oxen-core/LEVIN_PROTOCOL.md

6.9 KiB

Levin Protocol

This is a document explaining the current design of the levin protocol, as used by Monero. The protocol is largely inherited from cryptonote, but has undergone some changes.

This document also may differ from the struct bucket_head2 in Monero's code slightly - the spec here is slightly more strict to allow for extensibility.

One of the goals of this document is to clearly indicate what is being sent "on the wire" to identify metadata that could de-anonymize users over I2P/Tor. These issues will be addressed as they are found. See ANONMITY_NETWORKS.md in the top-level folder for any outstanding issues.

This document does not currently list all data being sent by the monero protocol, that portion is a work-in-progress. Please take the time to do it if interested in learning about Monero p2p traffic!

Header

This header is sent for every Monero p2p message.

 0               1               2               3
 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      0x01     |      0x21     |      0x01     |      0x01     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      0x01     |      0x01     |      0x01     |      0x01     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                             Length                            |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  E. Response  |                   Command
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                |                 Return Code
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                |Q|S|B|E|               Reserved
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                |      0x01     |      0x00     |      0x00     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     0x00      |
+-+-+-+-+-+-+-+-+

Signature

The first 8 bytes are the "signature" which helps identify the protocol (in case someone connected to the wrong port, etc). The comments indicate that byte sequence is from "benders nightmare".

This also can be used by deep packet inspection (DPI) engines to identify Monero when the link is not encrypted. SSL has been proposed as a means to mitigate this issue, but BIP-151 or the Noise protocol should also be considered.

Length

The length is an unsigned 64-bit little endian integer. The length does not include the header.

The implementation currently rejects received messages that exceed 100 MB (base 10) by default.

Expect Response

A zero-byte if no response is expected from the peer, and a non-zero byte if a response is expected from the peer. Peers must respond to requests with this flag in the same order that they were received, however, other messages can be sent between responses.

There are some commands in the cryptonote protocol where a response is expected from the peer, but this flag is not set. Those responses are returned as notify messages and can be sent in any order by the peer.

Command

An unsigned 32-bit little endian integer representing the Monero specific command being invoked.

Return Code

A signed 32-bit little integer integer representing the response from the peer from the last command that was invoked. This is 0 for request messages.

Flags

  • Q - Bit is set if the message is a request.
  • S - Bit is set if the message is a response.
  • B - Bit is set if this is a the beginning of a fragmented message.
  • E - Bit is set if this is the end of a fragmented message.

Version

A fixed value of 1 as an unsigned 32-bit little endian integer.

Message Flow

The protocol can be subdivided into: (1) notifications, (2) requests, (3) responses, (4) fragmented messages, and (5) dummy messages. Response messages must be sent in the same order that a peer issued a request message. A peer does not have to send a response immediately following a request - any other message type can be sent instead.

Notifications

Notifications are one-way messages that can be sent at any time without an expectation of a response from the peer. The Q bit must be set, the S, B and E bits must be unset, and the Expect Response field must be zeroed.

Some notifications must be in response to other notifications. This is not part of the levin messaging layer, and is described in the commands section.

Requests

Requests are the basis of the admin protocol for Monero. The Q bit must be set, the S, B and E bits must be unset, and the Expect Response field must be non-zero. The peer is expected to send a response message with the same command number.

Responses

Response message can only be sent after a peer first issues a request message. Responses must have the S bit set, the Q, B and E bits unset, and have a zeroed Expect Response field. The Command field must be the same value that was sent in the request message. The Return Code is specific to the Command being issued (see [commands])(#commands)).

Fragmented

Fragmented messages were introduced for the "white noise" feature for i2p/tor. A transaction can be sent in fragments to conceal when "real" data is being sent instead of dummy messages. Only one fragmented message can be sent at a time, and bits B and E are never set at the same time (see dummy messages). The re-constructed message must contain a levin header for a different (non-fragment) message type.

The Q and S bits are never set and the Expect Response field must always be zero. The first fragment has the B bit set, neither B nor E is set for "middle" fragments, and E is set for the last fragment.

Dummy

Dummy messages have the B and E bits set, the Q and S bits unset, and the Expect Reponse field zeroed. When a message of this type is received, the contents can be safely ignored.

Commands

P2P (Admin) Commands

(1001 Request) Handshake

(1001 Response) Handshake

(1002 Request) Timed Sync

(1002 Response) Timed Sync

(1003 Request) Ping

(1003 Response) Ping

(1004 Request) Stat Info

(1004 Response) Stat Info

(1005 Request) Network State

(1005 Response) Network State

(1006 Request) Peer ID

(1006 Reponse) Peer ID

(1007 Request) Support Flags

(1007 Response) Support Flags

Cryptonote Protocol Commands

(2001 Notification) New Block

(2002 Notification) New Transactions

(2003 Notification) Request Get Objects

(2004 Notification) Response Get Objects

(2006 Notification) Request Chain

(2007 Notification) Response Chain Entry

(2008 Notification) New Fluffy Block

(2009 Notification) Request Fluffy Missing TX