmica quando T estiver a -15 ºC e v estiver próximo de 50 km/h. Estime, a seguir, a sensação térmica quando a temperatura estiver a -17 ºC e a velocidade do vento for de 55 km/h.

Resolução

A aproximação linear para f(T,v) é dada por:


f(T,v) \approx f(a,b) + f_T(a,b)(T - a) + f_v(a,b)(v - b)

Para valores a \approx T e b \approx v. Assim sendo, para estimarmos f(-17,55) utilizaremos o valor descrito na tabela para f(a,b) = f(-15,60) e aqueles adjacentes a este. Assim, temos que

f_T(-15, 60) \approx \displaystyle \lim_{h \to 5} \dfrac{f(-15 + h, 60) - f(-15,60)}{2h}\\\ \\ + \lim_{h \to -5} \dfrac{f(-15 +h, 60) - f(-15,60)}{2h} = \dfrac{\dfrac{-23 + 30}5 + \dfrac{-36 + 30}{-5}}2 = \dfrac{13}{10}

e

f_v(-15, 60) \approx \displaystyle \lim_{h \to 10} \dfrac{f(-15, 60 + h) - f(-15,60)}{2h}\\ \ + \lim_{h \to -10} \dfrac{f(-15, 60 + h) - f(-15,60)}{2h} = \dfrac{\dfrac{30 - 30}{10} + \dfrac{30 - 29}{-10}}2 = - \dfrac 1{20}

Logo,

f(-17,55) \approx f(-15, 60) + f_T(-15,60)(-17 + 15) + f_v(-15,60)(55 - 60) \\\ \\ \approx -30 + \dfrac{13}{10}(-2) - \dfrac 1{20}(-5) \approx -32,25\ \blacksquare

Exercício 42

Suponha que você precise saber uma equação do plano tangente à superfície S no ponto P(2, 1, 3). Você não tem uma equação para S, mas sabe que as curvas

  • \textbf r_1(t) = \lang 2 + 3t, 1 - t^2, 3 - 4t + t^2\rang

  • \textbf r_2(u) = \lang 1 + u^2, 2u^3 - 1, 2u + 1 \rang

ambas estão em S. Encontre uma equação para o plano tangente em P.

Resolução

Podemos deduzir onde as retas passam pelo ponto P fazendo a seguinte comparação:

  • Se \textbf r_1(t) = \lang 2 + 3t, 1 - t^2, 3 - 4t + t^2\rang = \lang 2, 1, 3 \rang, então $\begin{cases} 2 + 3t = 2 \ 1 - t^2 = 1 \ 3 - 4t + t^2 = 3 \end{cases} \therefore t = 0$ Portanto, \textbf r_1(t) cruza P em \textbf r_1(0).

  • Se \textbf r_2(u) = \lang 1 + u^2, 2u^3 - 1, 2u + 1 \rang= \lang 2, 1, 3 \rang, então $\begin{cases} 1 + u^2 = 2 \ 2u^3 - 1 = 1 \ 2u + 1 = 3 \end{cases} \therefore u = 1$ Portanto, \textbf r_2(u) cruza P em \textbf r_2(1).

Derivamos então as equações das curvas para obter a reta tangente destas:

  • \textbf r_1(t) = \lang 2 + 3t, 1 - t^2, 3 - 4t + t^2\rang \implies \textbf r_1'(t) = \lang 3, - 2t, 2t - 4 \rang

  • \textbf r_2(u) = \lang 1 + u^2, 2u^3 - 1, 2u + 1 \rang \implies \textbf r_2'(u) = \lang 2u, 6u, 2 \rang

Com as retas tangentes conseguimos obter a reta normal \textbf n, perpendicular à ambas, no ponto P = (2, 1, 3):

\textbf r_1'(0) \times \textbf r_2'(1) = \lang 3, 0 , -4 \rang \times \lang 2, 6, 2 \rang \\ = \lang 0 \cdot 2 - (-4 \cdot 6), -4 \cdot 2 - 3 \cdot 2, 3 \cdot 6 - 0 \cdot 2 \rang = \lang 24, -14, 18 \rang

Por vez, a reta normal nos permite descrever a equação linear do plano sobre o ponto P:

24 x - 14y + 18z - (24 \cdot 2 - 14 \cdot 1 + 18 \cdot 3) = 0\\ \\ \implies 12 x - 7y + 9z - (12 \cdot 2 - 7 \cdot 1 + 9 \cdot 3) = 0\\ \\ \implies 12x - 7y + 9z - 44 = 0\ \blacksquare

Capítulo 14.5

Exercício 43

Um lado de um triângulo está aumentando em uma taxa de 3\ cm/s e um segundo lado está decrescendo em uma taxa de 2\ cm/s. Se a área do triângulo permanece constante, a que taxa varia o ângulo entre os lados quando o primeiro lado tem 20 cm de comprimento, o segundo lado tem 30 cm de comprimento e o ângulo é \frac \pi6?

