notas-fnys/pres4.tex~

414 lines
10 KiB
TeX
Executable File

\documentclass[12pt]{beamer}
\usetheme{Berlin}
\usepackage[utf8]{inputenc}
\usepackage[spanish]{babel}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{braket}
\usepackage{tikz}
\usepackage{tikz-feynman}[compat=1.1.0]
\usepackage{appendixnumberbeamer}
%\setbeamerfont{page number in head}{size=\large}
%\setbeamertemplate{footline}{Diapositiva}
\setbeamertemplate{footline}[frame number]
\newcommand{\backupbegin}{
\newcounter{finalframe}
\setcounter{finalframe}{\value{framenumber}}
}
\newcommand{\backupend}{
\setcounter{framenumber}{\value{finalframe}}
}
\author{Física Nuclear y subnuclear }
\title{Interacciones y conservaciones}
%\setbeamercovered{transparent}
%\setbeamertemplate{navigation symbols}{}
%\logo{}
%\institute{}
%\date{}
%\subject{}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
%\begin{frame}{Contenido}
% \tableofcontents
%\end{frame}
\begin{frame}{Isospín}
\begin{table}[ht!]
\begin{tabular}{|p{0.2\textwidth}|p{0.2\textwidth}|p{0.2\textwidth}|}
\hline
Partícula & $I$ & $I_3$ \\
\hline
$p$ & $1/2$ & $1/2$ \\
$n$ & $1/2$ & $-1/2$ \\
\hline
$\pi^+$ & $1$ & $1$ \\
$\pi^0$ & $1$ & $0$\\
$\pi^-$ & $1$ & $-1$ \\
\hline
$K^+$ & $1/2$ & $1/2$ \\
$K^0$ & $1/2$ & $-1/2$ \\
\hline
$\Sigma^+$ & $1$ & $1$ \\
$\Sigma^0$ & $1$ & $0$ \\
$\Sigma^-$ & $1$ & $-1$ \\
\hline
\end{tabular}
\label{tab:lep}
\caption{Valores del número leptónico por familia para los leptones}
\end{table}
\end{frame}
\begin{frame}{Relación Gell-Mann-Nishima}
\begin{equation*}
Q = I_3 + \frac{Y}{2} = I_3 + \frac{B-S}{2},
\end{equation*}
\end{frame}
\section{Resonancias en hadrones}
\begin{frame}{Resonancia $\Delta(1234)$}
\begin{figure}[ht!]
\begin{center}
\includegraphics[width=0.6\linewidth]{gaussianas.jpg}
\caption{Esquema de la sección eficaz de las colisiones $\pi-N$ a bajas energías. Imagen adaptada de: \href{http://www.flickr.com/photos/77004318@N00/91432761}{"case3b"} por \href{http://www.flickr.com/photos/77004318@N00}{Samuel Foucher} con licencia \href{https://creativecommons.org/licenses/by-sa/2.0/?ref=ccsearch&atype=rich}{CC BY-SA 2.0}}
\label{fig:gauss}
\end{center}
\end{figure}
\end{frame}
\begin{frame}{Vida media}
\begin{equation*}
\tau_{\Delta} \approx \frac{\hbar}{\Gamma_{\Delta}c^2}\approx \frac{6.6\times 10^{-22}MeV-sec}{100MeV} \approx 10^{-23} segundos
\end{equation*}
\end{frame}
\begin{frame}{Resonancia $\rho^0$}
\begin{equation}
\pi^- + p \rightarrow \pi^+ + \pi^- + n
\label{ec:rho}
\end{equation}
\begin{align*}
\pi^- + p &\rightarrow \rho^0 + n \\
\text{después } \rho^0 &\rightarrow \pi^+ + \pi^-
\end{align*}
\end{frame}
\begin{frame}{Tiempo de vida media}
\begin{equation*}
\psi \propto e^{\frac{ic^2}{\hbar} (M_0-i\frac{\Gamma}{2})t}, t>0.
\end{equation*}
\begin{equation*}
\tau=\frac{\hbar}{\Gamma c^2}.
