hugetlbfs page faults can race with truncate and hole punch operations.
Current code in the page fault path attempts to handle this by 'backing
out' operations if we encounter the race. One obvious omission in the
current code is removing a page newly added to the page cache. This is
pretty straight forward to address, but there is a more subtle and
difficult issue of backing out hugetlb reservations. To handle this
correctly, the 'reservation state' before page allocation needs to be
noted so that it can be properly backed out. There are four distinct
possibilities for reservation state: shared/reserved, shared/no-resv,
private/reserved and private/no-resv. Backing out a reservation may
require memory allocation which could fail so that needs to be taken into
account as well.
Instead of writing the required complicated code for this rare occurrence,
just eliminate the race. i_mmap_rwsem is now held in read mode for the
duration of page fault processing. Hold i_mmap_rwsem longer in truncation
and hold punch code to cover the call to remove_inode_hugepages.
With this modification, code in remove_inode_hugepages checking for races
becomes 'dead' as it can not longer happen. Remove the dead code and
expand comments to explain reasoning. Similarly, checks for races with
truncation in the page fault path can be simplified and removed.
[mike.kravetz@oracle.com: incorporat suggestions from Kirill]
Link: http://lkml.kernel.org/r/20181222223013.22193-3-mike.kravetz@oracle.com
Link: http://lkml.kernel.org/r/20181218223557.5202-3-mike.kravetz@oracle.com
Fixes: ebed4bfc8d ("hugetlb: fix absurd HugePages_Rsvd")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table. Consider the following:
A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep. Suppose the returned ptep points to a
shared pmd.
Now, another task truncates the hugetlbfs file. As part of truncation, it
unmaps everyone who has the file mapped. If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called. For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd. If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse. This leads to bad things such as incorrect page
map/reference counts or invalid memory references.
To fix, expand the use of i_mmap_rwsem as follows:
- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
huge_pmd_share is only called via huge_pte_alloc, so callers of
huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers
of huge_pte_alloc continue to hold the semaphore until finished with the
ptep.
- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is
called.
[mike.kravetz@oracle.com: add explicit check for mapping != null]
Link: http://lkml.kernel.org/r/20181218223557.5202-2-mike.kravetz@oracle.com
Fixes: 39dde65c99 ("shared page table for hugetlb page")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: Colin Ian King <colin.king@canonical.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pages_correctly_probed is missing new lines which means that the line is
not printed rightaway but it rather waits for additional printks.
Add \n to all three messages in pages_correctly_probed.
Link: http://lkml.kernel.org/r/20181218162307.10518-1-mhocko@kernel.org
Fixes: b77eab7079 ("mm/memory_hotplug: optimize probe routine")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This function is identical to __page_set_anon_rmap() since the time, when
it was introduced (8 years ago). The patch removes the function, and
makes its users to use __page_set_anon_rmap() instead.
Link: http://lkml.kernel.org/r/154504875359.30235.6237926369392564851.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These four macro are not used anymore.
Just remove them.
Link: http://lkml.kernel.org/r/20181214063211.2290-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Model call chain after should_failslab(). Likewise, we can now use a
kprobe to override the return value of should_fail_alloc_page() and inject
allocation failures into alloc_page*().
This will allow injecting allocation failures using the BCC tools even
without building kernel with CONFIG_FAIL_PAGE_ALLOC and booting it with a
fail_page_alloc= parameter, which incurs some overhead even when failures
are not being injected. On the other hand, this patch adds an
unconditional call to should_fail_alloc_page() from page allocation
hotpath. That overhead should be rather negligible with
CONFIG_FAIL_PAGE_ALLOC=n when there's no kprobe attached, though.
[vbabka@suse.cz: changelog addition]
Link: http://lkml.kernel.org/r/20181214074330.18917-1-bpoirier@suse.com
Signed-off-by: Benjamin Poirier <bpoirier@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All callers of migrate_page_move_mapping() now pass NULL for 'head'
argument. Drop it.
Link: http://lkml.kernel.org/r/20181211172143.7358-7-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, block device pages don't provide a ->migratepage callback and
thus fallback_migrate_page() is used for them. This handler cannot deal
with dirty pages in async mode and also with the case a buffer head is in
the LRU buffer head cache (as it has elevated b_count). Thus such page
can block memory offlining.
Fix the problem by using buffer_migrate_page_norefs() for migrating block
device pages. That function takes care of dropping bh LRU in case
migration would fail due to elevated buffer refcount to avoid stalls and
can also migrate dirty pages without writing them.
Link: http://lkml.kernel.org/r/20181211172143.7358-6-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Provide a variant of buffer_migrate_page() that also checks whether there
are no unexpected references to buffer heads. This function will then be
safe to use for block device pages.
[akpm@linux-foundation.org: remove EXPORT_SYMBOL(buffer_migrate_page_norefs)]
Link: http://lkml.kernel.org/r/20181211172143.7358-5-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
buffer_migrate_page() is the only caller of migrate_page_lock_buffers()
move it close to it and also drop the now unused stub for !CONFIG_BLOCK.
Link: http://lkml.kernel.org/r/20181211172143.7358-4-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Lock buffers before calling into migrate_page_move_mapping() so that that
function doesn't have to know about buffers (which is somewhat unexpected
anyway) and all the buffer head logic is in buffer_migrate_page().
Link: http://lkml.kernel.org/r/20181211172143.7358-3-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: migrate: Fix page migration stalls for blkdev pages".
This patchset deals with page migration stalls that were reported by our
customer due to a block device page that had a bufferhead that was in the
bh LRU cache.