Resolução

Denominemos por x o primeiro lado, y o segundo e \theta o ângulo entre eles. Pela aplicação da Lei dos senos, podemos aferir a área do triângulo A como sendo A = \frac{xy\sin\theta}2 Assim, o valor de A se dá em função de x, y e \theta e estes por vez se dão em função do tempo t. Sabemos pelo enunciado que a taxa de variação do comprimento de x, \frac{dx}{dt} = 3, e y, \frac{dy}{dt} = -2. Também, que para a área A não ocorre variação, \frac{dA}{dt} = 0. Buscamos aqui saber a taxa de variação do ângulo \theta, \frac{d\theta}{dt}. Ora, podemos relacionar estes dados fazendo uso da Regra da Cadeia e inferi-la:

\displaystyle \frac{dA}{dt} = \frac{\partial A}{\partial x}\frac{dx}{dt} + \frac{\partial A}{\partial y}\frac{dy}{dt} + \frac{\partial A}{\partial \theta}\frac{d\theta}{dt} \implies 0 = \frac{3y \sin \theta}2 - \frac{2 x \sin \theta}2 + \dfrac{xy \cos \theta}2\frac{d\theta}{dt} \\\ \\ \implies \frac{d\theta}{dt} = \frac{2x\sin \theta - 3y\sin \theta}{xy\cos \theta} = \frac{\sin \theta}{\cos \theta} \cdot \frac{2x - 3y}{xy} = \tan \left(\frac \pi 6\right) \cdot \frac{2 \cdot 2\cancel 0 - 3 \cdot 3\cancel 0}{60\cancel 0}\\\ \\ = \frac{\sqrt 3}3 \cdot - \frac 1{12} = - \frac{\sqrt 3}{36}\ \blacksquare

Exercício 59

A Equação 6 é uma fórmula para a derivada dy/dx de uma função definida implicitamente por uma equação F (x, y) = 0, sendo que F é diferenciável e F_y \not = 0. Comprove que se F tem derivadas contínuas de segunda ordem, então uma fórmula para a segunda derivada de y é


\frac{d^2y}{dx^2} = - \frac{F_{xx}F_y^2 - 2F_{xy}F_xF_y + F_yyF_x^2}{F_y^3}

Resolução

Dado que a função foi definida implicitamente da maneira descrita pelo enunciado, sabemos que \frac{dy}{dx} = - \frac{F_x}{F_y}. Denominemos G(x,y) = - \frac{F_x}{F_y}. Ao derivarmos ambos os lados da equação e utilizarmos a Regra da Cadeia, teremos:


\displaystyle \frac{d^2y}{dx^2} = \frac{\partial G}{\partial x} \cdot \cancel{\frac{dx}{dx}}\ 1 + \frac{\partial G}{\partial y} \cdot \frac{dy}{dx}

Sendo que

  • \dfrac{\partial G}{\partial x} = \dfrac{\partial}{\partial x}\left(- \dfrac{F_x}{F_y}\right) = - \dfrac{F_yF_{xx} - F_xF_{yx}}{F_y^2}

  • \dfrac{\partial G}{\partial y} = \dfrac{\partial}{\partial y}\left(- \dfrac{F_x}{F_y}\right) = - \dfrac{F_yF_{xy} - F_xF_{yy}}{F_y^2}

Assim,

\displaystyle \frac{d2y}{dx2} = - \dfrac{F_yF_{xx} - F_xF_{yx}}{F_y^2} + \left(- \dfrac{F_yF_{xy} - F_xF_{yy}}{F_y^2}\right)\left(- \dfrac{F_x}{F_y}\right) = \\\ \\ - \dfrac{F_{xx}F_y^2 - F_{yx} F_xF_y - F_{xy} F_yF_x + F_{yy}F_x^2}{F_y^3}

Consideremos agora que F tem derivadas de segunda ordem contínuas então, pelo Teorema de Clauraut, F_{xy} = F_{yx} e


\frac{d^2y}{dx^2} = - \frac{F_{xx}F_y^2 - 2F_{xy}F_xF_y + F_yyF_x^2}{F_y^3} \ \blacksquare

  1. nUSP 12543033; Turma 04 ↩︎