session-ios/Libraries/spandsp/spandsp/spandsp/bit_operations.h

315 lines
8.5 KiB
C

/*
* SpanDSP - a series of DSP components for telephony
*
* bit_operations.h - Various bit level operations, such as bit reversal
*
* Written by Steve Underwood <steveu@coppice.org>
*
* Copyright (C) 2006 Steve Underwood
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 2.1,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* $Id: bit_operations.h,v 1.27 2009/07/10 13:15:56 steveu Exp $
*/
/*! \file */
#if !defined(_SPANDSP_BIT_OPERATIONS_H_)
#define _SPANDSP_BIT_OPERATIONS_H_
#if defined(__i386__) || defined(__x86_64__)
#if !defined(__SUNPRO_C) || (__SUNPRO_C >= 0x0590)
#define SPANDSP_USE_86_ASM
#endif
#endif
#if defined(__cplusplus)
extern "C"
{
#endif
/*! \brief Find the bit position of the highest set bit in a word
\param bits The word to be searched
\return The bit number of the highest set bit, or -1 if the word is zero. */
static __inline__ int top_bit(unsigned int bits)
{
#if defined(SPANDSP_USE_86_ASM)
int res;
__asm__ (" xorl %[res],%[res];\n"
" decl %[res];\n"
" bsrl %[bits],%[res]\n"
: [res] "=&r" (res)
: [bits] "rm" (bits));
return res;
#elif defined(__ppc__) || defined(__powerpc__)
int res;
__asm__ ("cntlzw %[res],%[bits];\n"
: [res] "=&r" (res)
: [bits] "r" (bits));
return 31 - res;
#elif defined(_M_IX86)
/* Visual Studio i386 */
__asm
{
xor eax, eax
dec eax
bsr eax, bits
}
#elif defined(_M_X64)
/* Visual Studio x86_64 */
/* TODO: Need the appropriate x86_64 code */
int res;
if (bits == 0)
return -1;
res = 0;
if (bits & 0xFFFF0000)
{
bits &= 0xFFFF0000;
res += 16;
}
if (bits & 0xFF00FF00)
{
bits &= 0xFF00FF00;
res += 8;
}
if (bits & 0xF0F0F0F0)
{
bits &= 0xF0F0F0F0;
res += 4;
}
if (bits & 0xCCCCCCCC)
{
bits &= 0xCCCCCCCC;
res += 2;
}
if (bits & 0xAAAAAAAA)
{
bits &= 0xAAAAAAAA;
res += 1;
}
return res;
#else
int res;
if (bits == 0)
return -1;
res = 0;
if (bits & 0xFFFF0000)
{
bits &= 0xFFFF0000;
res += 16;
}
if (bits & 0xFF00FF00)
{
bits &= 0xFF00FF00;
res += 8;
}
if (bits & 0xF0F0F0F0)
{
bits &= 0xF0F0F0F0;
res += 4;
}
if (bits & 0xCCCCCCCC)
{
bits &= 0xCCCCCCCC;
res += 2;
}
if (bits & 0xAAAAAAAA)
{
bits &= 0xAAAAAAAA;
res += 1;
}
return res;
#endif
}
/*- End of function --------------------------------------------------------*/
/*! \brief Find the bit position of the lowest set bit in a word
\param bits The word to be searched
\return The bit number of the lowest set bit, or -1 if the word is zero. */
static __inline__ int bottom_bit(unsigned int bits)
{
int res;
#if defined(SPANDSP_USE_86_ASM)
__asm__ (" xorl %[res],%[res];\n"
" decl %[res];\n"
" bsfl %[bits],%[res]\n"
: [res] "=&r" (res)
: [bits] "rm" (bits));
return res;
#else
if (bits == 0)
return -1;
res = 31;
if (bits & 0x0000FFFF)
{
bits &= 0x0000FFFF;
res -= 16;
}
if (bits & 0x00FF00FF)
{
bits &= 0x00FF00FF;
res -= 8;
}
if (bits & 0x0F0F0F0F)
{
bits &= 0x0F0F0F0F;
res -= 4;
}
if (bits & 0x33333333)
{
bits &= 0x33333333;
res -= 2;
}
if (bits & 0x55555555)
{
bits &= 0x55555555;
res -= 1;
}
return res;
#endif
}
/*- End of function --------------------------------------------------------*/
/*! \brief Bit reverse a byte.
\param data The byte to be reversed.