The patchset modifies the page migration code so that bufferheads are
completely handled inside buffer_migrate_page() and then provides a new
migration helper for pages with buffer heads that is safe to use even for
block device pages and that also deals with bh lrus.
This patch (of 6):
Factor out function to compute number of expected page references in
migrate_page_move_mapping(). Note that we move hpage_nr_pages() and
page_has_private() checks from under xas_lock_irq() however this is safe
since we hold page lock.
[jack@suse.cz: fix expected_page_refs()]
Link: http://lkml.kernel.org/r/20181217131710.GB8611@quack2.suse.cz
Link: http://lkml.kernel.org/r/20181211172143.7358-2-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
drain_all_pages is documented to drain per-cpu pages for a given zone (if
non-NULL). The current implementation doesn't match the description
though. It will drain all pcp pages for all zones that happen to have
cached pages on the same cpu as the given zone. This will lead to
premature pcp cache draining for zones that are not of any interest to the
caller - e.g. compaction, hwpoison or memory offline.
This forces the page allocator to take locks and potential lock contention
as a result.
There is no real reason for this sub-optimal implementation. Replace
per-cpu work item with a dedicated structure which contains a pointer to
the zone and pass it over to the worker. This will get the zone
information all the way down to the worker function and do the right job.
[akpm@linux-foundation.org: avoid 80-col tricks]
[mhocko@suse.com: refactor the whole changelog]
Link: http://lkml.kernel.org/r/20181212142550.61686-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kmemleak scan can be cpu intensive and can stall user tasks at times. To
prevent this, add config DEBUG_KMEMLEAK_AUTO_SCAN to enable/disable auto
scan on boot up. Also protect first_run with DEBUG_KMEMLEAK_AUTO_SCAN as
this is meant for only first automatic scan.
Link: http://lkml.kernel.org/r/1540231723-7087-1-git-send-email-prpatel@nvidia.com
Signed-off-by: Sri Krishna chowdary <schowdary@nvidia.com>
Signed-off-by: Sachin Nikam <snikam@nvidia.com>
Signed-off-by: Prateek <prpatel@nvidia.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When CONFIG_KASAN is enabled on large memory SMP systems, the deferrred
pages initialization can take a long time. Below were the reported init
times on a 8-socket 96-core 4TB IvyBridge system.
1) Non-debug kernel without CONFIG_KASAN
[ 8.764222] node 1 initialised, 132086516 pages in 7027ms
2) Debug kernel with CONFIG_KASAN
[ 146.288115] node 1 initialised, 132075466 pages in 143052ms
So the page init time in a debug kernel was 20X of the non-debug kernel.
The long init time can be problematic as the page initialization is done
with interrupt disabled. In this particular case, it caused the
appearance of following warning messages as well as NMI backtraces of all
the cores that were doing the initialization.
[ 68.240049] rcu: INFO: rcu_sched detected stalls on CPUs/tasks:
[ 68.241000] rcu: 25-...0: (100 ticks this GP) idle=b72/1/0x4000000000000000 softirq=915/915 fqs=16252
[ 68.241000] rcu: 44-...0: (95 ticks this GP) idle=49a/1/0x4000000000000000 softirq=788/788 fqs=16253
[ 68.241000] rcu: 54-...0: (104 ticks this GP) idle=03a/1/0x4000000000000000 softirq=721/825 fqs=16253
[ 68.241000] rcu: 60-...0: (103 ticks this GP) idle=cbe/1/0x4000000000000000 softirq=637/740 fqs=16253
[ 68.241000] rcu: 72-...0: (105 ticks this GP) idle=786/1/0x4000000000000000 softirq=536/641 fqs=16253
[ 68.241000] rcu: 84-...0: (99 ticks this GP) idle=292/1/0x4000000000000000 softirq=537/537 fqs=16253
[ 68.241000] rcu: 111-...0: (104 ticks this GP) idle=bde/1/0x4000000000000000 softirq=474/476 fqs=16253
[ 68.241000] rcu: (detected by 13, t=65018 jiffies, g=249, q=2)
The long init time was mainly caused by the call to kasan_free_pages() to
poison the newly initialized pages. On a 4TB system, we are talking about
almost 500GB of memory probably on the same node.
In reality, we may not need to poison the newly initialized pages before
they are ever allocated. So KASAN poisoning of freed pages before the
completion of deferred memory initialization is now disabled. Those pages
will be properly poisoned when they are allocated or freed after deferred
pages initialization is done.
With this change, the new page initialization time became:
[ 21.948010] node 1 initialised, 132075466 pages in 18702ms
This was still about double the non-debug kernel time, but was much
better than before.
Link: http://lkml.kernel.org/r/1544459388-8736-1-git-send-email-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the process being tracked does mremap() without
UFFD_FEATURE_EVENT_REMAP on the corresponding tracking uffd file handle,
we should not generate the remap event, and at the same time we should
clear all the uffd flags on the new VMA. Without this patch, we can still
have the VM_UFFD_MISSING|VM_UFFD_WP flags on the new VMA even the fault
handling process does not even know the existance of the VMA.
Link: http://lkml.kernel.org/r/20181211053409.20317-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Hugh Dickins <hughd@google.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Cc: Pravin Shedge <pravin.shedge4linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, NR_PAGEBLOCK_BITS and MIGRATE_TYPES are not associated by code.
If someone adds extra migrate type, then he may forget to enlarge the
NR_PAGEBLOCK_BITS. Hence it requires some way to fix.
NR_PAGEBLOCK_BITS depends on MIGRATE_TYPES, while these macro spread on
two different .h file with reverse dependency, it is a little hard to
refer to MIGRATE_TYPES in pageblock-flag.h. This patch tries to remind
such relation in compiling-time.