\end{equation*}
\end{frame}
\section*{Interacciones}
\begin{frame}{Interacciones electromagnéticas}
\begin{itemize}
\item Una interacción muy estudiada
\item Aproximaciones clásicas
\item Teoría de perturbaciones
\item ?`Si las energías son relativistas y el tratamiento cuántico?
\begin{itemize}
\item Electrodinámica cuántica
\item Radiación multipolar
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Dispersión electromagnética de leptones}
\begin{itemize}
\item Dispersión de M\o{}ller
\begin{equation*}
e^- + e^- \rightarrow e^- + e^-
\end{equation*}
\item Dispersión de Bhabha
\begin{equation*}
e^- + e^+ \rightarrow e^- + e^+
\end{equation*}
\end{itemize}
\end{frame}
\begin{frame}{Dispersión electromagnética de leptones}
\feynmandiagram [large, vertical=b to c] {
a -- [fermion, edge label'=\( e^- \)] b -- [fermion, edge label'=\( e^- \)] j,
b -- [photon,edge label'=\(\gamma\)] c,
h -- [anti fermion, edge label'=\( e^+ \)] c -- [anti fermion, edge label'=\( e^+ \)] i;
};
\feynmandiagram [horizontal=a to b] {
i1[particle=\( e^- \)] -- [fermion] a -- [fermion] i2[particle=\( e^+ \)],
a -- [photon, edge label'=\(\gamma\)] b,
f1[particle= \( e^- \)] -- [fermion] b -- [fermion] f2 [particle=\( e^+ \)],
};
\end{frame}
\begin{frame}{Interacción fotón-hadrón y mesones mediadores}
?`Un fotón puede decaer en un par hadrón anti-hadrón?
\begin{itemize}
\item $\rho^0$, $\omega^0$ y $\phi^0$
\end{itemize}
\end{frame}
\begin{frame}{Conservaciones y violaciones}
Conserva
\begin{itemize}
\item Extrañeza
\item Paridad
\end{itemize}
\end{frame}
\begin{frame}{Interacción débil}
\begin{itemize}
\item Electrodébil
\item Radiación nuclear: $\alpha$, $\beta$ y $\gamma$
\item $\beta = e^{\pm}$
\begin{itemize}
\item ?`Elctrones en el núcleo?
\item Espectro de energías continuo
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Neutrinos}
\begin{itemize}
\item Interacción débil
\item Partículas neutras
\item Recuerden
\begin{equation*}
n\rightarrow p + e^- + \bar{\nu_e}
\end{equation*}
\end{itemize}
\end{frame}
\begin{frame}{Corrientes neutras}
\begin{equation*}
\nu_{\mu} + e^- \rightarrow \nu_{\mu} + e^-
\end{equation*}
\feynmandiagram [large, vertical=b to c] {
a -- [fermion, edge label'=\( \nu_{\mu} \)] b -- [fermion, edge label'=\( \nu_{\mu} \)] j,
b -- [scalar,edge label'=\(Z^0\)] c,
h -- [fermion, edge label'=\( e^- \)] c -- [fermion, edge label'=\( e^- \)] i;
};
\end{frame}
\begin{frame}{Procesos leptónicos}
\begin{equation*}
\mu^+ \rightarrow \bar{\nu_{\mu}} + e^+ + \nu_{e}
\end{equation*}
\begin{equation*}
\nu_{\tau} + e^- \rightarrow \nu_{\tau} + e^-
\end{equation*}
\end{frame}
\begin{frame}{Procesos semileptónicos}
\begin{equation*}
\underset{\bar{u}d}{\pi^-} \rightarrow \underset{u\bar{u}}{\pi^0} + e^- + \bar{\nu_e}
\end{equation*}
\feynmandiagram [horizontal=a to b] {
i1[particle=\( \bar{u} \)] -- [] a,
a -- [fermion] b,
b -- [] f2 [particle=\( \bar{u} \)],
};
\feynmandiagram [layered layout, horizontal=a to b] {
a [particle=d] -- [fermion] b -- [fermion] f1 [particle=u],
b -- [scalar, edge label'=\(W^{-}\)] c,
c -- [anti fermion] f2 [particle=\(\overline \nu_e\)],
c -- [fermion] f3 [particle=\( e^- \)],
};
\end{frame}
\begin{frame}{Procesos semileptónicos}
\begin{equation*}
\nu_{\mu} + \underset{udd}{n} \rightarrow \mu^- + \underset{uud}{p}
\end{equation*}
\begin{equation*}
\nu_{\mu} + p \rightarrow \nu_{\mu} + p
\end{equation*}
\end{frame}
\begin{frame}{Procesos hadrónicos}
\begin{align*}
K^+ &\rightarrow \pi^+ + \pi^0 \\
&\rightarrow \pi^+ + \pi^+ + \pi^- \\
&\rightarrow \pi^+ + \pi^0 + \pi^0.