\return The bit reversed version of data. */
static __inline__ uint8_t bit_reverse8(uint8_t x)
{
#if defined(__i386__) || defined(__x86_64__) || defined(__ppc__) || defined(__powerpc__)
/* If multiply is fast */
return ((x*0x0802U & 0x22110U) | (x*0x8020U & 0x88440U))*0x10101U >> 16;
#else
/* If multiply is slow, but we have a barrel shifter */
x = (x >> 4) | (x << 4);
x = ((x & 0xCC) >> 2) | ((x & 0x33) << 2);
return ((x & 0xAA) >> 1) | ((x & 0x55) << 1);
#endif
}
/*- End of function --------------------------------------------------------*/
/*! \brief Bit reverse a 16 bit word.
\param data The word to be reversed.
\return The bit reversed version of data. */
SPAN_DECLARE(uint16_t) bit_reverse16(uint16_t data);
/*! \brief Bit reverse a 32 bit word.
\param data The word to be reversed.
\return The bit reversed version of data. */
SPAN_DECLARE(uint32_t) bit_reverse32(uint32_t data);
/*! \brief Bit reverse each of the four bytes in a 32 bit word.
\param data The word to be reversed.
\return The bit reversed version of data. */
SPAN_DECLARE(uint32_t) bit_reverse_4bytes(uint32_t data);
#if defined(__x86_64__)
/*! \brief Bit reverse each of the eight bytes in a 64 bit word.
\param data The word to be reversed.
\return The bit reversed version of data. */
SPAN_DECLARE(uint64_t) bit_reverse_8bytes(uint64_t data);
#endif
/*! \brief Bit reverse each bytes in a buffer.
\param to The buffer to place the reversed data in.
\param from The buffer containing the data to be reversed.
\param len The length of the data in the buffer. */
SPAN_DECLARE(void) bit_reverse(uint8_t to[], const uint8_t from[], int len);
/*! \brief Find the number of set bits in a 32 bit word.
\param x The word to be searched.
\return The number of set bits. */
SPAN_DECLARE(int) one_bits32(uint32_t x);
/*! \brief Create a mask as wide as the number in a 32 bit word.
\param x The word to be searched.
\return The mask. */
SPAN_DECLARE(uint32_t) make_mask32(uint32_t x);
/*! \brief Create a mask as wide as the number in a 16 bit word.
\param x The word to be searched.
\return The mask. */
SPAN_DECLARE(uint16_t) make_mask16(uint16_t x);
/*! \brief Find the least significant one in a word, and return a word
with just that bit set.
\param x The word to be searched.
\return The word with the single set bit. */
static __inline__ uint32_t least_significant_one32(uint32_t x)
{
return (x & (-(int32_t) x));
}
/*- End of function --------------------------------------------------------*/
/*! \brief Find the most significant one in a word, and return a word
with just that bit set.
\param x The word to be searched.
\return The word with the single set bit. */
static __inline__ uint32_t most_significant_one32(uint32_t x)
{
#if defined(__i386__) || defined(__x86_64__) || defined(__ppc__) || defined(__powerpc__)
return 1 << top_bit(x);
#else
x = make_mask32(x);
return (x ^ (x >> 1));
#endif
}
/*- End of function --------------------------------------------------------*/
/*! \brief Find the parity of a byte.
\param x The byte to be checked.
\return 1 for odd, or 0 for even. */
static __inline__ int parity8(uint8_t x)
{
x = (x ^ (x >> 4)) & 0x0F;
return (0x6996 >> x) & 1;
}
/*- End of function --------------------------------------------------------*/
/*! \brief Find the parity of a 16 bit word.
\param x The word to be checked.
\return 1 for odd, or 0 for even. */
static __inline__ int parity16(uint16_t x)
{
x ^= (x >> 8);
x = (x ^ (x >> 4)) & 0x0F;
return (0x6996 >> x) & 1;
}
/*- End of function --------------------------------------------------------*/
/*! \brief Find the parity of a 32 bit word.
\param x The word to be checked.
\return 1 for odd, or 0 for even. */
static __inline__ int parity32(uint32_t x)
{
x ^= (x >> 16);
x ^= (x >> 8);
x = (x ^ (x >> 4)) & 0x0F;
return (0x6996 >> x) & 1;
}
/*- End of function --------------------------------------------------------*/
#if defined(__cplusplus)
}
#endif
#endif
/*- End of file ------------------------------------------------------------*/