Link: http://lkml.kernel.org/r/1544508709-11358-1-git-send-email-kernelfans@gmail.com
Signed-off-by: Pingfan Liu <kernelfans@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ksm thread unconditionally sleeps in ksm_scan_thread() after each
iteration:
schedule_timeout_interruptible(
msecs_to_jiffies(ksm_thread_sleep_millisecs))
The timeout is configured in /sys/kernel/mm/ksm/sleep_millisecs.
In case of user writes a big value by a mistake, and the thread enters
into schedule_timeout_interruptible(), it's not possible to cancel the
sleep by writing a new smaler value; the thread is just sleeping till
timeout expires.
The patch fixes the problem by waking the thread each time after the value
is updated.
This also may be useful for debug purposes; and also for userspace
daemons, which change sleep_millisecs value in dependence of system load.
Link: http://lkml.kernel.org/r/154454107680.3258.3558002210423531566.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Cyrill Gorcunov <gorcunov@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
filemap_map_pages takes a speculative reference to each page in the range
before it tries to lock that page. While this is correct it also can
influence page migration which will bail out when seeing an elevated
reference count. The faultaround code would bail on seeing a locked page
so we can pro-actively check the PageLocked bit before
page_cache_get_speculative and prevent from pointless reference count
churn.
Link: http://lkml.kernel.org/r/20181211142741.2607-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Jan Kara <jack@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory migration might fail during offlining and we keep retrying in that
case. This is currently obfuscated by goto retry loop. The code is hard
to follow and as a result it is even suboptimal becase each retry round
scans the full range from start_pfn even though we have successfully
scanned/migrated [start_pfn, pfn] range already. This is all only because
check_pages_isolated failure has to rescan the full range again.
De-obfuscate the migration retry loop by promoting it to a real for loop.
In fact remove the goto altogether by making it a proper double loop
(yeah, gotos are nasty in this specific case). In the end we will get a
slightly more optimal code which is better readable.
[akpm@linux-foundation.org: reflow comments to 80 cols]
Link: http://lkml.kernel.org/r/20181211142741.2607-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "few memory offlining enhancements".
I have been chasing memory offlining not making progress recently. On the
way I have noticed few weird decisions in the code. The migration itself
is restricted without a reasonable justification and the retry loop around
the migration is quite messy. This is addressed by patch 1 and patch 2.
Patch 3 is targeting on the faultaround code which has been a hot
candidate for the initial issue reported upstream [2] and that I am
debugging internally. It turned out to be not the main contributor in the
end but I believe we should address it regardless. See the patch
description for more details.
[1] http://lkml.kernel.org/r/20181120134323.13007-1-mhocko@kernel.org
[2] http://lkml.kernel.org/r/20181114070909.GB2653@MiWiFi-R3L-srv
This patch (of 3):
do_migrate_range has been limiting the number of pages to migrate to 256
for some reason which is not documented. Even if the limit made some
sense back then when it was introduced it doesn't really serve a good
purpose these days. If the range contains huge pages then we break out of
the loop too early and go through LRU and pcp caches draining and
scan_movable_pages is quite suboptimal.
The only reason to limit the number of pages I can think of is to reduce
the potential time to react on the fatal signal. But even then the number
of pages is a questionable metric because even a single page migration
might block in a non-killable state (e.g. __unmap_and_move).
Remove the limit and offline the full requested range (this is one
memblock worth of pages with the current code). Should we ever get a
report that offlining takes too long to react on fatal signal then we
should rather fix the core migration to use killable waits and bailout
on a signal.
Link: http://lkml.kernel.org/r/20181211142741.2607-1-mhocko@kernel.org
Link: http://lkml.kernel.org/r/20181211142741.2607-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
David Rientjes has reported that commit 1860033237 ("mm: make
PR_SET_THP_DISABLE immediately active") has changed the way how we
report THPable VMAs to the userspace. Their monitoring tool is
triggering false alarms on PR_SET_THP_DISABLE tasks because it considers
an insufficient THP usage as a memory fragmentation resp. memory
pressure issue.
Before the said commit each newly created VMA inherited VM_NOHUGEPAGE
flag and that got exposed to the userspace via /proc/<pid>/smaps file.
This implementation had its downsides as explained in the commit message
but it is true that the userspace doesn't have any means to query for
the process wide THP enabled/disabled status.
PR_SET_THP_DISABLE is a process wide flag so it makes a lot of sense to
export in the process wide context rather than per-vma. Introduce a new
field to /proc/<pid>/status which export this status. If
PR_SET_THP_DISABLE is used then it reports false same as when the THP is
not compiled in. It doesn't consider the global THP status because we
already export that information via sysfs
Link: http://lkml.kernel.org/r/20181211143641.3503-4-mhocko@kernel.org
Fixes: 1860033237 ("mm: make PR_SET_THP_DISABLE immediately active")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: David Rientjes <rientjes@google.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Paul Oppenheimer <bepvte@gmail.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Userspace falls short when trying to find out whether a specific memory
range is eligible for THP. There are usecases that would like to know
that
http://lkml.kernel.org/r/alpine.DEB.2.21.1809251248450.50347@chino.kir.corp.google.com
: This is used to identify heap mappings that should be able to fault thp
: but do not, and they normally point to a low-on-memory or fragmentation
: issue.
The only way to deduce this now is to query for hg resp. nh flags and
confronting the state with the global setting. Except that there is also
PR_SET_THP_DISABLE that might change the picture. So the final logic is
not trivial. Moreover the eligibility of the vma depends on the type of
VMA as well. In the past we have supported only anononymous memory VMAs
but things have changed and shmem based vmas are supported as well these
days and the query logic gets even more complicated because the
eligibility depends on the mount option and another global configuration
knob.
