Texinfo 5.1 fixes.
This commit is contained in:
parent
9c080d883c
commit
f2102ae423
3 changed files with 82 additions and 1 deletions
|
@ -1,10 +1,12 @@
|
|||
$NetBSD: distinfo,v 1.52 2013/08/13 19:53:30 markd Exp $
|
||||
$NetBSD: distinfo,v 1.53 2013/08/19 13:30:30 jperkin Exp $
|
||||
|
||||
SHA1 (R-3.0.1.tar.gz) = 5cc65476837926fdf04105954ea94efa53ac85ce
|
||||
RMD160 (R-3.0.1.tar.gz) = 09910626891c2962b5c05d204b14d59444da0c3b
|
||||
Size (R-3.0.1.tar.gz) = 25508280 bytes
|
||||
SHA1 (patch-ac) = 25e54a7fc8934d2997ea2eff8836784b45ad2a45
|
||||
SHA1 (patch-ad) = 21c2f74ceb41afa72b0b268ba4b1dcb57f01e106
|
||||
SHA1 (patch-doc_manual_R-defs.texi) = 57ad7175cc1bba48bcc74d29c6f85c02a84e4891
|
||||
SHA1 (patch-doc_manual_R-intro.texi) = 592dbbe5e048f5bcbbb94fa3aec32ff2f0e321ba
|
||||
SHA1 (patch-src_library_stats_src_cov.c) = 23e452472506483ffc33a9c6629274b121cfd161
|
||||
SHA1 (patch-src_main_format.c) = f03012b8fbab34ead3f35143fe782ab7c7b29768
|
||||
SHA1 (patch-src_nmath_dnbeta.c) = f14c188a4b74a38cec9a62f5eb2ba1ab72ad52d3
|
||||
|
|
26
math/R/patches/patch-doc_manual_R-defs.texi
Normal file
26
math/R/patches/patch-doc_manual_R-defs.texi
Normal file
|
@ -0,0 +1,26 @@
|
|||
$NetBSD: patch-doc_manual_R-defs.texi,v 1.1 2013/08/19 13:30:30 jperkin Exp $
|
||||
|
||||
Texinfo 5.1 fixes.
|
||||
|
||||
--- doc/manual/R-defs.texi.orig 2013-04-03 22:05:07.000000000 +0000
|
||||
+++ doc/manual/R-defs.texi
|
||||
@@ -17,16 +17,17 @@ S
|
||||
@acronym{HTML}
|
||||
@end macro
|
||||
|
||||
-@macro eqn {t, a}
|
||||
@iftex
|
||||
+@macro eqn {t, a}
|
||||
@tex
|
||||
$\t\$%
|
||||
@end tex
|
||||
@end iftex
|
||||
@ifnottex
|
||||
+@macro eqn {t, a}
|
||||
\a\@c
|
||||
-@end ifnottex
|
||||
@end macro
|
||||
+@end ifnottex
|
||||
|
||||
@macro pkg {p}
|
||||
@strong{\p\}
|
53
math/R/patches/patch-doc_manual_R-intro.texi
Normal file
53
math/R/patches/patch-doc_manual_R-intro.texi
Normal file
|
@ -0,0 +1,53 @@
|
|||
$NetBSD: patch-doc_manual_R-intro.texi,v 1.1 2013/08/19 13:30:30 jperkin Exp $
|
||||
|
||||
Texinfo 5.1 fixes.
|
||||
|
||||
--- doc/manual/R-intro.texi.orig 2013-04-03 22:05:07.000000000 +0000
|
||||
+++ doc/manual/R-intro.texi
|
||||
@@ -1981,12 +1981,27 @@ is available, so we could have used @cod
|
||||
@node Matrix facilities, Forming partitioned matrices, Generalized transpose of an array, Arrays and matrices
|
||||
@section Matrix facilities
|
||||
|
||||
+@iftex
|
||||
@macro xTx{}
|
||||
- @eqn{@strong{x}^T @strong{x}, x'x}
|
||||
+@tex
|
||||
+@strong{x}^T @strong{x}$%
|
||||
+@end tex
|
||||
@end macro
|
||||
@macro xxT{}
|
||||
- @eqn{@strong{x}@strong{x}^T, x x'}
|
||||
+@tex
|
||||
+@strong{x}@strong{x}^T$%
|
||||
+@endtex
|
||||
@end macro
|
||||
+@end iftex
|
||||
+
|
||||
+@ifnottex
|
||||
+@macro xTx{}
|
||||
+x'x
|
||||
+@end macro
|
||||
+@macro xxT{}
|
||||
+x x'
|
||||
+@end macro
|
||||
+@end ifnottex
|
||||
|
||||
As noted above, a matrix is just an array with two subscripts. However
|
||||
it is such an important special case it needs a separate discussion.
|
||||
@@ -2106,10 +2121,12 @@ potentially unstable to compute @code{x
|
||||
The quadratic form @eqn{@strong{x^T A^{-1} x},@ @code{x %*% A^@{-1@} %*%
|
||||
x} @ } which is used in multivariate computations, should be computed by
|
||||
something like@footnote{Even better would be to form a matrix square
|
||||
-root @eqn{B, B} with @eqn{A = BB^T, A = BB'} and find the squared length of the
|
||||
-solution of @eqn{By = x, By = x}, perhaps using the Cholesky or
|
||||
-eigendecomposition of @eqn{A, A}.} @code{x %*% solve(A,x)}, rather than
|
||||
-computing the inverse of @code{A}.
|
||||
+root @eqn{B, B}
|
||||
+ with @eqn{A = BB^T, A = BB'}
|
||||
+ and find the squared length of the solution of
|
||||
+@eqn{By = x, By = x}
|
||||
+, perhaps using the Cholesky or eigendecomposition of @eqn{A, A}.
|
||||
+} @code{x %*% solve(A,x)}, rather than computing the inverse of @code{A}.
|
||||
|
||||
@node Eigenvalues and eigenvectors, Singular value decomposition and determinants, Linear equations and inversion, Matrix facilities
|
||||
@subsection Eigenvalues and eigenvectors
|
Loading…
Reference in a new issue