\end{align*}
En ninguno cambia la extrañeza.
\end{frame}
\begin{frame}{Violaciones}
Fuente de muones
\begin{equation}
\pi^+ \rightarrow \mu^+ + \nu_{\mu}
\end{equation}
\begin{itemize}
\item Conservación momento
\item conservación momento angular
\end{itemize}
\end{frame}
\begin{frame}{Paridad}
\begin{align*}
\mathbf{P}(\overrightarrow{r}) &= -\overrightarrow{r} \\
\mathbf{P}(\overrightarrow{p}) &= -\overrightarrow{p}
\end{align*}
\end{frame}
\begin{frame}
\begin{equation*}
\mathbf{P}(\overrightarrow{L}) = \mathbf{P}(\overrightarrow{r}) \times \mathbf{P}(\overrightarrow{p}) = (-\overrightarrow{r}) \times (-\overrightarrow{p})= (\overrightarrow{r}) \times (\overrightarrow{p}) = \overrightarrow{L}
\end{equation*}
\begin{align*}
\mathbf{P}\square &= +\square \text{ paridad positiva o par} \\
\mathbf{P}\square &= -\square \text{ paridad negativa o impar}
\end{align*}
\end{frame}
\begin{frame}
\begin{equation*}
\mathbf{P}\ket{\text{estado inicial}} = \mathbf{P}(\ket{a})\mathbf{P}(\ket{b})\mathbf{P}(\ket{\text{movimiento relativo}})
\label{ec:paridad}
\end{equation*}
\begin{align*}
\eta_p(\text{estado incial}) &= \eta_p(a) \eta_p(b)\eta_p(\text{movimieno relativo}) \notag \\
\text{función de onda } \eta_p(\text{estado incial}) &= \eta_p(a) \eta_p(b)(-1)^{\ell}
\label{ec:parorb}
\end{align*}
\end{frame}
\begin{frame}
\begin{equation}
\begin{pmatrix}
u \\
d
\end{pmatrix} \begin{pmatrix}
c \\
s
\end{pmatrix} \begin{pmatrix}
t \\
b
\end{pmatrix}.
\end{equation}
\begin{align}
\eta_p(\text{estado incial}) &= \eta_p(a) \eta_p(b)\eta_p(\text{movimieno relativo}) \notag \\
\text{función de onda } \eta_p(\text{estado incial}) &= \eta_p(a) \eta_p(b)(-1)^{\ell}
\label{ec:parorb}
\end{align}
\end{frame}
\begin{frame}
\begin{equation}
\begin{pmatrix}
d' \\
s' \\
b'
\end{pmatrix} =
\begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
\begin{pmatrix}
d \\
s \\
b
\end{pmatrix}
\end{equation}
\end{frame}
\begin{frame}
\begin{equation}
\begin{pmatrix}
\nu_e \\
\nu_{\mu} \\
\nu_{\tau}
\end{pmatrix} =
\begin{pmatrix}
V_{e1} & V_{e2} & V_{e3} \\
V_{\mu 1} & V_{\mu 2} & V_{\mu 3} \\
V_{\tau 1} & V_{\tau 2} & V_{\tau 3}
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\end{equation}
\end{frame}
\begin{frame}
\begin{align*}
\nu_e =& cos\theta_{12} \nu_1 + sen\theta_{12} \nu_2 \\
\nu_{\mu} =& -sen\theta_{12} \nu_1 + cos\theta_{12} \nu_2
\end{align*}
\begin{equation}
\ket{\nu_e(t)} = e^{-iE_1t/\hbar}cos\theta_{12} \nu_1 + e^{-iE_2t/\hbar}sen\theta_{12} \nu_2
\end{equation}
\begin{equation}
\mathbb{P}_{\nu_{\mu}}(t) = |\bra{\nu_{\mu}}\ket{\nu_e}(t)|^2 = sen^2 \theta_{12} sen^2\left[ \frac{1}{2} \frac{(E_1 - E_2)t}{\hbar}\right]
\end{equation}
\end{frame}
\begin{frame}{Neutrinos de Majorana}
\end{frame}
\end{document}