Simplify the current state and report the THP eligibility in
/proc/<pid>/smaps for each existing vma. Reuse
transparent_hugepage_enabled for this purpose. The original
implementation of this function assumes that the caller knows that the vma
itself is supported for THP so make the core checks into
__transparent_hugepage_enabled and use it for existing callers.
__show_smap just use the new transparent_hugepage_enabled which also
checks the vma support status (please note that this one has to be out of
line due to include dependency issues).
[mhocko@kernel.org: fix oops with NULL ->f_mapping]
Link: http://lkml.kernel.org/r/20181224185106.GC16738@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20181211143641.3503-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Paul Oppenheimer <bepvte@gmail.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "THP eligibility reporting via proc".
This series of three patches aims at making THP eligibility reporting much
more robust and long term sustainable. The trigger for the change is a
regression report [2] and the long follow up discussion. In short the
specific application didn't have good API to query whether a particular
mapping can be backed by THP so it has used VMA flags to workaround that.
These flags represent a deep internal state of VMAs and as such they
should be used by userspace with a great deal of caution.
A similar has happened for [3] when users complained that VM_MIXEDMAP is
no longer set on DAX mappings. Again a lack of a proper API led to an
abuse.
The first patch in the series tries to emphasise that that the semantic of
flags might change and any application consuming those should be really
careful.
The remaining two patches provide a more suitable interface to address [2]
and provide a consistent API to query the THP status both for each VMA and
process wide as well. [1]
http://lkml.kernel.org/r/20181120103515.25280-1-mhocko@kernel.org [2]
http://lkml.kernel.org/r/http://lkml.kernel.org/r/alpine.DEB.2.21.1809241054050.224429@chino.kir.corp.google.com
[3] http://lkml.kernel.org/r/20181002100531.GC4135@quack2.suse.cz
This patch (of 3):
Even though vma flags exported via /proc/<pid>/smaps are explicitly
documented to be not guaranteed for future compatibility the warning
doesn't go far enough because it doesn't mention semantic changes to those
flags. And they are important as well because these flags are a deep
implementation internal to the MM code and the semantic might change at
any time.
Let's consider two recent examples:
http://lkml.kernel.org/r/20181002100531.GC4135@quack2.suse.cz
: commit e1fb4a0864 "dax: remove VM_MIXEDMAP for fsdax and device dax" has
: removed VM_MIXEDMAP flag from DAX VMAs. Now our testing shows that in the
: mean time certain customer of ours started poking into /proc/<pid>/smaps
: and looks at VMA flags there and if VM_MIXEDMAP is missing among the VMA
: flags, the application just fails to start complaining that DAX support is
: missing in the kernel.
http://lkml.kernel.org/r/alpine.DEB.2.21.1809241054050.224429@chino.kir.corp.google.com
: Commit 1860033237 ("mm: make PR_SET_THP_DISABLE immediately active")
: introduced a regression in that userspace cannot always determine the set
: of vmas where thp is ineligible.
: Userspace relies on the "nh" flag being emitted as part of /proc/pid/smaps
: to determine if a vma is eligible to be backed by hugepages.
: Previous to this commit, prctl(PR_SET_THP_DISABLE, 1) would cause thp to
: be disabled and emit "nh" as a flag for the corresponding vmas as part of
: /proc/pid/smaps. After the commit, thp is disabled by means of an mm
: flag and "nh" is not emitted.
: This causes smaps parsing libraries to assume a vma is eligible for thp
: and ends up puzzling the user on why its memory is not backed by thp.
In both cases userspace was relying on a semantic of a specific VMA flag.
The primary reason why that happened is a lack of a proper interface.
While this has been worked on and it will be fixed properly, it seems that
our wording could see some refinement and be more vocal about semantic
aspect of these flags as well.
Link: http://lkml.kernel.org/r/20181211143641.3503-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Jan Kara <jack@suse.cz>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Paul Oppenheimer <bepvte@gmail.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
offline_pages() is already declared in this file.
Just remove the duplicated one.
Link: http://lkml.kernel.org/r/20181205031357.24769-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To avoid having to change many call sites everytime we want to add a
parameter use a structure to group all parameters for the mmu_notifier
invalidate_range_start/end cakks. No functional changes with this patch.
[akpm@linux-foundation.org: coding style fixes]
Link: http://lkml.kernel.org/r/20181205053628.3210-3-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Acked-by: Christian König <christian.koenig@amd.com>
Acked-by: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Felix Kuehling <felix.kuehling@amd.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
From: Jérôme Glisse <jglisse@redhat.com>
Subject: mm/mmu_notifier: use structure for invalidate_range_start/end calls v3
fix build warning in migrate.c when CONFIG_MMU_NOTIFIER=n
Link: http://lkml.kernel.org/r/20181213171330.8489-3-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mmu notifier contextual informations", v2.
This patchset adds contextual information, why an invalidation is
happening, to mmu notifier callback. This is necessary for user of mmu
notifier that wish to maintains their own data structure without having to
add new fields to struct vm_area_struct (vma).
For instance device can have they own page table that mirror the process
address space. When a vma is unmap (munmap() syscall) the device driver
can free the device page table for the range.
Today we do not have any information on why a mmu notifier call back is
happening and thus device driver have to assume that it is always an
munmap(). This is inefficient at it means that it needs to re-allocate
device page table on next page fault and rebuild the whole device driver
data structure for the range.
Other use case beside munmap() also exist, for instance it is pointless
for device driver to invalidate the device page table when the
invalidation is for the soft dirtyness tracking. Or device driver can
optimize away mprotect() that change the page table permission access for
the range.
This patchset enables all this optimizations for device drivers. I do not
include any of those in this series but another patchset I am posting will
leverage this.
The patchset is pretty simple from a code point of view. The first two
patches consolidate all mmu notifier arguments into a struct so that it is
easier to add/change arguments. The last patch adds the contextual
information (munmap, protection, soft dirty, clear, ...).
This patch (of 3):
To avoid having to change many callback definition everytime we want to
add a parameter use a structure to group all parameters for the
mmu_notifier invalidate_range_start/end callback. No functional changes
with this patch.
[akpm@linux-foundation.org: fix drivers/gpu/drm/amd/amdgpu/amdgpu_mn.c kerneldoc]
Link: http://lkml.kernel.org/r/20181205053628.3210-2-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Acked-by: Jan Kara <jack@suse.cz>
Acked-by: Jason Gunthorpe <jgg@mellanox.com> [infiniband]
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: Felix Kuehling <felix.kuehling@amd.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have received a bug report that an injected MCE about faulty memory
prevents memory offline to succeed on 4.4 base kernel. The underlying
reason was that the HWPoison page has an elevated reference count and the
migration keeps failing. There are two problems with that. First of all
it is dubious to migrate the poisoned page because we know that accessing
that memory is possible to fail. Secondly it doesn't make any sense to
migrate a potentially broken content and preserve the memory corruption
over to a new location.
Oscar has found out that 4.4 and the current upstream kernels behave
slightly differently with his simply testcase
===
int main(void)
{
int ret;
int i;
int fd;
char *array = malloc(4096);
char *array_locked = malloc(4096);
fd = open("/tmp/data", O_RDONLY);
read(fd, array, 4095);
for (i = 0; i < 4096; i++)
array_locked[i] = 'd';
ret = mlock((void *)PAGE_ALIGN((unsigned long)array_locked), sizeof(array_locked));
if (ret)
perror("mlock");
sleep (20);
ret = madvise((void *)PAGE_ALIGN((unsigned long)array_locked), 4096, MADV_HWPOISON);
if (ret)
perror("madvise");
for (i = 0; i < 4096; i++)
array_locked[i] = 'd';
return 0;
}
===
+ offline this memory.
In 4.4 kernels he saw the hwpoisoned page to be returned back to the LRU
list
kernel: [<ffffffff81019ac9>] dump_trace+0x59/0x340
kernel: [<ffffffff81019e9a>] show_stack_log_lvl+0xea/0x170
kernel: [<ffffffff8101ac71>] show_stack+0x21/0x40
kernel: [<ffffffff8132bb90>] dump_stack+0x5c/0x7c
kernel: [<ffffffff810815a1>] warn_slowpath_common+0x81/0xb0
kernel: [<ffffffff811a275c>] __pagevec_lru_add_fn+0x14c/0x160
kernel: [<ffffffff811a2eed>] pagevec_lru_move_fn+0xad/0x100
kernel: [<ffffffff811a334c>] __lru_cache_add+0x6c/0xb0
kernel: [<ffffffff81195236>] add_to_page_cache_lru+0x46/0x70
kernel: [<ffffffffa02b4373>] extent_readpages+0xc3/0x1a0 [btrfs]
kernel: [<ffffffff811a16d7>] __do_page_cache_readahead+0x177/0x200
kernel: [<ffffffff811a18c8>] ondemand_readahead+0x168/0x2a0
kernel: [<ffffffff8119673f>] generic_file_read_iter+0x41f/0x660
kernel: [<ffffffff8120e50d>] __vfs_read+0xcd/0x140
kernel: [<ffffffff8120e9ea>] vfs_read+0x7a/0x120
kernel: [<ffffffff8121404b>] kernel_read+0x3b/0x50
kernel: [<ffffffff81215c80>] do_execveat_common.isra.29+0x490/0x6f0
kernel: [<ffffffff81215f08>] do_execve+0x28/0x30
kernel: [<ffffffff81095ddb>] call_usermodehelper_exec_async+0xfb/0x130
kernel: [<ffffffff8161c045>] ret_from_fork+0x55/0x80
And that latter confuses the hotremove path because an LRU page is
attempted to be migrated and that fails due to an elevated reference
count. It is quite possible that the reuse of the HWPoisoned page is some
kind of fixed race condition but I am not really sure about that.
With the upstream kernel the failure is slightly different. The page
doesn't seem to have LRU bit set but isolate_movable_page simply fails and
do_migrate_range simply puts all the isolated pages back to LRU and
therefore no progress is made and scan_movable_pages finds same set of
pages over and over again.
Fix both cases by explicitly checking HWPoisoned pages before we even try
to get reference on the page, try to unmap it if it is still mapped. As
explained by Naoya:
: Hwpoison code never unmapped those for no big reason because
: Ksm pages never dominate memory, so we simply didn't have strong
: motivation to save the pages.
Also put WARN_ON(PageLRU) in case there is a race and we can hit LRU
HWPoison pages which shouldn't happen but I couldn't convince myself about
that. Naoya has noted the following:
: Theoretically no such gurantee, because try_to_unmap() doesn't have a
: guarantee of success and then memory_failure() returns immediately
: when hwpoison_user_mappings fails.
: Or the following code (comes after hwpoison_user_mappings block) also impli=
: es
: that the target page can still have PageLRU flag.
:
: /*
: * Torn down by someone else?
: */
: if (PageLRU(p) && !PageSwapCache(p) && p->mapping =3D=3D NULL) {
: action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
: res =3D -EBUSY;
: goto out;
: }
:
: So I think it's OK to keep "if (WARN_ON(PageLRU(page)))" block in
: current version of your patch.
Link: http://lkml.kernel.org/r/20181206120135.14079-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.com>
Debugged-by: Oscar Salvador <osalvador@suse.com>
Tested-by: Oscar Salvador <osalvador@suse.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kmemleak_scan() goes through all online nodes and tries to scan all used
pages.
We can do better and use pfn_to_online_page(), so in case we have
CONFIG_MEMORY_HOTPLUG, offlined pages will be skiped automatically. For
boxes where CONFIG_MEMORY_HOTPLUG is not present, pfn_to_online_page()
will fallback to pfn_valid().
Another little optimization is to check if the page belongs to the node we
are currently checking, so in case we have nodes interleaved we will not
check the same pfn multiple times.
I ran some tests:
Add some memory to node1 and node2 making it interleaved:
(qemu) object_add memory-backend-ram,id=ram0,size=1G
(qemu) device_add pc-dimm,id=dimm0,memdev=ram0,node=1
(qemu) object_add memory-backend-ram,id=ram1,size=1G
(qemu) device_add pc-dimm,id=dimm1,memdev=ram1,node=2
(qemu) object_add memory-backend-ram,id=ram2,size=1G
(qemu) device_add pc-dimm,id=dimm2,memdev=ram2,node=1
Then, we offline that memory:
# for i in {32..39} ; do echo "offline" > /sys/devices/system/node/node1/memory$i/state;done
# for i in {48..55} ; do echo "offline" > /sys/devices/system/node/node1/memory$i/state;don
# for i in {40..47} ; do echo "offline" > /sys/devices/system/node/node2/memory$i/state;done
And we run kmemleak_scan:
# echo "scan" > /sys/kernel/debug/kmemleak
before the patch:
kmemleak: time spend: 41596 us
after the patch:
kmemleak: time spend: 34899 us
[akpm@linux-foundation.org: remove stray newline, per Oscar]
Link: http://lkml.kernel.org/r/20181206131918.25099-1-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Whilst no architectures actually enable support for huge p4d mappings in
the vmap area, the code that is implemented should be using
break-before-make, as we do for pud and pmd huge entries.
Link: http://lkml.kernel.org/r/1544120495-17438-6-git-send-email-will.deacon@arm.com
Signed-off-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Toshi Kani <toshi.kani@hpe.com>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current ioremap() code uses a phys_addr variable at each level of page
table, which is confusingly offset by subtracting the base virtual address
being mapped so that adding the current virtual address back on when
iterating through the page table entries gives back the corresponding
physical address.
This is fairly confusing and results in all users of phys_addr having to
add the current virtual address back on. Instead, this patch just updates
phys_addr when iterating over the page table entries, ensuring that it's
always up-to-date and doesn't require explicit offsetting.
Link: http://lkml.kernel.org/r/1544120495-17438-5-git-send-email-will.deacon@arm.com
Signed-off-by: Will Deacon <will.deacon@arm.com>
Tested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The core code already has a check for pXd_none(), so remove it from the
architecture implementation.
Link: http://lkml.kernel.org/r/1544120495-17438-4-git-send-email-will.deacon@arm.com
Signed-off-by: Will Deacon <will.deacon@arm.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Toshi Kani <toshi.kani@hpe.com>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The core code already has a check for pXd_none(), so remove it from the
architecture implementation.
Link: http://lkml.kernel.org/r/1544120495-17438-3-git-send-email-will.deacon@arm.com
Signed-off-by: Will Deacon <will.deacon@arm.com>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The recently merged API for ensuring break-before-make on page-table
entries when installing huge mappings in the vmalloc/ioremap region is
fairly counter-intuitive, resulting in the arch freeing functions (e.g.
pmd_free_pte_page()) being called even on entries that aren't present.
This resulted in a minor bug in the arm64 implementation, giving rise to
spurious VM_WARN messages.
This patch moves the pXd_present() checks out into the core code,
refactoring the callsites at the same time so that we avoid the complex
conjunctions when determining whether or not we can put down a huge
mapping.
Link: http://lkml.kernel.org/r/1544120495-17438-2-git-send-email-will.deacon@arm.com
Signed-off-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Toshi Kani <toshi.kani@hpe.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page always is not NULL, so we may remove this useless check.
Link: http://lkml.kernel.org/r/154419752044.18559.2452963074922917720.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Cyrill Gorcunov <gorcunov@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Certain pages that are never mapped to userspace have a type indicated in
the page_type field of their struct pages (e.g. PG_buddy). page_type
overlaps with _mapcount so set the count to 0 and avoid calling
page_mapcount() for these pages.
[anthony.yznaga@oracle.com: incorporate feedback from Matthew Wilcox]
Link: http://lkml.kernel.org/r/1544481313-27318-1-git-send-email-anthony.yznaga@oracle.com
Link: http://lkml.kernel.org/r/1543963526-27917-1-git-send-email-anthony.yznaga@oracle.com
Signed-off-by: Anthony Yznaga <anthony.yznaga@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Miles Chen <miles.chen@mediatek.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Because kpagecount_read() fakes success if map counts are not being
collected, clamp the page count passed to it by walk_pfn() to the pages
value returned by the preceding call to kpageflags_read().
Link: http://lkml.kernel.org/r/1543962269-26116-1-git-send-email-anthony.yznaga@oracle.com
Fixes: 7f1d23e607 ("tools/vm/page-types.c: include shared map counts")
Signed-off-by: Anthony Yznaga <anthony.yznaga@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 03e85f9d5f ("mm/page_alloc: Introduce
free_area_init_core_hotplug"), some functions changed to only be called
during system initialization. Concretly, free_area_init_node() and the
functions that hang from it.
Also, some variables are no longer used after the system has gone
through initialization. So this could be considered as a late clean-up
for that patch.
This patch changes the functions from __meminit to __init, and the
variables from __meminitdata to __initdata.
In return, we get some KBs back:
Before:
Freeing unused kernel image memory: 2472K
After:
Freeing unused kernel image memory: 2480K
Link: http://lkml.kernel.org/r/20181204111507.4808-1-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
write_cache_pages() is used in both background and integrity writeback
scenarios by various filesystems. Background writeback is mostly
concerned with cleaning a certain number of dirty pages based on various
mm heuristics. It may not write the full set of dirty pages or wait for
I/O to complete. Integrity writeback is responsible for persisting a set
of dirty pages before the writeback job completes. For example, an
fsync() call must perform integrity writeback to ensure data is on disk
before the call returns.
write_cache_pages() unconditionally breaks out of its processing loop in
the event of a ->writepage() error. This is fine for background
writeback, which had no strict requirements and will eventually come
around again. This can cause problems for integrity writeback on
filesystems that might need to clean up state associated with failed page
writeouts. For example, XFS performs internal delayed allocation
accounting before returning a ->writepage() error, where applicable. If
the current writeback happens to be associated with an unmount and
write_cache_pages() completes the writeback prematurely due to error, the
filesystem is unmounted in an inconsistent state if dirty+delalloc pages
still exist.
To handle this problem, update write_cache_pages() to always process the
full set of pages for integrity writeback regardless of ->writepage()
errors. Save the first encountered error and return it to the caller once
complete. This facilitates XFS (or any other fs that expects integrity
writeback to process the entire set of dirty pages) to clean up its
internal state completely in the event of persistent mapping errors.
Background writeback continues to exit on the first error encountered.
[akpm@linux-foundation.org: fix typo in comment]
Link: http://lkml.kernel.org/r/20181116134304.32440-1-bfoster@redhat.com
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Function show_mem() is used to print system memory status when user
requires or fail to allocate memory. Generally, this is a best effort
information so any races with memory hotplug (or very theoretically an
early initialization) should be tolerable and the worst that could happen
is to print an imprecise node state.
Drop the resize lock because this is the only place which might hold the
lock from the interrupt context and so all other callers might use a
simple spinlock. Even though this doesn't solve any real issue it makes
the code easier to follow and tiny more effective.
Link: http://lkml.kernel.org/r/20181129235532.9328-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fixes gcc '-Wunused-but-set-variable' warning:
mm/hmm.c: In function 'hmm_devmem_ref_kill':
mm/hmm.c:995:21: warning:
variable 'devmem' set but not used [-Wunused-but-set-variable]
It not used any more since 35d39f953d4e ("mm, hmm: replace
hmm_devmem_pages_create() with devm_memremap_pages()")
Link: http://lkml.kernel.org/r/1543629971-128377-1-git-send-email-yuehaibing@huawei.com
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Reviewed-by: Reviewed-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During online_pages phase, pgdat->nr_zones will be updated in case this
zone is empty.
Currently the online_pages phase is protected by the global locks
(device_device_hotplug_lock and mem_hotplug_lock), which ensures there is
no contention during the update of nr_zones.
These global locks introduces scalability issues (especially the second
one), which slow down code relying on get_online_mems(). This is also a
preparation for not having to rely on get_online_mems() but instead some
more fine grained locks.
The patch moves init_currently_empty_zone under both zone_span_writelock
and pgdat_resize_lock because both the pgdat state is changed (nr_zones)
and the zone's start_pfn. Also this patch changes the documentation of
node_size_lock to include the protection of nr_zones.
Link: http://lkml.kernel.org/r/20181203205016.14123-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since the information needed in sparse_add_one_section() is node id to
allocate proper memory, it is not necessary to pass its pgdat.
This patch changes the prototype of sparse_add_one_section() to pass node
id directly. This is intended to reduce misleading that
sparse_add_one_section() would touch pgdat.
Link: http://lkml.kernel.org/r/20181204085657.20472-2-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pgdat_resize_lock is used to protect pgdat's memory region information
like: node_start_pfn, node_present_pages, etc. While in function
sparse_add/remove_one_section(), pgdat_resize_lock is used to protect
initialization/release of one mem_section. This looks not proper.
These code paths are currently protected by mem_hotplug_lock currently but
should there ever be any reason for locking at the sparse layer a
dedicated lock should be introduced.
Following is the current call trace of sparse_add/remove_one_section()
mem_hotplug_begin()
arch_add_memory()
add_pages()
__add_pages()
__add_section()
sparse_add_one_section()
mem_hotplug_done()
mem_hotplug_begin()
arch_remove_memory()
__remove_pages()
__remove_section()
sparse_remove_one_section()
mem_hotplug_done()
The comment above the pgdat_resize_lock also mentions "Holding this will
also guarantee that any pfn_valid() stays that way.", which is true with
the current implementation and false after this patch. But current
implementation doesn't meet this comment. There isn't any pfn walkers to
take the lock so this looks like a relict from the past. This patch also
removes this comment.
[richard.weiyang@gmail.com: v4]
Link: http://lkml.kernel.org/r/20181204085657.20472-1-richard.weiyang@gmail.com
[mhocko@suse.com: changelog suggestion]
Link: http://lkml.kernel.org/r/20181128091243.19249-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pagetable page doesn't touch page->mapping or have any used field that
overlaps with it. No need to clear mapping in dtor. In fact, doing so
might mask problems that otherwise would be detected by bad_page().
Link: http://lkml.kernel.org/r/20181128235525.58780-1-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Keith Busch <keith.busch@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If there are lots of write IO with flash device, it could have a
wearout problem of storage. To overcome the problem, admin needs
to design write limitation to guarantee flash health
for entire product life.
This patch creates a new knob "writeback_limit" for zram.
writeback_limit's default value is 0 so that it doesn't limit
any writeback. If admin want to measure writeback count in a
certain period, he could know it via /sys/block/zram0/bd_stat's
3rd column.
If admin want to limit writeback as per-day 400M, he could do it
like below.
MB_SHIFT=20
4K_SHIFT=12
echo $((400<<MB_SHIFT>>4K_SHIFT)) > \
/sys/block/zram0/writeback_limit.
If admin want to allow further write again, he could do it like below
echo 0 > /sys/block/zram0/writeback_limit
If admin want to see remaining writeback budget,
cat /sys/block/zram0/writeback_limit
The writeback_limit count will reset whenever you reset zram (e.g., system
reboot, echo 1 > /sys/block/zramX/reset) so keeping how many of writeback
happened until you reset the zram to allocate extra writeback budget in
next setting is user's job.
[minchan@kernel.org: v4]
Link: http://lkml.kernel.org/r/20181203024045.153534-8-minchan@kernel.org
Link: http://lkml.kernel.org/r/20181127055429.251614-8-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Joey Pabalinas <joeypabalinas@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
bd_stat represents things that happened in the backing device. Currently
it supports bd_counts, bd_reads and bd_writes which are helpful to
understand wearout of flash and memory saving.
[minchan@kernel.org: v4]
Link: http://lkml.kernel.org/r/20181203024045.153534-7-minchan@kernel.org
Link: http://lkml.kernel.org/r/20181127055429.251614-7-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Joey Pabalinas <joeypabalinas@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a new feature "zram idle/huge page writeback". In the zram-swap use
case, zram usually has many idle/huge swap pages. It's pointless to keep
them in memory (ie, zram).
To solve this problem, this feature introduces idle/huge page writeback to
the backing device so the goal is to save more memory space on embedded
systems.
Normal sequence to use idle/huge page writeback feature is as follows,
while (1) {
# mark allocated zram slot to idle
echo all > /sys/block/zram0/idle
# leave system working for several hours
# Unless there is no access for some blocks on zram,
# they are still IDLE marked pages.
echo "idle" > /sys/block/zram0/writeback
or/and
echo "huge" > /sys/block/zram0/writeback
# write the IDLE or/and huge marked slot into backing device
# and free the memory.
}
Per the discussion at
https://lore.kernel.org/lkml/20181122065926.GG3441@jagdpanzerIV/T/#u,
This patch removes direct incommpressibe page writeback feature
(d2afd25114f4 ("zram: write incompressible pages to backing device")).
Below concerns from Sergey:
== &< ==
"IDLE writeback" is superior to "incompressible writeback".
"incompressible writeback" is completely unpredictable and uncontrollable;
it depens on data patterns and compression algorithms. While "IDLE
writeback" is predictable.
I even suspect, that, *ideally*, we can remove "incompressible writeback".
"IDLE pages" is a super set which also includes "incompressible" pages.
So, technically, we still can do "incompressible writeback" from "IDLE
writeback" path; but a much more reasonable one, based on a page idling
period.
I understand that you want to keep "direct incompressible writeback"
around. ZRAM is especially popular on devices which do suffer from flash
wearout, so I can see "incompressible writeback" path becoming a dead
code, long term.
== &< ==
Below concerns from Minchan:
== &< ==
My concern is if we enable CONFIG_ZRAM_WRITEBACK in this implementation,
both hugepage/idlepage writeck will turn on. However someuser want to
enable only idlepage writeback so we need to introduce turn on/off knob
for hugepage or new CONFIG_ZRAM_IDLEPAGE_WRITEBACK for those usecase. I
don't want to make it complicated *if possible*.
Long term, I imagine we need to make VM aware of new swap hierarchy a
little bit different with as-is. For example, first high priority swap
can return -EIO or -ENOCOMP, swap try to fallback to next lower priority
swap device. With that, hugepage writeback will work tranparently.
So we could regard it as regression because incompressible pages doesn't
go to backing storage automatically. Instead, user should do it via "echo
huge" > /sys/block/zram/writeback" manually.
== &< ==
Link: http://lkml.kernel.org/r/20181127055429.251614-6-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Joey Pabalinas <joeypabalinas@gmail.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To support idle page writeback with upcoming patches, this patch
introduces a new ZRAM_IDLE flag.
Userspace can mark zram slots as "idle" via
"echo all > /sys/block/zramX/idle"
which marks every allocated zram slot as ZRAM_IDLE.
User could see it by /sys/kernel/debug/zram/zram0/block_state.
300 75.033841 ...i
301 63.806904 s..i
302 63.806919 ..hi
Once there is IO for the slot, the mark will be disappeared.
300 75.033841 ...
301 63.806904 s..i
302 63.806919 ..hi
Therefore, 300th block is idle zpage. With this feature,
user can how many zram has idle pages which are waste of memory.
Link: http://lkml.kernel.org/r/20181127055429.251614-5-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reviewed-by: Joey Pabalinas <joeypabalinas@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rename some variables and restructure some code for better readability in
writeback and zs_free_page.
Link: http://lkml.kernel.org/r/20181127055429.251614-4-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reviewed-by: Joey Pabalinas <joeypabalinas@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>